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Abstract— Decentralized sensor networks are collections
of individual local sensors that observe a common phe-
nomenon, quantize their observations, and send this quan-
tized information to a central processor (fusion center)
which then makes a global decision about the phenomenon.
Most of the existing literature in this field consider only
the data fusion aspect of this problem, i.e., the statistical
hypothesis testing and optimal combining of the information
obtained by the local sensors. In this paper, we propose
a Parallel Genetic Algorithm (PGA) for optimizing the
probability of global detection error performance of a
parallel decentralized sensor network. Specifically, we use
the PGA to simultaneously optimize both the fusion rule
and the local decision rules. We show that our approach
provides results comparable to those obtained by using a
GA and gradient-based algorithm from previous work by
Aldosari and Moura, with reduced complexity. We consider
both the cases of identical (homogeneous) and non-identical
(heterogeneous) sensors and demonstrate that our algorithm
converges to the same optimal solution in both cases. We also
discuss the effect of the quality of the initial solution on the
convergence of the PGA.

Index Terms— Decentralized sensor networks, distributed
detection, optimal fusion rule, genetic algorithms

I. BACKGROUND

Distributed detection networks are detection schemes
where group-decision making is employed. In other
words, a number of entities are collectively used in the
decision making process. The obvious advantage of such
a scheme would be the increased reliability and the
redundancy inherent in it. One area where distributed
detection is widely used is in sensor networks.

Sensor networks are collections of individual or local
sensors that observe a common phenomenon and col-
lectively produce some globally meaningful information.
Sensor networks have a wide array of applications includ-
ing military, scientific, industrial, health-care, agriculture,
and domestic applications. Traditionally, multi-sensor sys-
tems consisted of a number of local sensors which sense
the common observation and communicate all their data to
a central processor, which then performs optimal decision
making using some conventional technique. Such a sys-
tem is known as a centralized multi-sensor network. One
of the challenges faced in the design of such centralized
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sensor networks is the limited power available in the
sensors and the communication bandwidth constraints.
One way of reducing the bandwidth requirement is to
perform some preliminary processing of the data at each
local sensor and then send the condensed information
to the central processor (fusion center). Decentralized
sensor networks is the name given to such networks
which are becoming increasingly popular. The reasons for
this popularity are the relatively low cost of sensors, the
redundancy inherent in multiple sensors, the availability
of high speed communication networks, and increased
computational capability [1]. These advantages have lead
to significant research activity in this area [2].

The three major topologies used for decentralized sig-
nal processing are theparallel, serial and tree topologies
[1]. Figure 1 shows the general structure of a decentral-
ized sensor network with parallel topology. Here,H is
the phenomenon that is being observed by the sensorsS1

throughSN . The observation of sensorsi is denoted by
yi andui is the local decision that it makes based on the
information inyi. The local decisions of all theN sensors
are transmitted to the fusion center which then makes the
global decisionu0 based on the information from all the
sensors.

Fig. 1. Distributed sensor network - Parallel topology

Throughout this thesis, we consider a distributed sensor

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006 9

© 2006 ACADEMY PUBLISHER



network having this parallel topology.
Figure 2 shows the general form of a decentralized

sensor network having serial topology. Here, we have used
the same notation as in the case of the parallel topology. In
serial topology, there is no fusion center as in the case of
the parallel network scheme. Here, each sensor generates
its decision or quantized information based on its own
observation and the quantized information received from
the previous sensor, i.e., theith sensor uses its observation
yi and the informationui−1 from the i − 1th sensor to
generate its quantized informationui. The first sensor in
the network,S1, uses only its observation to generate its
quantized information. The decision of the last sensorSN

is taken as the global decision about which of the two
hypotheses is true.

Fig. 2. Distributed sensor network - Serial topology

Figure 3 shows an example of a decentralized sensor
network with tree topology. As we can see, the tree
topology resembles a directed acyclic graph with the
fusion center as the root of the tree. The information from
all the sensors flows through a unique path to the fusion
center.

As mentioned earlier, unlike the fusion center in cen-
tralized sensor networks, the fusion center in decentral-
ized networks has only partial information about the
observations. This results in a loss of performance in de-
centralized networks as compared to centralized networks
[6]. Thus, one of the major challenges in the design of
decentralized systems is to make this performance loss as
small as possible by optimally processing the information
at the sensors and efficiently combining them at the fusion
center. This involves developing computationally efficient
algorithms for processing the information at the sensors
and for combining the information at the fusion center.
Thus, the main objective of this work is the design of
decentralized sensor networks is to find the optimal local
and global decision rules assuming uncorrelated sensor
observations.

