
1

Hierarchical Aggregation of Multicast Trees in
Large Domains

Joanna Moulierac (1) Alexandre Guitton (2) Miklós Molnár(3)
(1) IRISA/University of Rennes I, Rennes, France

(2) Birkbeck College, University of London, England
(3) IRISA/INSA, Rennes, France

Email: joanna.moulierac@irisa.fr, alexandre@dcs.bbk.ac.uk, miklos.molnar@irisa.fr

Abstract— Multicast tree aggregation is a technique that
reduces the control overhead and the number of states
induced by multicast. The main idea of this protocol is to
route several groups to the same distribution tree in order to
reduce the total number of multicast forwarding states. In
this article, we show that this technique cannot be applied to
large domains. Indeed, when the number of border routers
is large, actual tree aggregation protocols are unable to find
similar groups to aggregate to the same tree. However, by
dividing the domain into several smaller sub-domains, we
prove that it is possible to achieve important savings. A
hierarchical protocol is designed to interconnect the trees of
the sub-domains together. While previous protocols cannot
cope with more than 25 border routers, our protocol still
shows significant benefits for domains with 200 border
routers.

I. I NTRODUCTION

The growth of multi-users applications such as video-
conferences, file sharing, chat rooms or multi-player
games is constantly increasing the demand on network
bandwidth. For several years, multicast has been consid-
ered a solution to save bandwidth by copying packets
within the network, rather than at the source. However,
multicast has not been deployed on the Internet yet, for
it suffers from management issues. First, multicast is not
able to aggregate forwarding states efficiently, as unicast
does. Therefore, the number of multicast states grows
with the number of groups. Second, the control overhead
required to manage these states is increasing in the same
manner, consuming an important part of the bandwidth. It
is not clear that the use of unscalable multicast techniques
can really achieve bandwidth savings.

Recently, tree aggregation has been proposed to reduce
both the number of multicast forwarding states and its
control overhead. While most multicast protocols build
a multicast tree per group, tree aggregation uses signifi-
cantly less trees than groups. Since the states and control
overhead depends mainly on the number of trees, the tree
aggregation technique can achieve major savings.

This paper is based on “Multicast Tree Aggregation in Large Do-
mains,” Joanna Moulierac, Alexandre Guitton, and Miklós Molnár,
which appeared in the Proceedings of the 5th IFIP NetworkingCon-
ference, pp. 691–702, Coimbra, Portugal, May 2006.c© 2006 IFIP.

A. Tree aggregation technique

Tree aggregation forces several groups to share the
same delivery tree by applying a many-to-one function.
This function merges all the groups that are similar under
the same structure. This matching does not need to be
perfect: it is possible that a groupg is forced to use a tree
t that is sub-optimal forg. The bandwidth loss induced by
the messages for the groupg is usually not high, because
it has to be balanced among all the groups sharingt.

Routing the messages on an aggregated tree cannot be
done based on the group address anymore. This problem
can be solved by assigning a label to each tree. This
label is local to the domain. At the entrance on the
domain, this label is pushed into the multicast packets,
using a group-label table at the incoming border router.
Inside the domain, the packet is routed according to the
label only. Finally, at the outgoing border router, the
label is removed and the packet forwarding can continue
normally outside the domain. In fact, tree aggregation
can be deployed in a MPLS domain where the labels
are distributed in the domain using LDP or it can be
deployed with IP encapsulation where the labels represent
a multicast address of a group which is not really active
in the domain.

Let us show this mechanism on the domain depicted
on Figure 1. The four border routersb1, b2, b3 and b4

are shown together with the group-label table of router
b1 (this is the only table presented for need of clarity
on the figure). Without aggregation, the three groups,
with members attached to border routers(b1, b2, b4) are
assigned each to one tree. Then, three trees are build and
maintained in the domain. When tree aggregation is used,
only one treet1 can be build for these three groups as the
three of them have members attached to the same routers.
The tree of labell1 is configured and three entries that
match the three groups tol1 are added in the group-label
table ofb1.

If a new groupg4 with members inb1 andb4 joins the
network, two possibilities are offered:

• A new tree t2 can be built forg4, at the cost of
more forwarding states and more control overhead
to maintain this new tree. However, if the tree
aggregation manager expects more groups similar to
g4 to come, this tree might be proved useful.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 33

© 2006 ACADEMY PUBLISHER

ap
Rectangle

2

• The groupg4 can be aggregated to the treet1. In this
case, each time a packet forg4 is sent in the domain,
the packet will reachb2 unnecessarily. In this case,
some bandwidth is wasted. Several tree aggregation
protocols use the expected bandwidth usage of the
group to determine whether to aggregate a group to
a tree or not.

Several protocols based on tree aggregation have been
proposed in the literature. They yield high benefits. In
this article however, we show that tree aggregation cannot
achieve significant savings as the size of the domain in-
creases. Indeed, the potential number of groups increases
exponentially with the domain size, so when the domain
is large enough (e.g., if the domain has more than25
border routers), the probability that a given number of
groups have some commonalities is really small. In the
following, we provide an analysis of this behavior.

B. Analysis of the expected number of groups

To show that tree aggregation savings decrease as the
size of the domain increases, we conduct a worst-case
analysis.

In a domain with b border routers, there are ap-
proximately 2b different groups or more precisely2b

compositions of groups. Indeed, we consider as a group
the set of routers attached with members of groups and
with this definition two groups can have two different IP
multicast addresses while their members are attached to
the same routers. In this case, we say that the two groups
are equivalent. Even if the actual number of concurrent
groups in the network is higher than2b (as there are
much than2b different multicast addresses), the number
of different groups is bounded by2b.

Our goal is to derive a formula for the number of
expected different groups. Let us identify each concurrent
group in the network to a ball, and each possible compo-
sition of group to an urn. Each ball is thrown uniformly
into one of the urns. The number of different groups|G|
is the resulting number of non-empty urns. If2b denotes
the total number of urns andg the number of concurrent
groups, we have:

|G| = 2b(1− (1− 2−b)g).

