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Abstract— Wireless networks are currently experiencing
more overload situations than their wireline counterparts
because of explosive mobile traffic growth, unpredictable
traffic behavior, service differentiated traffic shedding, etc.
Even though extensive research work on network overload
control in general is going on, the economic aspect of
the overload problem has received very little attention.
Managing the incoming traffic in a way that generates
the maximum possible revenue under overload warrants
special attention. In this paper, we study a realistic wireless
switch overload model where message exchange and message
discarding at multiple nodes are considered. We propose
a distributed overload control framework considering dif-
ferent service types to obtain the optimal revenue while
maintaining the switch’s capability to handle call attempts
during overload situation. This is achieved by exchanging
overload information among the nodes that can have a global
view of the switch-wide overload situation and its impact on
revenue, and hence can adjust their own traffic shedding
to improve the revenue generation. Next, we extend the
proposed framework to incorporate different call priorities
and discuss the conditions for reaching the optimal revenue
that ensures preferential treatment to the high priority
service types.

Index Terms— Distributed control framework, nonlinear
optimization, revenue maximization, Priority Services.

I. INTRODUCTION

Many of the existing overload control mechanisms (
[1], [2], [3], [5]) can be applied to or has been tai-
lored for wireless switches. However, because of the
specific environment that the wireless network is evolving
into (such as wireless services and users behavior), new
challenges are becoming more and more evident. Prior
works in this area try to ensure the proper working of
the wireless network under overload. It has rarely been
studied how a wireless network can obtain optimal rev-
enue under overload situations. More specifically, while
most of the mechanisms control overload by discarding
certain amount of traffic, it has received little attention
how this traffic shedding can be done in an optimal way
so that the network is not overloaded while the revenue
is maximized.

The wireless switch becomes complicated as the traffic
load and number of services it supports are growing.

This paper is based on “A Distributed Overload Control Framework
for Revenue Maximization in Wireless Switches,” by H. Lin and
P. Das, which appeared in the Proceedings of the IEEE Consumer
Communications & Networking Conference (CCNC), Las Vegas, USA,
Jan. 2006. c© 2006 IEEE.

In most vendors’ implementations, a wireless switch is
no longer a single node, but consists of multiple nodes
that work together to handle the user traffic and the
signalling. A call1 setup procedure includes several rounds
of message exchanges among these nodes, while overload
traffic shedding could happen in any of these nodes.
However, in most of the existing literature, a call setup
process in a node is only modeled as a single message
processing. There has been little analysis on the overload
performance where the message flows are considered.

In this paper, we address the overload control in the
context of a multi-node wireless switch, with the purpose
of optimizing the revenue generation while maintaining a
fixed bound on the delay at each node. In particular, we
propose a distributed overload control mechanism that can
be applied to wireless (and wireline) switches.

The rest of the paper is organized as follows: Section II
briefly discusses the state-of-the-art in single/multi-class
overload control algorithms. Section III outlines a multi-
node wireless switch model, upon which our overload
control framework is applied. Section IV gives detailed
description of the proposed overload control algorithms
where we do not consider call priorities. Section V
discusses the implementation issues and VI presents the
simulation results to show that our proposed framework
maintains key performance metrics of a switch under
overload while improving the revenue generation. In
Section VII, we present an extension of the distributed
framework that will support call types having different
priorities. Section VIII concludes the paper.

II. RELATED WORK

Both overload and congestion control have been studied
extensively for telecommunication networks and the Inter-
net. Several single-class overload control techniques for
telecommunication networks have been proposed in [1],
[2], [4], [12]–[15], [19]. Two popular overload control
techniques for telecommunication networks are:

• Call gapping: here all service requests are rejected
during certain time gaps. The period and duration
of these gaps are determined based on overload
conditions.

1In this paper, a “call” not only refers to the voice calls in wireless
network, but also refers to any wireless services, such as short messages,
packet data sessions, etc.
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• Call percentage blocking: here a certain percent-
age of service requests are blocked during overload
periods, and the remainder serviced. The blocking
percentage is determined based on the overload level.