Fig. 3. Distributed sensor network - Tree topology

This paper is organized as follows: Section II provides
a brief overview of related work and highlights the contri-
bution of this paper; In Section III, we present the system
model followed by the problem definition in Section IV.
The optimization algorithm is detailed in Section V and
simulation results are provided in Section VI. Conclusions
are presented in Section VII.

II. RELATED WORK

As mentioned in the previous section, distributed sensor
networks has been an area of active research within the
wireless research community. However, most of the work
in this field tend to focus on the data fusion aspect
of the problem, which consists of statistical hypothesis
testing and combining of the information from all the
local sensors. For instance, in [4], Irving and Tsitsiklis
demonstrated that there is no loss in optimality if the
same decision rule is used in both sensors of a two-sensor
distributed network. In [7], the authors analyzed the AND
and OR fusion rules for distributed sensor systems and
showed that the choice between the two rules depends
on the desired false alarm rate as well as the parameters
of the probability distributions under both hypotheses.
In [8] and [9], the authors have analyzed the constant
false alarm rate (CFAR) models of distributed sensor
networks. Chamberland and Veeravalli demonstrated that
having a set of identical binary sensors is asymptotically
optimal as the number of observations goes to infinity
[5]. The authors in [10] presented an adaptive fusion
model for distributed sensor networks, which estimates
the probabilities of detection and false alarm by a simple
counting rule. While in [11], the authors investigated the
impact of various system parameters on the detection
performance of decentralized sensor networks. However,
most of these prior works turn to asymptotic assumptions
and information-theoretic performance measures to sim-
plify the analysis and design of sensor networks [5]- [12].
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This results in the abstraction of important details of the
problem such as the structure of the fusion rule. Although
there are a few studies that avoid the use of asymptotic
assumptions (e.g., [1], [13]), these are mostly limited to
simple networks and fail to provide an insight into the
structure of the optimal fusion rules. In [14], Alsodari
and Moura have adopted a non-asymptotic approach to
optimize both the sensing and fusion side with respect to
probability of error. Their work uses a gradient-based ap-
proach for optimizing the thresholds of the local detectors
and a genetic algorithm (GA) for optimizing the fusion
rule. This method requires the repeated computation of
the gradient along the direction of each of theN(L− 1)
variables (N being the number of sensors andL being
the number of local decision classes), until the algorithm
converges. This leads to high computational cost.

In this paper, we propose a computationally efficient
alternative to the method proposed in [14] using aParallel
Genetic Algorithm(PGA). In our algorithm, both the local
thresholds as well as the fusion rule are simultaneously
optimized within a single GA. We consider a parallel
topology for the decentralized sensor network where, (1)
the sensor observations are uncorrelated (although our
PGA approach can be extended to the correlated case
easily); (2) there is no communication among the local
sensors, and (3) the local detectors feed their quantized
decisions to a single fusion center (figure 4) through an
error-free channel. In this paper, we concentrate on the
design of the fusion center and the local decision rules
that is optimal in a global probability of error sense. We
compare our results to those obtained using the gradient-
based approach outlined in [14]. Unlike [14], where
only heterogeneous sensors are considered, we optimize
the fusion rule for the case of both heterogeneous and
homogeneous sensors. We show that both the cases of
homogeneous and heterogeneous sensors converge to the
same fusion rule and the same minimum probability of
error. In addition to the results presented in [15], we also
illustrate the effect of the quality of initial solution on the
convergence of the GA. Our results show that our PGA
approach converges to the same majority-like fusion rule
as the gradient-based approach of [14]. The advantage of
our approach is a great reduction in the computational
complexity. In the next sections, we describe our decen-
tralized sensor network model in detail and define the
optimization problem that we consider in this chapter.

III. SENSORNETWORK MODEL

We consider a parallel fusion network shown in figure
4, which hasN local sensors and a single fusion center.
The local sensors gather the measurementsyn, make a
local decisionun per sensor, and transmit these decisions
to the fusion centerγ0 through anerror-free multiple
access channel (MAC). The fusion center makes a global
decisionH̃ about the true stateH based on the set of
the local decisions obtained from all sensors. Here, we
assume that the fusion center itself does not sense the
measurements directly.