The previous formula assumes that each possible group
has the same probability to appear. This is generally not
the case because (i) the probability of a group to appear
depends on its size and (ii) multicast groups are often
correlated.

Let us apply the formula to compute the number of
different composition of groups in a small domain. If the
domain containsb = 15 border routers, and if there are
g = 10, 000 concurrent groups, the expected number of
different groups is only8 618. In such small domains, tree
aggregation protocols are applicable where each different
group can be assigned a tree. The savings are higher than
1 − |G|/g = 15% compared to protocols that build one
tree per group (in this case there would be10 000 trees).
However, if the domain containsb = 20 border routers,

there are9 952 different groups. Already, the savings of
tree aggregation are less than one percent. Notice that
the number of different groups is equal to the number
of concurrent groups when the number of border routers
exceedsb = 25 and for a realistic number of concurrent
groups. Therefore, it is not possible to have significant
savings by applying a tree aggregation technique on a
large domain. Table I shows the savings that can be
expected by tree aggregation technique as the number of
border routers increases.

In this article, our goal is to achieve significant savings
in large domains, such as inter-networks constituted of
several autonomous systems (AS). We tackle the scala-
bility problem by splitting the domain into several sub-
domains and by performing tree aggregation in each sub-
domain independently. Then, a centralized manager is in
charge of merging the sub-trees together.

C. Splitting the domain increases the aggregation ratio

Let us conduct the same analysis on the number of
different groups when the domain is splitted into several
sub-domains. Formally, splitting a domainD of b border
routers consists in partitioningD into d sub-domains,
such as each sub-domain contains approximatelyb/d
border routers. Each sub-domain can be seen as a domain
with b/d border routers1. Therefore, the expected number
of different groups in each sub-domain|Gi| is equal to:

|Gi| = 2b/d(1− (1− 2−b/d)g).

The total number of different groups in all the sub-
domains is d.|Gi|, which is much smaller than|G|
(roughly, we haved.|Gi| ≈ d d

√

|G| << |G|).

D. Outline

Section II presents an algorithm that splits the domain
into sub-domains, and a protocol that manages the groups
dynamically and combines the aggregated trees together.
Section III validates the algorithm on simulations, and
identifies its advantages according to several metrics.
Section V describes the existing protocols for the tree ag-
gregation in small domains. Finally, Section VI provides
the perspective of our work and our future directions.

II. T HE PROTOCOLTALD

In this section, we show how to design the protocol
TALD (Tree Aggregation in Large Domains) that achieves
sub-domains tree aggregation [1]. Three main issues arise
in order to presentTALD:

• A. How to divide the domains into sub-domains?
• B. How to aggregate groups within a sub-domain?
• C. How to route packets in the whole domain for the

multicast group, considering the aggregation of the
sub-domains?

The following sub-sections answer to these three ques-
tions.

1Note that we only count as border routers of the sub-domain the
original border routers. The nodes that were not border routers but that
are on the boundaries of the sub-domain are not taken into account,
since they cannot be attached directly to members.

34 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

3

g1 → l1

g2 → l1

g3 → l1
l1

(g1, g2, g3)

(g1, g2, g3)

(g1, g2, g3)

(g1, g2, g3)

(g1, g2, g3)

(g1, g2, g3)

b1

b1

b2

b2

b3

b3

b4

b4

Forwarding state forg1

Forwarding state forg2

Forwarding state forg3

Forwarding state forl1

T
R

A
D

IT
IO

N
A

L
IP

M
U

LT
IC

A
S

T
W

IT
H

M
U

LT
IC

A
S

T
T

R
E

E
A

G
G

R
E

G
A

T
IO

N

Routing table

Routing table

Group-label table

Figure 1. The groupsg1, g2 andg3 utilize the same tree of labell1.

Number of border routers Number of concurrent groups Expected number of different groups Expected savings
15 4 000 3 766 6%

20 4 000 3 992 0%

25 4 000 4 000 0%

30 4 000 4 000 0%

15 10 000 8 618 14%

20 10 000 9 952 1%

25 10 000 9 999 0%

30 10 000 10 000 0%

TABLE I.
THE SAVINGS OF THE TREE AGGREGATION DECAYS RAPIDLY AS THE NUMBER OF BORDER ROUTERS INCREASES.

A. Dividing a domain into two sub-domains

In order to minimize the total number of different
multicast groups, the domainD has to be divided into
sub-domainsDi of approximately the same number of
nodes. We propose Algorithm 1 that divides the domain
D = (V, E) into two sub-domainsD1 = (V1, E1) and
D2 = (V2, E2) whereVi ⊂ V is the set of routers of the
domainDi andEi ⊂ E the set of links.

The main idea of the algorithm is to find first the
two nodesx1 andx2 with the maximum distance in the
domainD, i.e. the two most distant nodes. Then, two sets

of nodesV1 andV2 are created withx1 ∈ V1 andx2 ∈ V2.
Iteratively, the nearest nodes of the nodes already in the
set are added. At each step of the algorithm one node is
added inV1 and one node is added isV2. When all the
nodes of the domainD are whether inV1 or in V2, two
domainsD1 = (V1, E1) andD2 = (V2, E2) are built from
the two sets. The edges inEi are the edges including inE
connecting two nodes inVi. When the two sub-domains
have been built, this algorithm can be re-applied on each
of the sub-domain in order to get4 sub-domains or more.

Note that in the worst-case, Algorithm 1 can returnD1

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 35

© 2006 ACADEMY PUBLISHER

ap
Rectangle

ap
Rectangle

4

Algorithm 1 Dividing a domain into two sub-domains.