There exist several works on multi-class overload control
schemes as well. The overload control algorithms pro-
posed in [7] fall in the class of percentage blocked algo-
rithms, which can be applied to call gapping algorithms as
well. A token-based scheme was proposed in [4] where an
incoming call of a given class is accepted if there are free
tokens of that class or if there are free tokens in a common
pool of unused tokens. However, as they do not consider
any priority mechanisms in token usage, calls belonging
to lower priority classes might exhaust the tokens of the
common pool under overload. In [17], different queue size
thresholds were used, one for each class, for discarding
call messages when the thresholds are exceeded in a tail
drop manner. There are also some recent works on local
overload control considering distributed denial of service
(DDOS) attacks [8].

Overload control in the Internet has been achieved
through active queue management of router queues. Most
of the proposed multi-class active queue management
approaches including RIO [18], WRED [20] and [21]
are multi-class extensions of the Random Early Discard
(RED) algorithm [22]. However, none of the above works
consider distributed overload control where better perfor-
mance can be achieved by using the call drop scenario at
other nodes.

Distributed overload control algorithms in the Internet
were proposed in [5], [9]–[11] which concentrated on
maximizing the call completion rates. Our paper, in
turn, considers the revenue maximization at each node
of the wireless switch. The major characteristics of our
framework are as follows:
• The proposed overload control framework considers

the interactions among multiple nodes that work
together to complete the setup of a call. When each
node makes overload control decisions, the message
interactions with other nodes are taken into account.
A multiple switch scenario is considered in [2], [16],
where the call setup is modeled as a sequence of
setup processes beginning from the switch where
the call is originated to the switch where the call
is terminated, with each switch considered as a
single queue. However, in the wireless domain, the
call setup is more complicated within a switch be-
cause it always includes coordinating a number of
resources, such as radio channel, Base Transceiver
Station (BTS), Base Station Controller (BSC), etc.
Therefore, the call setup process can consist of more
than twenty messages exchanged among different
nodes, while every node can have its own overload
control mechanism.

• The proposed framework supports multiple types of
services. The wireless networks support a multitude
of services, while the message interactions to setup
all these services are different.

• The current wireless switch can handle pretty high
level of overload and the mechanisms always fo-
cus on how to maintain good performance such as
the predefined network delay and throughput under
overload, but rarely considers whether the overload
control yields the optimal revenue. Our proposed
mechanism provides the overload performance from
the economic perspective, i.e., improving the revenue
generation. This is achieved by coordinating the mes-
sage discarding at all the nodes that have overload
control capability. When one node is reacting to over-
load by reducing traffic level, how other nodes are
throttling the traffic is also taken into consideration.
Through traffic shedding in a distributed way, the
switch-wide revenue optimization is obtained.

A preliminary version of this work appeared in [6]. In
this longer version, we also enhance the distributed frame-
work to support different service type priorities which is
more realistic in a wireless switch. Although, the initial
framework can perform overload control by achieving the
optimal revenue, the extended framework can achieve the
same if the switch scheduler follows a specific queueing
model as discussed later on. In other cases we can achieve
near-optimal results in terms of revenue maximization.
This is however necessary to ensure that the high priority
call types are dropped less although they generate lesser
revenue.

III. SWITCH MODEL AND OVERLOAD CONTROL
FRAMEWORK

In this section, we present the model of a wireless
switch on which our proposed framework is to be applied.

Because of the complexity of setting up calls in a
wireless network, the switch needs to coordinate a lot of
resources when setting up a call. Our proposed overload
control framework can be applied to a switch consisting
of any number of nodes. For the purpose of presentation
in this paper, we assume a three-node switch, as shown
in Fig. 1. These nodes are responsible for different tasks

 

Node1 

Node2 

Node3 

Access 
Network 
(BTS/BSC) 

PSTN 
Network 

Wireless Switch 

Figure 1. A simplified model of a wireless switch

in the switch, such as: reserving and setting up radio
channels for the mobile at the access networks, querying
Home Location Register (HLR) or Visitor Location Reg-
ister (VLR) regarding the user profiles, searching and es-
tablishing trunks for a call going out of the switch, etc. A
successful call setup includes coordinating all these task,
and therefore involves a lot of message exchanges among
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these nodes. In Fig. 2, we show a call setup process, which
is modeled as a sequence of messages exchanged among
all these nodes. The sequence of message exchange is
also called a call flow. A wireless switch can support
many services, while each of the service has a different
call flow.