Fig. 4. Parallel fusion network

We consider the binary detection problem in this de-
centralized sensor network with hypothesesH0 and H1,
with known prior probabilitiesπ0 and π1, respectively.
In this chapter, we assume that the observationsyn :
n = 1, 2, ..., N are independent and identically distributed
when conditioned onHi, i ∈ {0, 1}. The case when
the observations are not conditionally independent is
considered in the next chapter.

The final output of the fusion center is binary, i.e.,
either H0 or H1. However, the local sensors are not
restricted to binary outputs. Each local sensor classifies its
observationyn into one ofL = 2b classes, whereb is the
number of transmitted bits per sensor. Thus, each sensor
maps the observation space into a classification space that
containsL classes, and, the fusion center maps theN
local decisions into one of two classes, corresponding to
the two hypotheses.

Each possible combination of local decisions are rep-
resented by a vector ofN integers as follows

u = ( u1 u2 · · · uN ), un ∈ {0, 1, · · · , L−1}. (1)

AssumingL = 2b, u can be represented as a string ofbN
bits as follows

u = ( u1
1u

2
1 · · ·u

b
1 u1

2u
2
2 · · ·u

b
2 · · · u1

Nu2
N · · ·ub

N ),

uj
n ∈ {0, 1} (2)

Thus, the space of all possible local decisions is spanned
by a singlebN -bit integer q, whose value ranges from
0 to 2bN − 1. For a particular combination of the local
decisions represented byq, the individual values of the
local decisionsun, n = 1, 2, · · · , N , can be extracted by
using a reverse mapping functionΨn(q), which is defined
as

Ψn(q) =
q

2b(N−n)
modL, (3)
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where mod is the modulo operation and all operations are
carried out in integer mode.

We adopt the binary representation described in [14]
to represent the fusion rules. This representation accounts
for the output of the fusion rule under every possible
combination of the local decisions. Since there areN
sensors and each sensor classifies its measurement into
L classes, each fusion rule should account forLN local
decision possibilities and, is therefore represented as a
string of LN bits as follows:

h = ( h0 h1 · · · hLN−2 hLN−1 ),

hq ∈ {0, 1}, q = 0, 1, · · · , LN − 1 (4)

In order to optimize the global probability of error at
the fusion center in this decentralized sensor network, the
optimization/search has to be performed over all possible
local classification rules and all possible fusion rules.

Before we attempt to jointly optimize the local and
fusion rules, let us first take a closer look at the local
decision rules. The conditional independence assumption
on the observations, simplifies the problem since, in this
case, the optimal local classifiers are likelihood ratio tests
characterized by a finite number of thresholds [16], [17].
Further, if the likelihood ratiof1(y)/f0(y) is monotonic
in y [18], we can quantize the measurements themselves
directly rather than their likelihood ratios. For the case
where the observations are Gaussian, at mostL(L−1)/2
quantization thresholds per local sensor are required to
preserve the global optimality of the sensor network [4].
According to [14], numerical results conducted forb = 2
on the asymptotic regime show that optimizing a network
with L(L − 1)/2 thresholds per local sensor always
converges to a simpler one having onlyL− 1 thresholds
per local sensor. Hence, for the sake of simplicity, we
assume that the local quantizers are characterized byL−1
thresholds as follows

un =



















0 if yn ≤ λn,1

1 if λn,1 ≤ yn ≤ λn,2

...
...

L − 1 if yn > λn,L−1

(5)

where, yn is the local measurement at thenth
sensor, un is the corresponding local decision, and
λn,1, λn,2, · · · , λn,L−1, are theL−1 quantization thresh-
olds of that sensor.

Thus, one part of the problem, namely, finding the
optimum local decision rules, boils down to finding the
optimum set ofL − 1 thresholds. While the discussion
above is restricted to the uncorrelated observation case,
one can use the same approach for the correlated case as
the authors have recently demonstrated in [19].

IV. PROBLEM DEFINITION

Problem Definition: Determine the optimum fusion rule
h and the optimum local decision rules, where optimality
is defined in the sense of minimizing the probability of
error (Pe) at the fusion center.

Before formally discussing the optimization algorithms,
let us first derive the probability of error as a function of
the fusion rules and the local decision rules.