Require: a domainD = (V, E)
Ensure: two sub-domainsD1 = (V1, E1) and D2 =

(V2, E2)
(x1, x2)←the two most distant nodes inD
V1 ← {x1}, V2 ← {x2}
while V1 ∪ V2 6= V do

x1 ← a direct neighbor of a node ofV1

x2 ← a direct neighbor of a node ofV2

if x1 existsthen
V1 ← V1 ∪ {x1}

end if
if x2 existsthen

V2 ← V2 ∪ {x2}
end if

end while
D1 ←the sub-graph ofD induced by nodes inV1

D2 ←the sub-graph ofD induced by nodes inV2

andD2 such as|V1| << |V2|. Such an example is shown
on Figure 2. This happens when one of the set cannot
be extended because of the other set. In this case, and
if the difference of size of the two sub-domains is too
high, then the sub-domains can be changed in order to
get approximately the same number of nodes in the two
sub-domains. This consists in adding in the smallest sub-
domain some nodes of the largest sub-domain. On the
figure (3) of Figure 2, three nodes of the largest set are
added in the smallest set in order to get two equivalent
sets. These three nodes are encircled in the figure. When
one node is added, the neighbors of this node that are only
accessible by it have to be added. When the number of
nodes is approximately the same in the two sub-domains
(a threshold can be set in order to evaluate this), then the
two sub-domains are created.

The same algorithm can be applied separately in each
of the sub-domain in order to divide in more sub-domains.
Figure 3 shows the network Eurorings [2] divided into
four separated sub-domains by the algorithm presented in
this subsection. The network was divided into two sub-
domains and then they were also divided into two in order
to obtain four separated sub-domains with disjoint sets of
nodes of approximately the same size.

In this article, we restrict ourselves tok ∈ {1, 2, 4}
sub-domains as a proof of concept.

B. Aggregating in a sub-domain

We assume in this subsection that the domain is divided
into sub-domains. If the domain is already explicitly
divided into small sub-domains (e.g., for administrative
reasons), our algorithm can still be applied in these sub-
domains if they are too large.

Each sub-domainDi = (Vi, Ei) is controlled by a
centralized entityCi which is in charge of aggregating the
groups within the sub-domain. For clarity of presentation,
the aggregation is presented in a centralized fashion but
it can also be made in a distributed way. For example,

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(1) (2)

(3)

x1

x1

x1x2

x2

x2

Figure 2. Algorithm 1 is adding three nodes inV1 and inV2. However,
the nodes ofV2 surround the nodes ofV1, so thatV1 has to be extended
with the three encircled nodes.

on Figure 3, the sub-domain1 is controlled byC1. Each
Ci knows the topology of the sub-domain (in order to
build trees for the multicast groups) and maintains the
group memberships for its sub-domain. Note thatCi is
aware of only the members in its sub-domains and not
the members for all the group.

When a border router receives ajoin or leave
message for a groupg, it forwards it to the centralized
entity Ci in its sub-domain. Then,Ci creates or updates
the group specific entries forg in order to route the
messages. The centralized entityCi builds a native treeti
covering the routers attached to members ofg in its sub-
domain, and thenCi tries to find an existing treetagg

i

already configured in its sub-domain satisfying these two
conditions:

• tagg
i covers all the routers of the sub-domain attached

to members ofg
• the cost oftagg

i (i.e. the sum of the cost of each link
of tagg

i) is not more thanbt% of the cost of the native
tree ti wherebt is a given bandwidth threshold:

cost(tagg
i) ≤ cost(ti)× (1 + bt).

The process of aggregation is described on Figure 4.
The border routerb3 which detects a new member for
the groupg1 by IGMP messages (step 1), sends a request
of aggregation toCi (step 2). The centralized entityCi

runs the tree aggregation protocol (step 3):Ci chooses
among all the trees matching the two conditions described
above the treetagg with minimum cost. If no tree satisfies
these two conditions, thenCi configurestg1 (the tree
initially built for g1) by adding forwarding states in all the
routers covered bytg1 . Then,Ci sends to all the border
routers attached to members ofg1, the group specific
entry matchingg1 to tagg or tg1 if no aggregation has
been performed. More precisely, this entry matchesg1 to
the label corresponding to the tree:g → label(tagg) or
g → label(tg1).

36 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

5

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��
���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

0

1

2

3

5

6

9

8

20

23

36

37

38

4

7

10

11

12
131415

17

18

16

19

21

24

25

26 27

28

29
22

31
30

32

33

34

40

42

41

35
39

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

C

C1

C2

C3

C4

Figure 3. Eurorings network divided into four sub-domains

b1

b2

b3

b4

1

2

2

3
4

44

4

join message for the groupg1

Tables maintained by Ci.
Topology of the
sub-domain i

Di = (Vi, Ei)

Groups-labels g1 → l1
...

Members of the
groups

g1 → {b2, b3, b4}

...
Tree set T l1 → {edges oft1}

...

1. b3 receives ajoin request for the groupg1.
2. b3 sends a request toCi.
3. Ci updates the members of the groupg1 and applies the tree aggregation algorithm to
find a tree forg1. Then, it updates its groups-labels table.
4. Ci informs the routers attached to members ofg1 of the label found.

