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Abstract— In this paper, we review the definition of a 
variant of TCP, called SmoothTCP, and describe one of its 
versions which uses ICMP-SQ messages as its primary 
control metric.  This version of SmoothTCP is intended to 
be used in environments subject to spurious errors, such as 
in wireless networks.  We evaluate the behavior of this 
version of SmoothTCP by comparing it with the behavior of 
Standard TCP in simulated environments with and without 
spurious errors.  When there are no spurious errors,  
Standard TCP inherently drops packets and suffers large 
variations in the congestion window size causing large 
variations in round-trip time.  In the case of spurious errors, 
Standard TCP encounters wide round-trip time variations 
around the retransmitted packet that was lost due to a 
spurious error. In both cases, SmoothTCP exhibits better 
performance with respect to round-trip time variation.  

Index Terms—congestion control, RTT, spurious errors, 
TCP performance, SmoothTCP, wireless performance. 

I.  INTRODUCTION

Previous work has demonstrated the existence of 
design problems in congestion control of Standard 
TCP[1] related to its use of packet drops to signal 
congestion[2,3,4,5,6]. Indeed, packets drops should 
indicate to the TCP sender a router queue, somewhere 
between the sender and the receiver, is overloaded. 
Therefore, the sender should decrease its sending rate in 
order to return the queue to a normal size.  But this is not 
always true. A packet can be dropped for reasons other 
than a full queue. An example is what happens in wireless 
networks where the movement of the mobile node, the 
properties of the transmission media, or other equipment 
introducing noise, can introduce undesirable delays or 
spurious errors in communication.  Specifically, spurious 
errors cause the sender to unnecessarily decrease its 
sending rate which also increases round-trip time (RTT) 
variation.  In such situations, however, there is no reason 
to decrease the sending rate since no router queue is 
actually overloaded. Consequently, the sender is 
penalized unnecessarily because of this signal 
uncertainty. Additionally, using packet drops as the main 
congestion indication creates another problem.  Once a 

packet is dropped in a queue, the sender does not know 
immediately, but it must deduct by not receiving any 
acknowledgement for the dropped packet. This takes 
approximately one RTT, the time to send a packet and 
receive its echo, which is a temporal gap too large.  

Our work suggests that these problems can be 
addressed by introducing the concept of smoothness. 
Briefly, a congestion control mechanism, which has this 
smoothness characteristic, should react to congestion 
signals in a less “harsh” way than just halving its window 
size, as does Standard TCP. This is because, if the 
congestion control mechanism is “smooth”, then there is 
almost no signal uncertainty. Specifically, this paper 
proposes an instance of such mechanism, using only 
ICMP-SQ messages to signal congestion.  By using 
ICMP-SQ messages, the uncertainty problem is 
practically eliminated as long as an ICMP-SQ message is 
sent only when the router queue is getting overloaded and 
not when a spurious error happens. This can be done by 
setting a queue size threshold and having ICMP-SQ 
messages sent directly to the sender when that threshold 
is reached.  

The remainder of this paper is organized as follows.  
Section II discusses the motivation behind this research 
and some related work.  Section III introduces the 
definition of Smooth Congestion Control Algorithms and 
describes the smoothness property and the general format 
of their congestion window functions. Section IV 
describes SmoothTCP which is an instance of a Smooth 
Congestion Control Algorithm specifically defined to 
deal with signal uncertainty and temporal gap problems. 
In Section V, we present the RTT variation behavior of 
SmoothTCP in normal networks, that is, not subjected to 
spurious errors.  In Section VI, we describe the RTT 
variation behavior of SmoothTCP when spurious errors 
are introduced in those networks. Finally, in Section VII, 
we summarize some conclusions about the work that has 
been done so far and presented in this paper. 

II. MOTIVATIONS AND RELATED WORK

The work in [2] suggests that the threat to the stability 
of the Internet originates not from flows having 
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alternative congestion controls, but from those not having 
any congestion control at all, such as large-scale 
multicasting flows or some real-time traffic. The stability 
of the Internet, therefore, does not require that flows 
decrease their sending rate by halving their window sizes, 
as in Standard TCP [7].  In particular, to avoid congestion 
collapse it is necessary to use a lower sending rate only 
when there is a high loss rate. 