The average probability of error at the fusion center is
given by the weighted sum of type-I and type-II errors,
as follows

Pe(λ, h) =

1
∑

k=0

πkP
0
k (k̄, λ, h) (6)

where πk is the prior probability of hypothesisHk,
P 0

k (k̄, λ, h) = Pr(u0 = k̄|Hk) is the probability of false
alarm if k = 0 or the probability of miss ifk = 1, and
k̄ is the binary NOT operation. Out of theLN mutually
exclusive possible local decision combinations, we sum
over those that results inu0 = k̄ decision at the fusion
center as follows

Pe(λ, h) =
1

∑

k=0

πk

LN−1
∑

q=0,hq=k̄

Pk(u1 = Ψ1(q), .., uN = Ψn(q))

(7)
where Pk(u1 = Ψ1(q), · · · , uN = Ψn(q)) is the joint
probability of sensor 1 decidingΨ1(q), sensor 2 deciding
Ψ2(q), and so on conditioned uponHk being true. Since,
we have assumed that the local sensor observations are
conditionally independent, we can write the joint proba-
bility as the product of individual probabilities as

Pk(u1 = Ψ1(q), · · · , uN = Ψn(q)) =
N
∏

n=1

Pn
k (Ψn(q), λ).

(8)
Here, Pn

k (m,λ) = Pr(un = m|Hk) is the probability
that thenth sensor decidesm whenHk is true. Since,un

is a quantized representation of the observationyn, the
probability Pn

k (m,λ) is related to theL− 1 quantization
levels of thenth sensor. If we assume that the measure-
ments are identically distributed, this probability is given
by

Pn
k (m,λ) =

∫ λn,m+1

λn,m

fk(y)dy

= Fk(λn,m+1) − Fk(λn,m) (9)

where, fk(y) and is the probability density of the ob-
servation conditioned on hypothesisHk; Fk(x) is the
corresponding conditional cumulative density function.
Thus, eqns. 6-9 help in the evaluation of the average
probability of error at the fusion center as a function of
both the fusion rule and the local thresholds.

V. PROPOSEDAPPROACH

The problem of optimizing the decentralized sensor
network over all possible fusion rules and local decision
rules has been shown to be an NP-complete optimization
problem when a discrete observation space is assumed,
i.e., the solution cannot be determined in polynomial time
[14]. The problem cannot be any easier if we consider a
continuous observation space [2]. Thus, this problem has
a computational complexity that increases exponentially

12 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER



with the number of users and, hence, it is impractical to
implement an exhaustive search.

Evolutionary algorithms, such as genetic algorithms
(GAs) are one among the many techniques that have
been investigated to overcome this limitation. These GAs
have been effective in finding approximate solutions for
many NP-complete problems. A GA uses evolution and
survival-of-the-fittest mechanisms to guide the search
toward the fittest candidates [20].

Evolutionary algorithms have emerged as one of the
most popular approaches for complex optimization prob-
lems in engineering. Evolutionary algorithms, such as
genetic algorithms (GAs) have been effective in finding
approximate solutions for many NP-complete problems.
A GA uses evolution and survival-of-the-fittest mecha-
nisms to guide the search toward the fittest candidates
[20]. The algorithm draws upon Darwinian paradigms of
evolution to search through the solution space (the set of
all possible solutions). Each solution, is represented as a
chromosome and comprises of smaller units called genes.
Starting with a set (or population) of chromosomes, in
each generation of the algorithm, new populations are cre-
ated from older ones. The creation of new chromosomes is
accomplished by means of two operators, recombination
and mutation. Mutation is carried out by imparting a
small, usually random perturbation to the chromosome. In
a manner similar to the Darwinian paradigm of survival of
the fittest, only “good” solutions are allowed to remain in
a population with the degree of optimality (“goodness”)
being assessed through a measure called fitness. In our
case, the fitness is measured with respect to the average
probability of detection error at the fusion center.

In the following sub-sections, we present two different
algorithms that can be used to solve the optimization
problem at hand. The first method outlined here is the
approach used in [14]. After that, we detail the algorithm
that we are proposing as a computationally efficient
alternative to the former.

A. GA-Stochastic Gradient (GA-SG) Approach

The GA-SG approach presented in [14] uses a GA to
search for the optimal fusion rule and a gradient-based
algorithm for optimizing the local thresholds. The overall
algorithm is provided in Fig. 5.