Node1 Node2 Node3
Radio Access 
Network

Mobile Origination

1
2

3

4
5

67

8
9

1011

12
13

Figure 2. An example of call flow

Our proposed distributed overload control framework
consists of two parts: (i) overload control functionalities
inside each node; (ii) the overload information exchanges
among all the nodes in the switch. The overload function-
alities are illustrated in Fig. 3.
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Figure 3. Overload Control Function in a Node

The messages going into a node are as follows:
• Unsolicited messages: the first message in a call flow

at each node, e.g., in Fig. 2, message 1 at node1,
message 2 at node2, message 3 at node3. These
messages initiate the whole call setup process.

• In-progress messages: the rest of the messages.
These are mostly responses to a specific message
in the call flow. For example, messages 4, 5, ... , 13
in Fig. 2.

Only the unsolicited messages are candidates for discard-
ing when the node is in overload.

When a message is dequeued from the message queue,
the message queuing delay is first estimated. If the mes-
sage is an unsolicited message, the incoming traffic load
of this type is updated, and the unsolicited message is sent
to the overload control unit, which decides whether this
message is discarded or not, depending on the distributed
overload control algorithm that will be discussed in detail
in the next section. If the message is not discarded, it is
sent to the message processing unit. In-progress messages

are directly sent to message processing unit. Discarding
the first messages in the call flow results in the whole call
flow being stopped. On the other hand, discarding the in-
progress messages would waste the processing power that
has already been spent on this call flow, thus reducing the
network throughput.

The second part of the overload control framework is
the overload information exchange among nodes. As we
can see from the switch model, discarding an unsolicited
message has global impact on the load to other nodes,
as well as impact on the revenue generation (discarding
an unsolicited message results in a call failure, thereby
losing the potential revenue from the call attempt). In our
framework, the message discarding factors, which decide
how much traffic of each type is discarded at each node,
are exchanged under overload conditions. The details of
the information being exchanged will be discussed in
Section IV.

IV. DISTRIBUTED OVERLOAD CONTROL MECHANISM

We first provide a list of the notations that will be
used when presenting the distributed overload control
algorithm:
• I: the total number of services the switch supports.

For the simplicity of presenting the algorithm, we
assume I = 3 in this paper.

• N : number of nodes involved in overload control in
the switch. As shown in Fig. 1, N = 3.

• Dj : the observed average message queuing delay at
node j, 1 ≤ j ≤ N .

• fij : message discarding factor at node j for service
type i, which is the fraction of calls of service type
i allowed into node j, while (1 − fij) of the calls
are discarded at node j, where 1 ≤ i ≤ I and 1 ≤
j ≤ N .

• Tij : observed call arrival rate of service type i at
node j.

• Pi: the per call revenue from a type i call, 1 ≤ i ≤ I .
• Kij : in the call flow for service type i, the number

of messages going into node j.
• Cj : the message processing time (service time) at

node j, if the message is not discarded.
• cj : the message processing time (service time) at

node j, if the message is discarded.
• Bj : the delay bound at node j. For a switch, the de-

lay that is allowed at each node is tightly controlled
to ensure the total call setup time is under the QoS
limit. It is required that the average delay at node j
does not exceed Bj .