Figure 4. The tree protocol in the sub-domaini managed byCi.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 37

© 2006 ACADEMY PUBLISHER

ap
Rectangle

6

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�����
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����
������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

0

2

3

6

9

8

20

23

36

37

38

4

7

10

11

12
131415

17

18

16

19

21

24

25

26 27

28

29 31
30

32

33

34

40

42

41

35
39

1

5

22

C1

C2

C3

C4

C

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�����
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����
������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����

����
����
����
����
�
�
�
�
�
�

�
�
�
�
�
�

0

2

3

6

9

8

20

23

36

37

38

4

7

10

11

12
131415

17

18

16

19

21

24

25

26 27

28

29 31
30

32

33

34

40

42

41

35
39

1

5

22

C1

C2

C3

C4

C

(1) The groupg has members in sub-domains1, 3 et 4. (2) C1, C3 et C4 aggregate the groupg and match it to a set
of sub-trees.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�����
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����
������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����
����
����
����

����
����
����
����
�
�
�
�
�
�

�
�
�
�
�
�

0

2

3

6

9

8

20

23

36

37

38

4

7

10

11

12
131415

17

18

16

19

21

24

25

26 27

28

29 31
30

32

33

34

40

42

41

35
39

1

5

22

C1

C2

C3

C4

C

g →@IP32
g →@IP5
g →@IP30

(@IP5, g)

(@IP30, g)

(@IP32, g)

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�����
���
���

���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��
��
��
��
��

��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����
����
����
����

��
��
��
��
��

��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��
���
���
���
���

�������
�
�
�
�
�

�
�
�
�
�
�

0

2

3

6

9

8

20

23

36

37

38

4

7

10

11

12
131415

17

18

16

19

21

24

25

26 27

28

29 31
30

32

33

34

40

42

41

35
39

1

5

22

C1

C2

C3

C4

C

g →@IP32
g →@IP5
g →@IP30

g → (@IP30, @IP32)

g → (@IP5)

g → (@IP5)

(3) EachCi informsC that some members are present in its sub-
domain and gives it the IP address of one of the router attached
to members ofg.

(4) C sends informations to theCi in order to configure the
tunnels.

Figure 5. The protocolTALD configures firstly a set of sub-trees separately in each of thesub-domain and then tries to connect them by tunnels.

C. Routing in the whole domain

The centralized entitiesCi having members ofg in their
sub-domains have use the algorithm described in previ-
ous subsection. In order to route packets for the whole
multicast group, the trees in all the sub-domains have to
be connected. The centralized entityC, responsible of the
main domainD is in charge of this task. Note thatC does
not need to know the topology ofD in order to achieve
this. We present in this paper a simple solution to connect
these trees in order to validate first the main idea of our
proposition.

In this simple solution, eachCi, having members of
g in its sub-domaini, has communicated toC the IP
address of one of the routers of the sub-domain attached to
members ofg. This router is the representative router for
g in Di. The centralized entityC keeps this information
and maintains the list of the representatives ofg for each
sub-domain. Note thatC does not keep any information

concerning the group memberships. Then,C connect the
trees in the sub-domains by adding tunnels which can be
configured by adding group specific entries matchingg to
routers in the others sub-domains.

Let us describe an example on Figure 5. Suppose
that there are members of groupg in sub-domains1, 3
and4. Indeed,join messages (g,@IP1) and (g,@IP5)
have been received byC1, join messages (g,@IP22),
(g,@IP25) and (g,@IP30) by C3, and ajoin message
(g,@IP32) by C4. Each entityCi aggregates the sub-
group in its sub-domain and informsC that the sub-tree
corresponding to groupg can be connected through a
given node. For example,C1 informs C that the sub-
tree corresponding tog can be connected through node
of address@IP5. Now, C has to connect together the
three sub-trees corresponding to groupg in the three
sub-domains. To achieve this connection,C adds two
group specific entriesg → @IP30 and g → @IP32 in

38 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

7

router @IP5. In this way, the three trees in the three
sub-domains are connected by tunnels and messages for
g can be routed. Note that each entityCi stores forg
the identity of the border routers to which the sub-tree
is connected to. Since the sub-tree ofC1 is connected
to routers@IP30 and @IP32, C1 stores the following
entry g → @IP30, @IP32). Similarly, C3 stores the entry
grightarrow(@IP5). Notice that this information is only
stored for sub-domains that are directly connected toCi:
C3 does not store any information concerningC4. At the
end, two tunnels are configured: the tunnel@IP5−@IP30

and the tunnel@IP5 −@IP32.
When routing the messages for a group, the packets

are first encapsulated with the label of the tree of the sub-
domain. Then, the extremity of the tunnel decapsulates the
packet and puts in it the address of the other extremity of
the tunnel in order to route the packet towards the other
sub-domain.

As our concerns in this paper is to reduce the number of
entries stored, we do not optimize the connection of the
trees. This can be done as further part of investigation.
What only matters for the moment is the number of
group specific entries added. If threeCi have registered
members ofg to C, four group specific entries are added.
More generally, ifn Ci have replied toC, then2(n− 1)
entries are needed.

III. SIMULATIONS

We run several simulations on different topologies.
Due to lack of space, we present only the results of
the simulations on the Rocketfuel graph Exodus2. This
network contains201 routers and434 links. During
the simulations,101 routers were core routers and100
others routers were border routers and can be attached to
members of multicast groups. The plots are the results of
100 cases of simulations where each case corresponds to
a different set of border routers.

We present the results of the protocolsTALD-1, TALD-
2 andTALD-4 for different bandwidth thresholds: when
0% bandwidth is allowed to be wasted and when20% of
bandwidth wasted.

1) The protocolTALD-1 represents the actual tree ag-
gregation protocols when the domain is not divided
and when aggregation is performed in the main
domain.

2) With TALD-2, the domain in divided into2 sub-
domains.

3) With TALD-4, the domain is divided into 4 sub-
domains.

The division of the domain was performed by the algo-
rithm presented in Section II-A.

The number of multicast concurrent groups varied from
1 to 10 000 and the number of members of groups was
randomly chosen between2 and 20. The members of
groups were chosen randomly among the100 border

2http://www.cs.washington.edu/research/-
networking/rocketfuel/

routers. This behavior is not representative of the reality
but it allows to show the performance of the algorithms
in worst-case simulation. Indeed, when the members are
randomly located, then the aggregation is more difficult
than if members of groups are chosen with some affinity
model.