Here, each chromosome in the population of the GA
represents a candidate fusion ruleh, which is represented
as a string ofLN bits. A random initial population of such
chromosomes is generated. The fitness of every chromo-
some is then calculated by optimizing the local thresholds
for that particular fusion rule, and then evaluating the
objective functionPe(λ, h). A mating pool of parents are
selected to undergo cross-over and obtain the offspring
population. Once an offspring population is assembled,
the fitness of each offspring is evaluated as before and
the process is repeated till the search converges to the
optimal solution. The optimization of the local thresholds
for a particular fusion ruleh is implemented by using a
gradient-based approach as discussed in [14]. For each

Initialize Population 

(only fusion rules, h)

Fitness Evaluation

Mutation of non-elites

Crossover

Fitness Evaluation

Roulette Wheel Selection and 

Creation of new population

Average probability of 

error

[Optimize local 

Thresholds using 

Gradient descent]

Fig. 5. Optimization using GA-SG approach

fusion rule, there is a set ofN(L − 1) thresholds to
be optimized with respect to the probability of error,
which is a function of both the local thresholdsλ, and
the fusion rule h. This is a [N(L − 1)]-dimensional
nonlinear constrained optimization problem. But, instead
of moving in the direction of theN(L − 1)-dimensional
gradient, each optimization step involves moving along
the direction of the one-dimensional gradient with respect
to one of the variables as long as the constraints are
satisfied. The optimization is then carried out cyclically
over all the variables.

Although the GA-SG performs well and converges
to the optimal solution (see [14]), it is computationally
expensive. This is due to the repeated evaluation of the
gradient with respect to theN(L − 1) variables for each
candidate fusion rule in each generation of the GA. The
gradient with respect to one variableλν,τ is evaluated
using the following expressions [14]

∂

∂λν,τ

Pe(λ, h) =

1
∑

k=0

πk

∂

∂λν,τ

P 0
k (k̄, λ, h) (10)

∂

∂λν,τ

P 0
k (k̄, λ, h) = (11)

LN−1
∑

q=0,hq=k

∂P ν
k (Ψν(q), λ)

∂λν,τ

N
∏

n=1,n 6=ν

Pn
k (Ψn(q), λ)

∂Pn
k (m,λ)

∂λn,τ

=







−fk(λn,τ ) if m = τ
fk(λn,τ ) if m = τ − 1
0 otherwise

(12)

where πk is the prior probability of hypothesisHk,
P 0

k (k̄, λ, h) = Pr(u0 = k̄|Hk), Pn
k (m,λ) is the probabil-

ity that thenth sensor decided m whenHk is present and
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fk(y) is the probability density function ofy conditioned
on Hk.

As can be seen in eqns. 10-12, the evaluation of the
gradient is computationally expensive due to the need to
iteratively calculate the summation and product terms. In
the next subsection, we propose a Parallel GA approach
that does not involve any such gradient evaluation.

B. Parallel GA Approach

The parallel GA (PGA) that we propose is essentially
one in which we optimize both the fusion rule and the
local thresholds simultaneously. Each chromosome in the
GA is divided into two parts:

• the fusion rule, and,
• a set of local thresholds.

A random population is generated consisting of a group
of such chromosomes. The fitness of each chromosome
of the population is calculated as the probability of
error Pe(λ, h), which is evaluated using eqns. 6-9. Af-
ter evaluating the fitness, both the fusion rule part and
the thresholds part of the chromosomes, undergo cross-
over and mutationin parallel to produce an offspring
population. Elitism is also introduced to ensure that the
best solutions in each generation are carried over without
any change into the next generation. Once an offspring
population is assembled, the fitness is again evaluated and
the process continues till a desired termination criterion
is reached. In this work, roulette wheel selection scheme
is used for selecting parents for cross-over and cross-over
of the non-binary thresholds part is performed as follows:

λoffspring = xλparent1 + (1 − x)λparent2 (13)

where x is a uniformly distributed random number be-
tween 0 and 1. It is important to note that while the
crossover is performed based on eqn. 13 for both parts of
the chromosome, the mutation operator is quite different
for the two parts. The mutation for the fusion rule part
involves a random flipping of bits in the fusion rule vector
h. On the other hand, the mutation of the local thresholds
is performed by perturbing a randomly selected threshold
value by adding a Gaussian perturbation.

The overall PGA approach is illustrated in Fig. 6. From
an initial look at the Figure, it appears that there is a
single GA operating on the solution space. However, since
the crossover and mutation operations are implemented
independently and in parallel for the fusion rule part
and the local threshold part of the chromosomes, one
can perceive this approach as a parallel GA. It is this
simultaneous/parallel search that significantly lowers the
complexity of the approach as discussed next.