Two key issues related to the TCP performance can be 
identified under links subjected to errors: its inability to 
separate the packet losses due to congestion from those 
because of other problems; and its reliance on the timer to 
recover from a failed retransmission cycle. One of the 
effects of the issues cited above is spurious 
retransmission timeouts, which reduce the performance of 
TCP as they can start unnecessary retransmissions of 
segments. These problems have been noted and addressed 
by others: 

1. Eifel Algorithm: In [3], Ludwig and Katz 
proposed an algorithm, called Eifel, to deal with 
spurious retransmission timeouts. They proposed 
an alteration in TCP that uses either timestamps 
sent in TCP segments or two of the reserved bits 
in the TCP header to determine whether there was 
any packet loss due to some error when an ACK 
arrived in the sender.  

2. Westwood TCP: In [4] and [5] Westwood TCP is 
described. Instead of dropping the window size by 
half of the value it was before a packet loss, it 
proposed a linear decreasing of the congestion 
window depending on the bandwidth measured on 
each ACK arrival. This results in a performance of 
up to four times that of the Standard TCP when 
spurious errors occur.  

3. F-RTO: The F-RTO algorithm is described in [6]. 
F-RTO only affects the TCP sender when there is 
a retransmission timeout. Otherwise it behaves as 
Standard TCP.  

A TCP-friendly mechanism is described in [2] to 
control unicast traffic using equation-based congestion 
control. This mechanism avoids reducing the sending rate 
to react to a single packet drop. Instead, the sender 
adjusts its sending rate according to the measured rate of 
loss events in a single round-trip time.  The Family of 
Binomial Congestion Control Algorithms [8] also looks 
at the generalization of congestion control; the work in 
[8] was the basis for the congestion control functions in 
the present work. 

III. SMOOTH CONGESTION CONTROL ALGORITHMS

The basic idea of the algorithms in previous work 
[9,10,11] is to make changes in the congestion window as 
small as possible. This is the basis for our smoothness 
property [10], the main requirement for Smooth 
Congestion Control Algorithms. 

A. Smoothness 

A congestion control mechanism will be said to have 
smoothness characteristics if it has the following five 
properties: a smooth curve; vertical smoothness; 

horizontal smoothness; proactive smoothness; and 
precision.  These are defined as follows: 

• Smooth Curve Property: An important 
characteristic of TCP’s standard congestion 
control algorithm is the action of halving its 
congestion window in the face of a packet drop. 
This sudden decrease marks a discontinuity point 
on its evolution curve, and causes a fast and large 
increase in the RTT. As a result, the first property 
required for a smooth congestion control is that its 
curve should have either no discontinuity points or 
as few as possible.  This requirement is called the 
smooth curve property. 

• Vertical Smooth Property: Formally, the 
congestion control uses a function f(u) to translate 
events u  into window sizes.  When f(u) is a 
function of a variable where bursts with very large 
amplitude can occur, like RTT, this cannot be 
done linearly, since variations of RTT near 0 are 
more important or significant than variations 
among large values.  For this reason, a hyperbolic 
tangent function is proposed to introduce vertical 
smoothness, making sure certain signals remain 
within a specified range.  

• Horizontal Smooth Property: Sometimes it is 
important to know the frequency of an event (or 
its rate) instead of its amplitude for congestion 
control.  Consequently in f(u), u should mean the 
rate of those events. In our work u is taken to be 
the smooth average rate as described in [12]1. 

• Proactive Property: Suppose a packet is dropped 
at a router because its queue is full. In order for 
the sender to decrease its sending rate, the receiver 
sends duplicate acknowledgment packets which 
arrives approximately 1 RTT (more precisely, 1 
RTT and 3 duplicate acknowledgment arrivals ) in 
the sender. This relatively long time, which we 
refer to as a temporal gap, is one of the principal 
reasons TCP reacts by halving the window [7]. 
 We can do better if other metrics are used to 
signal congestion. Our work proposes the use of 
the following metrics: RTT (details the relation 
between the router queue size and RTT can be 
found in [13]) and ICMP-Source Quench (ICMP-
SQ) Messages. Explicit Congestion Notification 
(ECN) [14] can be used instead of ICMP-SQ, but 
the latter has a smaller temporal gap since the 
messages are to be sent directly to the sender (in 
the opposite direction). 