A. Number of forwarding states

Figure 6 plots the total number of forwarding states
in the domain, i.e. the sum of the forwarding states
stored by all the routers of the domain. Recall that for a
bidirectional treet, |t| forwarding states have to be stored
where|t| denotes the number of routers covered byt. With
TALD-1, there is almost no aggregation (the number of
forwarding states is the same as if no aggregation was
performed) and then, the number of multicast forwarding
states is the same with0% and with 20% of bandwidth
wasted. The protocolTALD-4 gives significantly better
results thanTALD-1 andTALD-2. Moreover, withTALD-
4, the number of multicast forwarding states is reduced
when the bandwidth threshold is equal to20%. Finally,
the protocolTALD-4 achieves a reduction of41% of the
number of forwarding states compared toTALD-1 when
no bandwidth is wasted. This reduction reaches52% when
20% of bandwidth is wasted.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 fo

rw
ar

di
ng

 s
ta

te
s

Number of concurrent groups

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-4 0%

TALD-4 20%

TALD-1 0%,20%

TALD-2 0%,20%

Figure 6. Number of forwarding states

For example,TALD-4 stores around160 000 forward-
ing states in the whole domain when the bandwidth
threshold is equal to0% for 10 000 concurrent groups.
There is a reduction of22% when the bandwidth threshold
is equal to20%: the number of forwarding states reaches
approximately126 000. Oppositely, the amount of band-
width wasted has no influence for the results ofTALD-1
as the number of forwarding states is the same when0%
of bandwidth is wasted and when20% of bandwidth is
wasted. This shows that traditional aggregation algorithms
are not efficient in large domains.

B. Group specific entries

Figure 7 plots the number of group specific entries
which are stored in the group-label table and which match
groups to the labels of the aggregated trees. As this
number is related to the number of groups, it is not
dependent of the bandwidth thresholds and the results

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 39

© 2006 ACADEMY PUBLISHER

ap
Rectangle

8

are equivalent for0% and for20% of bandwidth wasted.
The protocolsTALD-2 andTALD-4 need to store more
group specific entries in order to route the packets for the
groups between the sub-domains. These entries are stored
in order to configure the tunnels crossing the sub-domains.
Consequently,TALD-1 does not store such entries.

The results show thatTALD-4 needs to store more
entries thanTALD-2 which in turn stores more entries
than TALD-1. This is the price to be paid to achieve
aggregation and to reduce the number of forwarding
states. Note that the more sub-domains, the larger the
number of groups specific entries.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 g

ro
up

 s
pe

ci
fic

 e
nt

rie
s

Number of concurrent groups

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-1

TALD-4

TALD-2

Figure 7. Group specific entries

However,TALD-4 reduces the total number of entries
stored in routers compared toTALD-1. Figure 8 shows
the total number of the groups specific entries and the
forwarding states stored in all the routers of the domain.
TALD-4 achieves a reduction of16% of this total number
compared toTALD-1 when no bandwidth is wasted and
a reduction of25% with 20% of bandwidth wasted. It
may be noted thatTALD-2 does not achieved significant
reduction of this number compared toTALD-1. Conse-
quently, dividing the domain in two sub-domains is not
enough. However, the memory in routers is significantly
reduced withTALD-4. As the number of group specific
entries increases with the number of sub-domains, it is
not be interesting to divide more the domain. Indeed, the
more the domain is divided, the less number of forwarding
states but the more the number of group specific entries.
Consequently, it may not be interesting to divide the
domain into too many sub-domains because the reduction
of forwarding states will not be so significant.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2000 4000 6000 8000 10000

S
um

 o
f t

he
 s

ta
te

s
an

d
th

e
gr

ou
p

en
tr

ie
s

Number of concurrent groups

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-4 0%

TALD-4 20%

TALD-1 0%,20%

TALD-2 0%,20%

Figure 8. Sum of the forwarding states and of the group specific entries.

C. Mean cost of the trees

Figure 9 shows the mean cost of trees per group. Recall
that for TALD-2 andTALD-4, the cost of trees per group
represents the cost of all the sub-trees for the group and
the cost of the tunnels connecting the sub-trees. That
explains why withTALD-2 the mean cost of trees per
group is higher than withTALD-1. With TALD-4 the mean
cost of trees per group is higher than withTALD-2 and
TALD-1. In our simulations, we can see thatTALD-4 uses
approximately32 links per group whileTALD-2 uses27
links and TALD-1 uses only only24 links. This extra-
cost forTALD-4 andTALD-2 comparing toTALD-1 is the
price to be paid in order to achieve aggregation in large
domains. Considering better extremities of the tunnel will
allow to spare the resources of the network and to build
smaller structures per group. Indeed, the extremities of the
tunnels are currently chosen randomly and this behavior
is not favorable for the cost of the trees.

 24

 26

 27

 28

 29

 30

 31

 32

 33

 0 2000 4000 6000 8000 10000

C
os

t o
f t

he
 tr

ee
s

bu
ilt

Number of concurrent groups

 25

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-1

TALD-4

TALD-2

Figure 9. Mean cost of the trees per group

D. Aggregation ratio

Figure 10 shows the aggregation ratio in function of
the number of concurrent groups. The aggregation ratio
is denoted by the number of trees with aggregation out of
the number of trees if no aggregation is performed. Note
that for TALD-2 andTALD-4, the number of trees is the
sum of the number of trees for each sub-domain.

The protocolTALD-1 achieves less than1% of aggre-
gation even when20% of bandwidth is allowed to be
wasted. The protocolTALD-4 achieves more than40%
of aggregation even when no bandwidth is allowed to be
wasted. When20% of bandwidth is wasted, the aggre-
gation ratio reaches more than55%. This figure shows
that with large networks, existing algorithms achieving
tree aggregation without any division of the domain (as
TALD-1) do not realize any aggregation at all.