Our distributed overload control algorithm takes into
consideration the call flow of each service type. Fig. 4
shows all the call flows of the three services assumed in
this section. The call flows represent the typical call types
supported in a switch: short call flows with minimum
message interaction, as in call flow 1, long call flows
with extensive message exchange, as in call flow 3, calls
generated from the access network, as call flow 2, and
calls generated from the network side, as in call flow 3.
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Radio Access 
Network

(a) Service Type 1

Node1 Node2 Node3
Radio Access 
Network

(b) Service Type 2
 

Node1 Node2 Node3 PSTN 

(c) Service Type 3

Figure 4. Call Flows

From the point of view outside the switch, assuming
the offered traffic as O = [O1, O2, O3], the total revenue
is:

R =
I∑

i=1

PiOi

N∏

j=1

fij (1)

The purpose is to optimize the revenue in a distributed
environment. Let us take node 1 as an example to describe
the algorithm in detail. In node 1, the total revenue of the
switch can be estimated as:

R1 = P1T11f11f12f13+P2T21f21f22f23+P3T31f31 (2)

It is important to point out that at a local node, how
the revenue is calculated depends on the specific call
flows, as the node calculates revenue based on the traffic
observed locally. For example, for service type 1, because
the traffic can be discarded at nodes 2 or 3 after it
passes through node 1, the total revenue generated from
service type 1 should include the message discarding
factor at all three node: P1T11f11f12f13. For service type
3, when node 1 receives the unsolicited message, it is
already after the message discarding at node 3 and 2,
therefore, only the message discarding factor at node
1 needs to be considered: P3T31f31. Though the total
revenue formulation for three nodes are similar, they are
distinct depending on the node and call flows:

R2 = P1T12f12f13 + P2T22f22f23 + P3T32f32f31 (3)

R3 = P1T13f13 + P2T23f23 + P3T33f31f32f33 (4)

In Equation 2, node 1 only has control over three
variables: f11, f21, f31. The adjustment of these three
variables has to satisfy two requirements: first, maintain
the message delay at node 1 below B1; second, optimize
the revenue generated by the switch. For node 1, the
problem is:

Find 0 ≤ f11 ≤ 1, ≤ f21 ≤ 1 and 0 ≤ f31 ≤ 1 such
that R1 is maximized, with the constraint:

0 ≤ D1 ≤ B1 (5)

In our proposed framework, we assume for each node,
the message processing time Cj and cj are known2.

2To verify capacity, switch vendors conduct extensive characterization
on the processing time for their switches, which is called “call timing”
or “message processing time”. Therefore it is reasonable to assume that
the message processing time is a known factor.

Therefore, for each node, the message queueing and
processing process can be modeled as a M/G/1 queue:

D1 = X +
λX2

2(1− ρ)
(6)

where ρ = λX , while λ, X and X2 are the message ar-
rival rate, first and second moment of message processing
time respectively. We derive these parameters as follows.

To obtain the first and second moment of the message
processing time, we need to find the distribution of the
message processing time. There are two message process-
ing times: C1 and c1, processing time of messages not
discarded and discarded, respectively. Normally c1 ¿ C1.
On average, for service type 1, the number of messages
per second not discarded at node 1 is given by:

M1 = T11f11f12f13K11 + T11f11(1− f12f13)

where T11f11f12f13K11 accounts for the number of mes-
sages of the calls not discarded at any of the nodes,
while T11f11(1 − f12f13) accounts for the messages of
the calls discarded not at node 1, but at either node 2 or
3. Similarly, for service types 2 and 3, the average number
of messages per second not discarded at node 1:

M2 = T21f21f22f23K21 + T21f21(1− f22f23)
M3 = T31f31K31

And the number of messages discarded :

m1 = T11(1− f11)
m2 = T21(1− f21)
m3 = T31(1− f31)

Therefore,

λ =
I∑

i=1

Mi +
I∑

i=1

mi (7)

X =
C1

∑I
i=1 Mi∑I

i=1 Mi +
∑I

i=1 mi

+
c1

∑I
i=1 mi∑I

i=1 Mi +
∑I

i=1 mi
(8)

X2 =
C2

1

∑I
i=1 Mi∑I

i=1 Mi +
∑I

i=1 mi

+
c2
1

∑I
i=1 mi∑I

i=1 Mi +
∑I

i=1 mi
(9)

Note that, in the expression for X2, we consider
variance = 0, though this can be generalized eas-
ily for positive variances. Since the constraint is non-
linear, the problem is a non-linear programming prob-
lem. However, under overload situation, there is no ex-
tra processing power for solving such computationally
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expensive problem. Therefore, we reduce the solution
space by only allowing 11 discrete values for fij : fij ∈
{0, 0.1, 0.2, . . . , 1}. This changes the problem to an inte-
ger programming problem, which is still very expensive
to find even sub-optimal solutions. This problem can be
remedied by moving the computation offline. No details
on how this can be done is discussed here, because of the
limited space. The basic idea is to generate a mapping
between the inputs, such as the observed traffic load of
each service and the discarding factors of other nodes,
to the outputs, i.e., the optimal discarding factors for the
node itself, and store the mapping as a lookup table in
the nodes for real time look-up.