• Precision Property: Another problem is that a 
packet drop is not always the best way to signal 
congestion. A packet drop does not always mean 
that the packet was discarded as a result of 
congestion in a router queue. For example, a 
packet could be dropped because of a CRC error. 
For that reason, we say that there is a signal 
uncertainty. Algorithms like Eifel [3] and F-RTO 

                                                          
1 The smooth average of n terms is: 
  ⎯u(un)=(1-α)*⎯u(un-1)+α*un where  α is 1/8 or ¼. 
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[6] eliminate some of the uncertainties, but not 
completely. The possibility of using ICMP-SQ 
messages or ECN in a proactive manner also 
enhances the precision of the congestion signaling.  
A router only sends them when the threshold of a 
RED queue is reached.  On the other hand, RTT 
increases could be provoked by events other than 
congestion, like a router table update. Therefore, 
RTT would not be as precise as ICMP-SQ or ECN 
messages. 

B. SmoothTCP Algorithms 

For our notion of smoothness, we would like to be able 
to make infinitesimal adjustments dw to the current 
congestion control window wt, that is, the new window 
wt+dt after the infinitesimal time dt would be given by: 

dw+w=w tdt+t  (1) 

For that, we think of the adjustment dw as being 
defined as a function of some set of variables p1,..,pi,..,pn

describing the network state and congestion conditions.  
Let us temporarily define dw = D. Furthermore, let us use 
only w to denote wt since most of our functions do not use 
time (t) as independent variable. Specifically, we are 
interested in changes in w, that is an increment or 
decrement to the existing window size depending on 
changes in p1,..,pi,..,pn..where D is formulated as: 

n
n

i
i

1
1

dp
p
w

+...+dp
p
w

+...+dp
p
w

=D  (2) 

As per our previous discussion of “smoothness”, we 
assume that each partial derivative is of the form:  

))M+p(Btanh(C+A=
p
w

iiii pippp
i

 (3) 

Equation (2) defines a family of functions. When such 
a family includes only smooth functions, we call it a 
Family of Smooth Congestion Control Algorithms (or 
briefly, Smooth Algorithms).  

B. Fairness 

In order to enforce SmoothTCP connections sharing 
approximately the same bandwidth, the following idea, 
inspired from Standard TCP, is also used to ensure 
fairness.  If D is the increment defined in (2), then the 
final value dw added to w in (1) is redefined as follows: 

w×D= dw 0  D 
D/w= dw 0 > D 

 (3) 

Consequently, having n connections sharing different 
window sizes, after some finite number of changes in 
p1,..,pi,..,pn., the n connections should have approximately 
the same window size.  This is because the connections 
having the largest windows receive the smallest window 
increments.  In contrast, the connections having the 
smallest windows sizes suffer the smallest decrements. 

IV. SMOOTHTCP 

Basically, SmoothTCP is different from Standard TCP 
in its slow-start and congestion-avoidance algorithms. 
Indeed, it was designed to provide a smoother window 
size variation than Standard TCP. 

A. Congestion Avoidance 

We can then introduce the form of the functions for the 
partial derivatives that define the particular instance of 
Smooth Algorithms called SmoothTCP:  

dq
q
w

+de
e
w

+df
f
w

+dx
w

+dj
w

=D  (4) 

Where j is the variation in RTT, x is the variation in the 
number of timeout retransmits, f is the variation in the 
number of fast retransmits, e is the variation in the 
number of ECN acknowledgments packets and q is the 
variation in the number of ICMP-SQ messages. Then, the 
individual partial derivatives are:  

)M+q(Btanh(C+A=
q
w

)M+e(Btanh(C+A=
e
w
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j

w
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 (5) 

Therefore, SmoothTCP is defined as a family of 
functions where any instance can be a function of these 
five metrics. When the corresponding partial derivative 
for a certain metric in (4) or (5) is different from 0, that 
metric is called a control metric. 

A. The Stable State 

When the network does not suffer any alteration of 
state, such as the addition or deletion of TCP connections 
or other types of flows, each SmoothTCP connection 
converges to a particular window size. This happens 
because all variables involved in (4) do not undergo any 
changes, that is, dj=dx=df=de=dq=0.  So the 
corresponding window increment dw is zero, dw=0. 

Even if all SmoothTCP connections reach the 
convergence point, they can end up having different 
window sizes.   These values for the window sizes will 
not be modified unless some event provokes changes in 
the network bandwidth.  Having different converged 
window sizes results in different bandwidths for each 
SmoothTCP connections. 