Figure 11 plots the aggregation ratio in function of
the number of border routers in the domain when there
are 10 000 concurrent groups. We vary the number of
possible border routers among all the201 routers of
Exodus network from10 to 200. We run 100 times the
algorithm for each possible value of the number of border
routers in order to get different sets of border routers. The
routers that were not border routers could not be attached
to members of multicast groups.

40 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

9

 2000 4000 6000 8000 10000

A
gg

re
ga

tio
n

ra
tio

Number of concurrent groups

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-4 0%

TALD-4 20%

TALD-2 0%

TALD-2 20%

TALD-1 0%,20%

0%
0%

20%

40%

60%

30%

50%

10%

Figure 10. Aggregation ratio

With domains of10 border routers, the aggregation
is very efficient and after10 000 concurrent groups, the
protocols are able to aggregate any new group in the
domain. The aggregation ratio decreases dramatically,
especially forTALD-1 which is not able to perform any
aggregation when the domain contains more than40
border routers. However,TALD-4 is efficient and performs
more than20% of aggregation even when there are200
border routers. This shows that for a domain of40 border
routers or more, it is strongly recommended to divide the
domain into several sub-domains in order to aggregate
groups.

 20 40 60 80 100 120 140 160 180 200

A
gg

re
ga

tio
n

R
at

io

Number of border routers in the network

TALD-4 0%
TALD-4 20%
TALD-2 0%
TALD-2 20%
TALD-1 0%
TALD-1 20%

TALD-4 0%

TALD-4 20%

TALD-1 0%,20%
TALD-2 0%,20%

0%

20%

40%

60%

80%

30%

50%

70%

10%

90%

100%

Figure 11. Aggregation ratio in function of the number of border routers

E. Summary of the simulation results

We compared in our simulations the protocolsTALD-1,
TALD-2 andTALD-4. Recall thatTALD-1 can be seen as a
traditional aggregation algorithm. The results showed that
for the domain Exodus with100 border routers,TALD-
4 was more efficient thanTALD-2 in terms of number
of forwarding states and aggregation ratio. Moreover,
the results showed that without any division, the tree
aggregation protocol achieves almost no aggregation at all
and behaves in the same way as traditional IP multicast.
The price to be paid for this reduction of the number of
forwarding states is that the mean cost of trees per group
is higher. This is mainly because of the tunnels that are
not built in the more efficient way for the moment. Indeed,
the tunnels may use links already used by the trees, or
by other tunnels. Therefore, some links may be crossed
several times for a group: once by the tree and one or

more by the tunnels. This behavior can be avoided by
choosing in a more efficient way the extremities of the
tunnels.

IV. D ISCUSSION

Since the goal of this work is to show the feasibility
of the tree aggregation in large domains, we left several
important issues for future work. The issues concern the
way the domain is splitted into several sub-domains (Sub-
section IV-A and IV-B) and the way the trees in the sub-
domains are connected with each other (Subsection IV-C
and IV-D).

A. Different algorithms to split a domain

We proposed an algorithm that splits the domain into
several sub-domains of roughly the same size. This algo-
rithm is an heuristic in the sense that the sub-domains
generated can have different sizes (in the worst-case),
even if it is possible to find a set of sub-domains with
exactly the same size. However, we are not sure that
the size of each sub-domain (or even the number of
border routers of each sub-domain) is the right metric.
It seems that the important criterion is the total number
of different trees in the union of the sub-domains. In
order to achieve optimality, two aspects of the problem
(namely domain splitting and tree aggregation) have to be
considered simultaneously.

B. Optimal number of sub-domains

We showed in our simulations that the performance
of our algorithm depends on the number of sub-domains
generated. In our experiments, having four sub-domains
seem always better than having only one or two. When
the number of sub-domains is too small, tree aggregation
within each sub-domain is not efficient. On the other hand,
having too many sub-domains is not efficient either, since
it requires prohibitive amount of control and management
for the the sub-domains to be connected together. More-
over, it requires a large number of group specific entries
in order to configure the tunnels. This problem is strongly
related to the number of border routers in the main domain
and the number of border routers needed per sub-domain.
Since the optimal number of domains is needed only once
for a domain, there is room for a sophisticated, off-line
algorithm.

C. Extremities of the tunnels

In the protocol we described, sub-trees are connected
together through nodes chosen randomly among the mem-
bers of the group. One possible solution to achieve this
connection is to assign to a set of nodes the function
of extremity of the tunnels. That means that only few
nodes may be extremities of the tunnels and not all the
routers of the sub-domain as done now. Several nodes
may be chosen per sub-domain (these nodes can be
located in the border of the sub-domain) and when a

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 41

© 2006 ACADEMY PUBLISHER

ap
Rectangle

10

tunnel is established the extremities are chosen among
these nodes. This behavior allows to put the complexity
of encapsulating and decapsulating the packets only at
certain nodes. Moreover, only these specific nodes play
the role of border routers and not all the routers of the
sub-domain.

D. Connecting sub-domains together

Inter-domain protocols have to be aware of different
policies to route packets between different intra-domains.
Currently, we use unicast tunnels to connect intra-domains
together. With few modifications to our protocol, these
unicast tunnels could be created according to any inter-
domain policy. However, scalability issues might raise
again if the number of groups increases. Multicast tunnels
seem to be a more viable solution, but comes with
management issues such as how to aggregate multicast
tunnels together, or how to build policy-aware multicast
tunnels.

V. RELATED WORK

We presented in this paper, a tree aggregation protocol
specific to large domains. Tree aggregation protocol re-
duces the number of multicast forwarding states in routers
by allowing several groups to share the same delivery tree.
In this section, we describe briefly some other proposi-
tions that deal with this problem of multicast scalability.
Then, we give an overview of the protocols achieving tree
aggregation considering different constraints.

A. Reducing the number of multicast forwarding states

The problem of multicast forwarding state scalability
has been studied in the literature. Some studies may be
found in [3], [4] or in [5].