The advantage of this algorithm is that it greatly
reduces the computational complexity, as the gradient
calculations have been completely eliminated. Although,
this means that it takes our parallel GA more number
of generations to converge to the optimal solution, it
must be kept in mind that each generation only involves
the GA processes of cross-over and mutation unlike the

Initialize Population 

(fusion rule and local thresholds)

Probability of error

Fitness Evaluation

Mutation of non-elites done in parallel

For both fusion rule and threshold

Crossover done in parallel for both

Fusion rule and threshold 

Probability of error

Fitness Evaluation

Roulette Wheel Selection and 

Creation of new population

Fig. 6. Optimization using PGA approach

GA-SG algorithm where, each generation also involves a
complex gradient-based sub-process to optimize the local
thresholds, in addition to the GA processes. Therefore,
per-generation computation of the parallel GA is much
lower than that in the GA-SG algorithm.

C. Impact of Initialization

Another key point to be noted is that, for both the
GA with gradient-based threshold optimization and the
parallel GA, the initialization of the local thresholds
as well as the fusion rule plays a crucial part in the
convergence of the algorithms. This issue is not addressed
in detail in [14].

The local thresholds have to be initialized close to
the region of overlap betweenf0(y) and f1(y), which
is intuitively reasonable since this is the region where it
is hardest to discriminate between the two hypotheses.
Additionally, the initialization of the fusion rule is also
equally important. Both the algorithms are found to
converge to the optimal solution sooner when the fusion
rule is initialized such that the probability of getting a
1 in the rule (corresponding to deciding in favor ofH1)
increases as we move from left to right along the fusion
rule, i.e., the probability of the first bit (MSB) of the
fusion rule being a 1 is 0 while the probability of the
last bit (LSB) being a 1 is 1. This is because the first
bit of the fusion rule corresponds to the case when all
the sensors classify the observation as belonging to level
L (highly in favor of H1). Similarly, the last bit of the
fusion rule corresponds to the case when all the sensors
classify the observation as belonging to level 0 (highly in
favor of H0). Therefore, this initialization of the fusion
rule is consistent with our intuition and yields the fastest
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convergence to the lowest probability of detection error
as illustrated in the next section.

VI. RESULTS

In this section, we present the results obtained by using
both the GA-SG algorithm and our PGA approach. We
consider a parallel decentralized sensor network withN
sensors, each making a single measurement, quantizing
it into b bits per measurement and transmitting theseb
bits to a central fusion center via anerror-free multiple
access channel. The fusion center then makes the global
decision. We use an additive noise modely = mi + n,
wheremi is the signal mean underHi and n is a zero-
mean, unit variance Gaussian noise. The signal means
m0 and m1 are assumed to be 0 and 1 underH0 and
H1, respectively. We consider 2 cases: one where the
sensors use identical quantizers (homogeneous sensors)
and one where the sensors use non-identical quantizers
(non-homogeneous sensors). The local observations are
assumed to be conditionally independent and identically
distributed. We consider sensor networks with 4 sensors,
each transmitting 2 bits per measurement. Thus, each
sensor quantizes its measurement into one of 4 classes
using 3 thresholds. The 3 local thresholds for each sensor
are initialized close to -0.5, 0.5 and 1.5, respectively. This
corresponds to the region of overlap of the distributions
under the 2 hypotheses. The initial population of fusion
rules is initialized such that the probability of getting a 1
in the fusion rule increases from 0 to 1 as we move from
the least significant bit (LSB) to the most significant bit
(MSB). The prior probabilityπ0 is assumed to be 0.6 for
all the cases.

Figure 7 shows the evolution of the global probability
of error of the sensor network over 100 generations
using the GA-SG algorithm. The sensors for this case are
assumed to be heterogeneous, i.e., they have non-identical
thresholds. As in [14], the population size is set at 1000
chromosomes while the crossover and mutation rates are
0.45 and 0.01, respectively. The algorithm for this case is
found to converge after 45 generations.

Figure 8 shows the evolution of the probability of error
for the same heterogeneous sensor case using the PGA
approach over 4000 generations. The algorithm converges
to a minimum after 2500 generations.Although this is
a much large number of generations as compared to
that in the GA-SG algorithm, we must recall that the
per generation computational complexity of the PGA
algorithm is lower than that of the GA-SG by a large
degree.As explained in section V, this is due to the
absence of the complex gradient-based sub-process in the
PGA approach. The crossover and mutation rates for the
PGA are set at 0.45 and 0.03 for the fusion center binary
GA. For the local thresholds which are non-binary, the
mutation rate is 0.05.