Each node broadcasts its message discarding factors
(node j broadcasts fij , 1 ≤ i ≤ I) to other nodes.
Upon reception of these factors, each node updates its
own message discarding factors. For node j, the updating
algorithms is shown in Fig. 5.

if  jj BD >  

    0 reaches  until  1for    1.0 ijijij fIiff ≤≤−=  

 else 
     Find optimal value for ijf  for Ii ≤≤1  by solving the 

     integer programming problem outlined in this section. 
     Let the solution for ijf  be ijf ′ . 

      
     Update the current ijf  as follows: 

      2/)( ijijij fff ′+=  

      then broadcast these values to all other nodes involved 
      in the overload control in switch. 
endif 

 

Figure 5. Message discarding factor update

Basically, if the delay is above the delay bound re-
quired, the shedding factors keep decreasing until the
observed delay is within the bound. What distinguishes
our overload control from others is the way the shedding
factors are updated when the observed delay is below the
bound. Our algorithm adjusts the local discarding factors
based on the global message discarding information (the
message discarding information from others). The global
information here plays an important role of helping the
node accurately estimate two things: the total revenue
that can be generated, and the expected delay at the
node, with assumed local message discarding factors. The
discarding factor adjustment is not done in a single step,
i.e., to directly make fij = f ′ij . Instead at every step,
fij is adjusted to be the median of the current value and
the calculated optimal value, i.e., fij = (fij + f ′ij)/2.
Our experiments indicated that this approach helps the
discarding factors converge, while the former option could
cause oscillation in certain circumstances.

V. IMPLEMENTATION CONSIDERATIONS

The following issues can arise while implementing our
proposed framework in a real wireless switch:

TABLE I.
PARAMETERS USED IN SIMULATION

Service Type 1 2 3

Mix 0.1 0.3 0.6

Revenue/call (Pi) 0.1 0.2 0.4

Node # 1 2 3

Delay Bound (Bj ) 1 1 1

Msg. Proc. Time (Cj ) 0.002857 0.001471 0.001449

Msg. Proc. Time (cj ) 0.0005714 0.0002941 0.0002899

• Message exchange: our distributed overload con-
trol requires the message discarding information
exchanged among nodes. There are two options: (i)
periodical message exchange, i.e., discarding factors
are exchanged in fixed time intervals, (ii) dynamic
message exchange, i.e., whenever a node updates its
own message discarding factors, it broadcasts this
information to others. Option 1 has limited overhead,
when the interval is not too short, but it may slow
down the nodes’ reaction to the traffic increase under
overload. Option 2 has faster reaction time, and
better convergence, but it is more costly to the nodes.
In our simulations, we used option 1, with a 1
second interval. We believe message exchange at
such frequency would not be a significant cost to
the nodes.

• Real time cost of optimization: it is extremely expen-
sive and unrealistic to obtain the optimal solutions
(optimal discarding factors) in real time, as it is an
integer programming problem. One solution would
be to move the computations offline and generate
a mapping between the inputs (such as the observed
traffic load of each service and the discarding factors
of other nodes) to the outputs (i.e., the optimal
discarding factors for the node itself). The mapping
is stored as a lookup table in the nodes. When
a node is executing the algorithm, it only needs
to look up the table for the closest input that it
can match with the real time parameters, and use
the corresponding discarding factors as the solution.
Since the solutions are generated offline, we can
use expensive algorithms such as genetic algorithm
or simulated annealing, to obtain high quality sub-
optimal solutions. It is out of the scope of this paper
to discuss how these algorithms can be applied.