State Aggregation.State aggregation is achieved either
per router [6] or per interface [7]. In [6], the authors
propose to aggregate two entries that are successive and
that have the same list of output interfaces. Only one
entry is stored with the longest common prefix. In this
paper, leaky aggregation can be done where, several
entries can be aggregated even if they do not share exactly
the same list of output interfaces. The union of the lists
of output interfaces will be written in the entry and the
router forwards some packets for the groups on interfaces
that do not lead to members : this is leaky aggregation.
The next-hop router that receives the unwanted packet
destroys it and some bandwidth is wasted. The authors in
[7] propose to place a filter on each output interface. The
filter takes in input the address of the group, the output
interface and tells if the packet has to be forwarded
on the interface or not. When a packet for a group
arrives, the filter is applied on each interface in order to
forward the packet. With this proposition, the authors
reduce the size of the forwarding table by a factor of four.

Explicit Multicast. The protocol Xcast (Explicit
Multicast) [8] deals with small group multicast and
proposes a new model to achieve the communication.
The main idea is that the source puts in the packet the
list of the IP addresses of the members when sending
the packet. The packet is not forwarded according to
the IP multicast address anymore. Therefore, the routers
do not maintain any multicast forwarding state. This
gain is balanced by an heavy load for the routers that
have to manage the Xcast packet containing the list of
the receivers and to split the packet if it is a branching
router. In this case, the list of the receivers is splitted in
sub-lists in the new Xcast packets.

Recursive Unicast Trees.The protocols REUNITE [9]
(Recursive-Unicast approach to multicast), HBH [10]
(Hop-By-Hop multicast routing protocol) and SEM [11]
(Simple Explicit Multicast) propose to store the mul-
ticast forwarding states only in the branching routers.
The source sends the packets for the group in unicast
directly to the next branching router. As the multicast trees
contain few branching routers in general, the number of
forwarding states to be stored is reduced.

B. Tree Aggregation Protocols

Tree aggregation idea was first proposed in [12] and
since, several propositions have been written.

The protocol AM [13], [14] performs aggregation
using a centralized entity called thetree manager
responsible of assigning labels to groups. The protocol
STA [15] proposes to speed up the aggregation algorithm
with a fast selection function and an efficient sorting of
the trees. These two protocols are represented byTALD-1
during the simulations. TOMA [16] is a recent protocol
that performs tree aggregation in overlay networks.

Distributed tree aggregation.The distributed protocol
BEAM proposed in [17] configures several routers to
take in charge the aggregation in order to distribute the
work load of the tree manager. Indeed, in AM or in
STA, only thetree managertakes this responsibility. The
protocol DMTA [18] proposes to distribute the task of
the tree manager among the border routers and then to
suppress completely the requests to centralized entities
necessary in BEAM to achieve aggregation. In order
to propose this distributed protocol, an analysis of the
number of trees needed to be configured in a domain is
given in [19] and with more details in [20].

Tree aggregation with bandwidth constraints.
AQoSM [21] and Q-STA [22] achieve tree aggregation in
case of bandwidth constraints. In these two algorithms,
links have limited bandwidth capacities and the
groups have bandwidth requirements depending on the
application they are using. Consequently, groups may be
refused if no tree can be built satisfying the bandwidth
requirements. While AQoSM tests several source for
the native trees in order to builds one that can accept

42 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

11

the group, Q-STA builds native tree maximizing the
bandwidth available on the links in order to achieve load
balancing and to use in priority the links that are not
heavily loaded.

Tree aggregation with tree splitting. The protocol
AMBTS [23] performs tree splitting before aggregating
groups in order to manage larger domains. A tree is
divided into several sub-trees and whenever a new group
arrives the native tree is splitted in sub-trees according
to a foreclosing process. From these sub-trees, thetree
managertries to find already existing sub-trees and to
aggregate the group. The idea of AMBTS is somehow
orthogonal to the idea ofTALD. However, we did not
compare AMBTS toTALD during the simulations because
of the following reasons.

First of all, the protocol is not realistic for large
domains as a centralized entity is responsible of all
the process of aggregation. This centralized entity keeps
the group memberships for all the groups of the whole
domain. Moreover, it is in charge of splitting the trees
and aggregating the groups. This behavior is not scalable
in domains such as Exodus network with200 routers.
Indeed, too much memory is used to store all the in-
formation and the centralized entity is strongly solicited
each time a member of a group changes. Second, the
foreclosing process in which a tree is divided into several
sub-trees is not detailed and we were not able to simulate
this algorithm due to lack of information. Splitting the
trees manually was not possible in our domain. Finally,
the number of sub-trees grows tremendously and is larger
than the number of groups (especially if the trees are
splitted in many sub-trees). Thus, the process of aggre-
gation is strongly slowed down due to the large number
of evaluations of sub-trees. In AMBTS, the simulations
were done on a network with16 border routers. All these
reasons make us decide to propose and detail a protocol
adequate to large domains.

VI. CONCLUSION

In this article, we expressed the need of a tree ag-
gregation protocol that can cope with large domains.
Indeed, in such cases, traditional tree aggregation pro-
tocols do not achieve any significant reduction of the
number of forwarding states and behave as traditional IP
multicast protocol. We proposed a hierarchical protocol
called TALD: the domain is divided into several sub-
domains with a centralized entity in each. Each entity
aggregates the groups in its sub-domain. There is also a
global entity that interconnects the trees together. With
such a mechanism, our simulations demonstrate that an
aggregation ratio of20% is attainable in a domain of 200
border routers (while previous tree aggregation protocols
achieve an aggregation of ratio of less than1% in domains
of 25 border routers).

Out future work will focus on (i) the splitting of the
domain and (ii) the interconnection between the sub-
domains.

First, the splitting of the domain can be accomplished
in a distributed manner where the routers of the domain
realise the splitting themselves. Moreover, the splitting
can be done differently and a study of the impact of this
splitting on the aggregation ratio may be interesting.