B. Fairness Factor 

A new mechanism should be provided allowing 
SmoothTCP to get out of the stable state and continue its 
search for a shared bandwidth which is approximately the 
same for all SmoothTCP connections having the same 
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origin and destination.  Adding a new increment κ to D 
that is not dependent on any increment of the variables in 
(4) does the trick:  

κ+dq
q
w

+de
e
w

+df
f
w

+dx
w

+dj
w

=D  (6) 

κ is called fairness-factor. Its effect is to add small 
increments to dw=D/w (see (3)) and thus to w in order to 
increase the sending rate of the connection each time 
there is a new acknowledgment packet. As the receiving 
rate of the connection is kept constant, the queue of the 
bottleneck router will start to retain some packets and 
eventually become overloaded. As a result, congestion 
signals would be sent and the sender would start to 
decrease w by dw=D × w (see (3)).  The constant  κ can 
be thought as a function of the number of 
acknowledgment arrivals.  

C. Slow-Start 

The congestion avoidance of SmoothTCP starts after a 
certain window size is reached. Therefore, SmoothTCP 
needs to have a slow-start procedure like the one in TCP.  
Furthermore, the slow-start procedure of SmoothTCP 
needs to converge to a certain point in order for its 
congestion avoidance to take control of the window size. 
To do this, we also use a hyperbolic tangent (tanh) to 
implement our new slow-start procedure. Using the 
number of packet acknowledgments (a) arriving at the 
sender as independent variable, and Aa = -Ca in (3) 
becomes:  

))M-a(Btanh(A-A=dw aaaa  (7) 

Considering the initial value for the number of packet 
acknowledgments as 0 and the initial window size as 1 
MSS, (7) can be transformed to: 

( )( ) 1+2T-T]+B.acoshln
B
A

-A.2[a=w a
a

a
a  (8) 

The function given by (8) converges to a fixed point 
given by the limit:  

1+T-T+)2ln(
B
A

2=wlim=w
a

a

a
c  (9) 

Consequently, the new slow-start algorithm can be 
defined as:  

The function newAck() waits for the arrival of a new 
packet acknowledgment. When any acknowledgment 
arrives, the algorithm continues to the next step. The 
objective of the new slow-start algorithm is to match the 
value of this limit to a stable window. Initially, let Wc be 
the limit given by (9) for some initial Aa. Each of the 
iterations tests a new function. That function has the same 
coefficients Ba and Ma, but different coefficients Aa. In 
each of the iterations (see Fig. 1), the window size is 
continuously incremented by dw (see (7)). When any 
congestion signal (packet drop) is detected, a new value 
for Aa, A’

a, is calculated which starts a new iteration. If 
the window size reaches Wc and no congestion signal is 
detected, then the slow-start function has found the stable 
window and the procedure terminates. 

Figure 1. Slow-start evolution. 

For computing the new value for A’
a for Aa in the slow-

start algorithm, we used the function:  

ln(2)

2
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B
A

2dB-)2ln(A

=A'

2
a

a

a
aa

a (10) 

Where d is the difference between the current value for 
wc and the current window w. Finally, for calculating the 
new value for a corresponding to a given value w/2 for 
the window w, the inverse function of w is used:  
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a

)2ln(T21Tw
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 (11) 

Since it is out of the scope of this work, we are not 
going into more details about the slow-start procedure. 
However, the work in [10] contains more details about 
the slow-start procedure, including some discussion about 
its performance.  

V. NORMAL RTT BEHAVIOR OF SMOOTHTCP 

Using these equations and algorithms, we have 
simulated, using Network Simulator (NS-2) [15] diverse 
scenarios of the model of a network with a bottleneck 
link as shown in Fig. 2. The simulation time used was 
600s. 

slow_start=true 
WHILE slow_start AND newAck() DO 
       IF(w<Ws) AND (no_congest_signal)THEN 
 IF(congestion_signal)THEN 
  d = wc – w 
  wc = lim a→∞ (w)   //(Eq.9) 
  Aa= A’

a (d)            //(Eq.10) 
  w = w/2 

a = W-1(w) 
 ELSE 
  w = w+Aa-Ca tanh(Ba(a+Ma)) 
  a = a+1 
       ELSE 
  slow_start = false 
END WHILE

Wc

a' a

W’
c

W’’
c

a’’

(b)
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All these simulations have the sender transmitting 
constant-size packets of 586 bytes and the SmoothTCP 
coefficients used were Aa=40, Ba=0.003038, Aq=0.0, 
Bq=0.5493, Cq=0.0625 and Mq=0.0. All SmoothTCP 
connections have fairness-factor of κ=0.005. The link 
between the router and the sender is 1 Mbps with latency 
of 1ms and between the router and the receiver is 
0.03125Mbps with latency of 8ms.  Modified drop-tail 
queues of 20-packet size were implemented in the router 
in order to send ICMP-SQ messages when the queue size 
reaches the threshold (τ) of 7 packets. That means that, 
when the size of the queue is below τ, no ICMP-SQ 
messages are sent. However, an ICMP-SQ message is 
sent for each packet arriving in the router queue if the 
size is equal or above. 