VI. SIMULATION RESULTS

To verify the framework, we developed a simulation
model, exactly following the switch model in Section III,
call flows in Fig. 4 and the proposed overload control
framework. The call model, i.e., the mix of all three types
of calls in the offered traffic, as well as other important
parameters are shown in Table I.

The three nodes are configured to have the same
capacity to support 100 calls per second. We run the
offered traffic up to 700 calls per second, which is 7 times
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Figure 6. Simulation Results

the capacity. Such high level of offered traffic (7× the
capacity) covers extreme overload cases.

For an overload control mechanism, the most important
performance metric is the delay. Fig. 6(a) shows the
average delay at different loads. It is clear in the figure
that for all three nodes, the delay is controlled well within
the allowable delay bound. On the other hand, we also
observe that node 1 has much higher delay than the
other two. This is because node 1 is the node accepting
two of the three types of calls from outside. Unlike the
node inside, such as node 2, even when node 1 discards
messages to prevent itself from overloading, the time it
spends on the discarded messages can become very large
when the traffic load is high, hence the longer delay.

Fig. 6(b) shows the over all average throughput of the
three types of calls. It shows differentiation in discarding
different types of calls. Call flow of service type 3 has the
most number of messages involved, which means it costs
the most processing time at the nodes. On the other hand,
it also generates the highest per call revenue. Our results
show that the algorithm still provide higher throughput
for such calls.

Finally, Fig. 6(c) shows the average revenue generated
during overload. It is shown that as the offered load in-
creases, after it reaches the switches capacity, the revenue
decrease slowly. The decrease is due to the fact that the
total processing time every node spends on discarded
messages increases as the offered traffic load increases,
hence more time wasted on non-revenue generating pro-
cessing. It can be easily seen that the revenue at the
capacity is the maximum revenue a switch can generate.
Our results show that even at very high offered traffic
load, the revenue is still maintained at close to 66% of the
maximum. However, this value is significantly affected by
the message processing times Cj and cj . When discarded
messages cost less processing time, we would see higher
revenue under overload.

VII. EXTENDING THE FRAMEWORK TO SUPPORT
DIFFERENT CALL PRIORITIES

Note that the proposed framework tries to optimize the
total revenue earned at each switch which involves the
different call types. However, there might be specific call
types that generate less revenue but have higher priority

over the other call types e.g., 911 calls etc. Such calls
need to be retained by the service providers even though
they are not profitable from a revenue perspective. We
need a mechanism that can distinguish between such high
priority call types and ensure that they are retained in the
system.

In this section, we propose an extension of our dis-
tributed overload control framework to incorporate call
priorities.

A. Overload Control Architecture at a Node

The major design change required to support call
priorities is to have multiple queues corresponding to
the different priorities. The framework discussed above
assumes all call types have the same priority and hence
could be put in the same queue. Note that each queue,
in this extended model, apply to a particular call priority.
Multiple call types having the same priority, will enter the
same queue. Fig. 7 gives an overview of the new switch
model.
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Figure 7. Extended Overload Control Architecture

For each queue, we will have a separate queueing
delay estimator function as the expression for queueing
delay will be the same for all different call types entering
the same queue. Similarly, the unsolicited messages of
each queue are passed through its own message shedding
function where the message discarding factor for only the
call types entering that particular queue are computed.
The in-progress messages for all the different call types
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(irrespective of priority) are however sent to the Message
Processing unit as before.

B. Extended Problem Formulation

In the corresponding problem formulation, we need
to incorporate the call priorities. Following are the new
variables that need to be introduced:
• P : The total number of call type priorities, and

equivalently the total number of queues.
• I: this is now redefined as the total number of call

types having the same priority p, (1 ≤ p ≤ P ).
Note that we assume that the total number of call
types having the same priority (and hence entering
the same queue) is the same (for all priorities) for
simplicity of notations. However this can be easily
generalized to different number of call types having
the same priority by making the entries correspond-
ing to the non-existent call-types zero. Hence, the
total number of call types (i.e. services) supported
by the switch can be as many as P × I (instead of
I as in the previous model).