Second, the interconnection of the sub-trees can be
achieved in different ways. Presently, it is done by config-
uring tunnels however, this connection can be achieved by
a tree. Moreover, if the connection is still accomplished
with tunnels, the selection of the extremities of the tunnels
can be optimized. Indeed, the extremities can be chosen
among a set of pre-determined extremities located at the
border of the domain. In this way, the tunnels have a lower
cost.

REFERENCES

[1] J. Moulierac, A. Guitton, and M. Molnár, “Multicast Tree
Aggregation in Large Domains,” inIFIP Networking,
2006, pp. 691–702.

[2] Eurorings network, “http://www.cybergeography.org/-
atlas/kpnqwestlarge.jpg .”

[3] M. Sola, M. Ohta, and T. Maeno, “Scalability of internet
multicast protocols,” inINET, 1998.

[4] T. Wong and R. Ratz, “An Analysis of Multicast For-
warding State Scalability,” inInternational Conference on
Network Protocols (ICNP), 2000.

[5] B. Zhang and H. Mouftah, “Forwarding State Scalability
for Multicast Provisioning in IP Networks,”IEEE Com-
munications Magazine, June 2003.

[6] P. Radoslavov, D. Estrin, and R. Govindan, “Exploiting
the bandwidth-memory tradeoff in multicast state aggrega-
tion,” Department of Computer Science, USC, Tech. Rep.
99-697, February 1999.

[7] D. Thaler and M. Handley, “On the Aggregatability of
Multicast Forwarding State,” inIEEE INFOCOM, 2000.

[8] R. Boivie, N. Feldman, and C. Metz, “Small Group Mul-
ticast: A new Solution for Multicasting on the Internet,”
IEEE Internet Computing, 2000.

[9] I. Stoica, T. S. Eugene, and H. Zhang, “REUNITE: A
Recursive Unicast Approach to Multicast,” inIEEE IN-
FOCOM, 2000.

[10] L. H. M. K. Costa, S. Fdida, and O. C. M. B. Duarte, “Hop-
by-Hop Multicast Routing Protocol,” inACM SIGCOMM,
August 2001.

[11] A. Boudani and B. Cousin, “An hybrid explicit mul-
ticast/unicast recursive approach for multicast routing,”
Computer Communications, 2005.

[12] M. Gerla, A. Fei, J.-H. Cui, and M. Faloutsos, “Aggregated
Multicast for Scalable QoS Multicast Provisioning,” in
Tyrrhenian International Workshop on Digital Communi-
cations, September 2001.

[13] J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and
M. Gerla, “Aggregated multicast — a comparative study,”
in IFIP Networking, ser. LNCS, no. 2345, May 2002.

[14] ——, “Aggregated Multicast — A Comparative Study,”
Special issue of Cluster Computing: The Journal of Net-
works, Software and Applications, 2003.

[15] A. Guitton and J. Moulierac, “Scalable Tree Aggrega-
tion for Multicast,” in 8th International Conference on
Telecommunications (ConTEL), June 2005, best student
paper award.

[16] L. Lao, J.-H. Cui, and M. Gerla, “TOMA: A Viable
Solution for Large-Scale Multicast Service Support,” in
IFIP Networking, ser. LNCS, no. 3462, May 2005.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 43

© 2006 ACADEMY PUBLISHER

ap
Rectangle

12

[17] J.-H. Cui, L. Lao, D. Maggiorini, and M. Gerla, “BEAM:
A Distributed Aggregated Multicast Protocol Using Bi-
directional Trees,” inIEEE International Conference on
Communications (ICC), May 2003.

[18] J. Moulierac and A. Guitton, “Distributed Multicast Tree
Aggregation,” Inria, Tech. Rep. 5636, July 2005.

[19] J. Moulierac, “On the number of multicast aggregated trees
in a domain,” in2nd Student Workshop of IEEE Infocom,
April 2006.

[20] J. Moulierac, A. Guitton, and M. Molnár, “On the number
of MPLS LSP using Multicast Tree Aggregation,” inIEEE
Globecom, November 2006.

[21] J.-H. Cui, J. Kim, A. Fei, M. Faloutsos, and M. Gerla,
“Scalable QoS Multicast Provisioning in Diff-Serv-
Supported MPLS Networks,” inIEEE Globecom, Novem-
ber 2002.

[22] J. Moulierac and A. Guitton, “QoS Scalable Tree Aggre-
gation,” in IFIP Networking, ser. LNCS, no. 3462, May
2005.

[23] Z.-F. Liu, W.-H. Dou, and Y.-J. Liu, “AMBTS: A Scheme
of Aggregated Multicast Based on Tree Splitting,” inIFIP
Networking, ser. LNCS, no. 3042, May 2004.

Joanna Moulierac obtained her M.Sc. degree in
Computer Science at the University of Montpellier II,
France in 2003. She is currently a PhD candidate at
University of Rennes 1, working with the ARMOR
team in IRISA. Her main research interests include
active monitoring of networks, group communication
with Quality of Service, multicast tree aggregation and
deployment of multicast.

Dr Alexandre Guitton obtained his B.Sc. degree at
the University of Rouen, France, his M.Sc. degree and
his Ph.D. in 2005 at the University of Rennes I, France.
He is currently working as a post-doctoral research
assistant at Birkbeck College, University of London,
United Kingdom. His research focuses on optimization in
computer networks, with a particular interest on wireless
sensor networks, multicasting and all-optical networks.

Dr Mikl ós Molnár is an assistant professor at INSA
of Rennes, France. He received his Ph.D in 1992 at Uni-
versity of Rennes 1. His research interests include graph
theory, combinatorial optimization, high speed networks,
traffic engineering, multicast communication and Steiner
problem in networks.

44 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

ap
Rectangle