On the graphics showing the simulations result 
presented next, we have the following legend: 

• Congestion window: “cwnd” is used to note the 
congestion window for Standard TCP and 
SmoothTCP. Additionally, the number of the 
connection (1 or 2) is concatenated to both 
strings. Both values are given in packets. 

• RTT: RTT values are given in seconds and noted 
as RTT in the graphics for both Standard and 
SmoothTCP. 

• Current queue size:  The queue size in the 
router is given in packets and the string “size1” is 
used to note it in the graphics. 

• Number of ICMP-SQ messages: The string 
“nicmpsq”is used to note the number of ICMP-
SQ messages that arrives in both senders 
(Standard TCP or SmoothTCP). Additionally, the 
number of the connection (1 or 2) is concatenated 
to the strings. 

• Packet Drops: The number of packets dropped 
in the router is noted by “pdrops1” independently 
on the type of the connection (Standard TCP or 
SmoothTCP). 

• Packet Arrival Rate: The number of packets 
arriving in the router per second, it is noted by 
the string “parvlr1”. 

Figure 2.  Bottleneck link model. 

 A. Standard TCP 

Fig. 3, Fig. 4 and Fig. 5 illustrate the behavior of 
Standard TCP. The main results can be enumerated as 
follows: 
1. Congestion window and RTT: In these 

experiments, the window size of Standard TCP and 
RTT varies a lot. Fig. 3 shows that the window size 
is periodically decreased (mostly halved) in both 
connections, indicating that the sender has detected a 

packet drop. Because of this behavior, the RTT also 
has huge variations, most of the time between 1.4 s 
and 3 s.   

2. Router queue size and the number of ICMP-SQ 
messages: The router queue size also follows the 
behavior of the window size (see Fig. 4). 
Periodically, the queue is filled up and packets are 
dropped, after the queue size reaches a minimum. 
Both points happened after the window size in the 
sender reaches the maximum and the minimum. 
Regarding the number of ICMP-SQ messages sent 
by the router to the senders, the two curves are 
almost linear. That means the average of the queue 
size was above of the queue threshold.

3. Packet drops and arrival rate of packets in the 
router queue: The number of packets dropped by 
the router also follows an almost linear growth (See 
Fig. 5). For the arrival rate of packets, the spaces can 
be seen where no packets arrive since the sender is 
waiting for the packet dropped being confirmed.    

Figure 3 . RTT and congestion window in Standard TCP. 

Figure 4. Router queue size and number of ICMP-SQ messages in 
Standard TCP. 
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Figure 5. Packet drops and arrival rate in Standard TCP. 

B. SmoothTCP  

Fig. 6, Fig. 7 and Fig. 8 illustrate the behavior of 
SmoothTCP. Briefly, we have: 
1. Congestion window and RTT: The window size of 

SmoothTCP and its RTT is smaller and has less 
frequent variations that Standard TCP (see Fig. 7). 
This characteristic of SmoothTCP is controlled by 
the fairness-factor (κ).  Increasing the fairness factor 
also increases the variations in RTT.   

2. Router queue size and the number of ICMP-SQ 
messages: SmoothTCP generally results in a smaller 
queue size than Standard TCP and the number of 
ICMP-SQ messages is almost the same as in 
Standard TCP (see Fig. 7). Because of the value of 
the queue threshold (τ), a large number of ICMP-SQ 
messages is sent by the router when the queue 
occupancy is above τ. If  τ was chosen larger, a 
smaller number of ICMP-SQ messages would be 
sent, but the slow-start procedure would take more 
time to converge.  

3. Packet drops and arrival rate of packets in the 
router queue: The number of packets dropped by 
the router when SmoothTCP is used is only large 
during the slow-start phase (see Fig. 8). No packets 
are dropped in the congestion avoidance phase. 
Having no packet drops in the congestion phase also 
contributes to ensuring small variations in RTT.  In 
particular, there is a notable difference between the 
behavior of the packet arrival rates of SmoothTCP 
and Standard TCP.  While in Standard TCP, large 
bursts of packet arrivals happen periodically, in 
SmoothTCP they are smaller and less frequent.  
Regardless, they have almost the same throughput. 
For Standard TCP, the first connection transferred 
988,384 bytes and the second 1,192,600 bytes. For 
SmoothTCP, the first connection transferred 
1,046,272 bytes and the second 1,230,656 bytes. 