• Dp
j : the average message processing delay for the

calls at queue p, (1 ≤ p ≤ P ), of node j, (1 ≤ j ≤
N ).

• fp
ij : message discarding factor at node j for call type

i having priority p, where 1 ≤ p ≤ P , 1 ≤ i ≤ I
and 1 ≤ j ≤ N .

• T p
ij : the observed call arrival rate of call type i having

priority p at node j.
• P p

i : the per call revenue for a type i call with priority
p.

• Kp
ij : the number of messages going into node j in

the call flow for service type i with priority p.
• Rp

j : the total revenue obtained from the calls in the
queue corresponding to priority class p at node j.

As an example, let us assume the call types 1, 2 and 3
(as depicted in Fig. 4(a)-4(c)) belong to the same priority
class p. Thus following the concept used in Eqns. 2-4, we
have:

Rp
1=P p

1 T p
11f

p
11f

p
12f

p
13 + P p

2 T p
21f

p
21f

p
22f

p
23 + P p

3 T p
31f

p
31

Rp
2=P p

1 T p
12f

p
12f

p
13 + P p

2 T p
22f

p
22f

p
23 + P p

3 T p
32f

p
32f

p
31

Rp
3=P p

1 T p
13f

p
13 + P p

2 T p
23f

p
23 + P p

3 T p
33f

p
31f

p
32f

p
33

Similarly, the revenue expressions for the other call types
in the different priority queues for the different nodes can
be formulated depending on their message flows. Now the
total revenue earned at switch j can be expressed by:

Rj =
P∑

p=1

Rp
j (10)

C. Optimization problem at node j

Note that the optimization problem formulation also
has to change to incorporate the call priorities. Node j
has control over P × I variables corresponding to the
different fp

ij’s, (1 ≤ i ≤ I , 1 ≤ p ≤ P ). However, if the

optimization goal at node j is set as maximize{R1} as
before, the high priority calls that generate less revenue
will be dropped more. As a result, instead of a global
optimization of the revenue generated at node j, the main
idea is to optimize the revenue generated at each queue
having priority p, (1 ≤ p ≤ P ). Hence, the optimization
problem needs to calculate only I variables for each queue
corresponding to the different fp

ij’s, (1 ≤ i ≤ I) and can
be expressed as follows:
For the queue corresponding to priority class p at node
j,

Find 0 ≤ fp
1j ≤ 1, 0 ≤ fp

2j ≤ 1, ..., 0 ≤ fp
Ij ≤ 1

such that Rp
j is maximized, with the constraint

0 ≤ Dp
j ≤ Bj

Now, this optimization goal can ensure that the high
priority call types are not affected by the low priority ones
because the non-linear programming problem does not
calculate the message discarding factors corresponding to
these call types (as they are in a different queue p′ 6= p).
Also, computing the discarding factors for each queue
independently, will also guarantee an optimal solution,
even without a global optimization of R1. This is because
the unknown variables (fp

ij’s) involved with each term in∑P
p=1 Rp

j are independent. hence we can write:

max
fp

ij ,1≤i≤I,1≤p≤P
{Rj}= max

f1
ij ,(1≤i≤I)

{R1
1}+ max

f2
ij ,(1≤i≤I)

{R2
1}

+... + max
fP

ij ,(1≤i≤I)
{RP

1 } (11)

However, the low priority (and high revenue generating)
call types can still play a role in the determination of
the high priority call type discarding factors because
they will affect the delay constraint. Next we show how
the queueing discipline at the node affect the discarding
factors for high priority calls and show the calculations
for Dp

j .