It should be noted that both the GA-SG algorithm
and the PGA converge to the majority-like fusion rule
described in [14], where the integer sum of all the local
decisions is compared to a threshold given by
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Fig. 7. Evolution of probability of error using GA-SG Algorithm for
non-homogeneous sensors (N = 4, L = 4, π0 = 0.6)
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Fig. 8. Evolution of probability of error using PGA Algorithm for
non-homogeneous sensors (N = 4, L = 4, π0 = 0.6)

λ0 '
1

2
N(L − 1) (14)

whereN is the number of sensors andL is the number of
quantization levels per sensor. The fusion center decides
in favor of hypothesisH1 if the sum is greater than this
threshold and in favor ofH0 otherwise.

Figure 9 shows the convergence of the probability
of error for the homogeneous sensor case using the
GA-SG algorithm over 500 generations. The algorithm
is found to converge to the minimum after about 360
generations as opposed to the 50 generations in the case
of heterogeneous sensors. Thus, it may seem that it is
better to use heterogeneous sensors as the convergence
is much faster in that case. But, we must bear in mind
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Fig. 9. Evolution of probability of error using GA-SG Algorithm for
homogeneous sensors (N = 4, L = 4, π0 = 0.6)
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Fig. 10. Evolution of probability of error using PGA Algorithm for
homogeneous sensors (N = 4, L = 4, π0 = 0.6)

that the per generation computational complexity is much
lower in the homogeneous sensor case as there are only
L thresholds to optimize using the gradient-based sub-
algorithm as opposed to theN(L − 1) thresholds in the
heterogeneous sensor case.

Figure 10 shows the convergence plot of the probability
of error for the same homogeneous case using the PGA
approach over 8000 generations. Similar to the heteroge-
neous sensors case, both the PGA and GA-SG algorithms
converge to the same majority-like fusion rule for the
homogeneous case also. The PGA for this case is found
to converge to a minimum after 6000 generations as com-
pared to the 2500 generations in the case of optimizing
heterogeneous sensors using the PGA. Even though the
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Fig. 11. Evolution of probability of error using GA-SG Algorithm for
homogeneous sensors without proper initialization of fusion rule
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Fig. 12. Evolution of probability of error using PGA for homogeneous
sensors without proper initialization of fusion rule

algorithm converges slower for homogeneous sensors as
in the case of the GA-SG algorithm, the difference is not
as pronounced in this case as in the GA-SG case. This is
because, the per generation computational complexity is
not affected much by the number of local thresholds in
the case of the PGA as the thresholds are also optimized
using the GA and not by a separate sub-process.

Figures 11 and 12, show the evolution of the probability
of error plots for the GA-SG and PGA algorithms, respec-
tively, when the fusion rule is not initialized properly, as
explained earlier. For both cases, we considered homo-
geneous sensors and all other parameters are the same as
before. The only difference from the previous simulations
is that we used a completely random population for the
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fusion rule. As we can see, both the algorithms converge
to an error probability of around 0.2 and do not reach the
optimal minimum probability of error of 0.16, that was
obtained in the previous simulations (with proper initial
populations). Thus, choosing a good initial population for
the GA plays an important role in the proper convergence
of the GA.

VII. C ONCLUSIONS

In this paper, we propose a Parallel Genetic Algorithm
approach for optimizing both the fusion rule and local
decision rules simultaneously in a probability of global
detection error sense. We compare our results to those
obtained using the gradient-based approach outlined in
[14]. Our results show that our PGA approach converges
to the same majority-like fusion rule and minimum prob-
ability of error as the gradient-based approach of [14]
with greatly reduced computational cost. We optimize the
fusion rule for the case of both heterogeneous and homo-
geneous sensors and show that our algorithm converges
to the same optimal solution for both cases. We also
analyze the effect of the quality of initial solution on the
convergence of the GA. We conclude that the algorithm
converges to the optimal solution if the initial population
of the GA is selected appropriately. The local thresholds
have to be initialized close to the region of overlap of the
two hypotheses and the fusion rule has to be initialized
such that the probability of deciding in favor of hypothesis
H1 increases as the number of sensors deciding in favor
of H1 increases and vice-versa.
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