D. Estimation of the Processing Delay, Dp
j

Note that we need to incorporate priority queueing dis-
ciplines to manage the call types with different priorities.
This is to ensure that the high priority calls are in no
way affected by the low priority ones. The optimization
problem outlined above computes the message discarding
factors separately for the call types belonging to different
queues. Let us consider two different queues correspond-
ing to priorities p and p′, (p > p′). Thus the processing
delay for calls in queue p should be independent of the
arrival rate of calls into queue p′, such that the delay
constraints in the optimization problem are independent
for the different queues. This can only be achieved by
implementing a preemptive priority queueing strategy in
the scheduler. Assuming a preemptive priority M/M/1
queueing model at the scheduler we can write:

Dp
j =

Xp

1− ρp
(12)
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where ρp = λpXp, while λp and Xp are the average mes-
sage arrival rate and first moment of message processing
time respectively for calls entering the pth queue which
can be derived similarly as before and concisely presented
here:

Mp
1 = T p

11f
p
11f

p
12f

p
13K

p
11 + T p

11f
p
11(1− fp

12f
p
13)

Mp
2 = T p

21f
p
21f

p
22f

p
23K

p
21 + T p

21f
p
21(1− fp

22f
p
23)

Mp
3 = T p

31f
p
31K

p
31

mp
1 = T p

11(1− fp
11)

mp
2 = T p

21(1− fp
21)

mp
3 = T p

31(1− fp
31)

λp =
I∑

i=1

Mp
i +

I∑

i=1

mp
i

Xp =
Cp

1

∑I
i=1 Mp

i∑I
i=1 Mp

i +
∑I

i=1 mp
i

+
cp
1

∑I
i=1 mp

i∑I
i=1 Mp

i +
∑I

i=1 mp
i

Note that all the calculations pertain to the pth queue and
we assume call types 1, 2 and 3 enter queue p and I = 3.

It is important to model the switch using an M/M/1
preemptive priority queueing model instead of an M/G/1
preemptive priority model because the processing delay
expression for the M/G/1 counterpart will have a con-
tribution from the low priority call types in the term
for residual delay. However, to make the optimization
problems for each queue independent we need to make
sure that the delay expressions for a particular queue is
also not dependent on the call types with lower priority.
Similarly, the delay expressions for non-preemptive pri-
ority queueing models will have contributions from lower
priority call types and hence cannot make the optimization
problems at different queues independent. It should be
noted, however, that the M/M/1 preemptive queueing
model can give us an optimal solution by reaching the
global optima that will be reported by our initial model.
However, the queueing model that needs to be applied
will ideally depend on the switch characteristics, and for
cases where this model is not appropriate we can only
achieve near-optimal estimates of maximum revenue at
each queue, instead of the maximum revenue at the entire
switch.

The corresponding algorithm for updating the message
discarding factors is quite similar to the one in Fig. 5 and
presented in Fig. 8.

Note that the new algorithm has to run for each queue
p, (1 ≤ p ≤ P ) at switch j resulting in a run-time
complexity of O(P×I) which is linear in the total number
of call types. The algorithm in Fig. 5 also had exactly
the same run-time complexity as in the previous case the
total number of call types supported was denoted by I
instead of P×I as in the extended algorithm. The message
delay at the nodes are hence quite similar to that reported
for the initial model. The queueing delay component will
however be different due to the M/M/1 priority queueing

if Dp
j > Bj

fp
ij = fp

ij − 0.1 for 1 ≤ i ≤ I until fp
ij reaches 0

else
Find optimal value for fp

ij for 1 ≤ i ≤ I by solving the
corresponding integer programming problem.
Let the solution for fp

ij be f
p/opt
ij .

Update the current fp
ij as follows:

fp
ij = (fp

ij + f
p/opt
ij )/2

then broadcast these values to all other nodes involved
in the overload control in switch.

endif

Figure 8. Extended message discarding factor updation algorithm
considering different call priorities

model at the scheduler.

VIII. CONCLUSIONS

In this paper, we presented a new framework for
overload control, in particular for the multi-node switches.
Our framework can support multiple types of services
and achieve the maximum revenue at each switch. The
overload control mechanism is distributed, but all nodes
work together to achieve the improvement on the revenue
generated. Our results show that the proposed overload
control framework is able to control the message de-
lay at all nodes in the switch, and provides revenue
improvement as compared to the normal delay-based
overload control mechanism. We also extend the proposed
framework to support multiple call priorities that can
achieve the maximum revenue if the switch scheduler
follows a particular queueing model and near-optimal
revenue otherwise.
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