Figure 6. RTT and congestion window in SmoothTCP. 

Figure 7. Router queue size and number of ICMP-SQ messages in 
SmoothTCP. 

Figure 8. Packet drops and arrival rate in SmoothTCP. 

VI.  RTT BEHAVIOR OF SMOOTHTCP IN CONNECTIONS 
SUBJECT TO SPURIOUS ERRORS

The same bottleneck link shown in Figure 2 was 
simulated as having 3 spurious errors occurring on each 
connection during the 600s of the simulation. The time 
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where those errors happened was chosen randomly, 
although we enforced a large interval between them to 
isolate any effect that one can have in another. For these 
simulations, they happened at 81.13s, 254.14s and 
427.19s. 

A. Standard TCP 

Fig. 9 and Fig. 10 illustrate the behavior of Standard 
TCP. The main results can be enumerated as: 
1. Congestion window and RTT: For these 

experiments, the window size of Standard TCP and 
the RTT varies significantly.  Fig. 9 shows points 
where the window size is halved in both connections, 
indicating that the sender has detected a packet drop. 
Because of this behavior, we cannot clearly identify 
where the spurious errors happen or verify their 
effects. That means that Standard TCP masks the 
effects of packet drops and the spurious errors.   

2. Router queue size and the number of ICMP-SQ 
messages: In these experiments, the router queue 
size also follows the behavior of the window size as 
shown by Fig. 10.  The number of ICMP-SQ 
messages sent by the router to the senders are nearly 
linear over the time of the simulation, i.e., the two 
curves in Fig. 10 are almost linear. Likewise, it is not 
clear where are the effects of spurious errors on the 
queue size and the number of ICMP-SQ messages. 

B. SmoothTCP  

Fig. 11 and Fig. 12 illustrate the behavior of 
SmoothTCP. Briefly, we have: 
1. Congestion window and RTT: For these 

experiments, the window size and RTT of 
SmoothTCP are smaller and have less frequent 
variations than Standard TCP. Fig. 11 shows three 
points where there are large decrements in RTT. 
Immediately before each of those points, there is a 
spurious packet error and one packet is lost. When 
the lost packet is retransmitted, all the 
acknowledgments, for packets sent after it, are 
confirmed at once. It causes the RTT decrement. In 
the Appendix A there are more results showing the 
effect in RTT variation for other values of κ. 

2. Router queue size and the number of ICMP-SQ 
messages: When a spurious error occurs, the router 
queue size suffers a large decay in its queue size. 
This is because the sender does not send any further 
packet once the number of them sent, and not 
confirmed, has reached the window size. Therefore, 
the sender keeps waiting for the acknowledgment of 
the retransmitted packet what makes the occupancy 
of router queue be reduced. 

Figure 9. RTT and congestion window in Standard TCP. 

Figure 10. Router queue size and number of ICMP-SQ messages in 
Standard TCP. 

  

Figure 11. RTT and congestion window in SmoothTCP. 

54 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER



Figure 12. Router queue size and number of ICMP-SQ messages in 
SmoothTCP. 

VI. FINAL CONSIDERATIONS AND CONCLUSION

Showing what specifically happens when the 
parameters of SmoothTCP are changed is beyond the 
scope of this paper, but it can be seen in [9,10,11]. 
However, we can briefly summarize those effects as:  

• Fairness-factor (κκκκ): This parameter together with 
coefficient Cq is responsible for the adjustment of 
the fairness characteristic of SmoothTCP.  
Although other parameters have some effect on 
RTT variation, κ seems to have the greatest 
influence.  By increasing κ, we also increase the 
RTT variation.  In our simulations, we concluded 
that SmoothTCP connections with κ values from 
0.001 until 0.005 result in RTT variation much 
smaller than TCP.  

• Ba: This parameter controls the convergence time 
of the slow-start procedure, that is, the duration of 
the slow-start. As the region of the congestion 
window curve in which the slow-start procedure 
acts is very unstable in terms of RTT variation, we 
might wish to have a short time for the slow-start.  

• Queue Threshold (ττττ) and Queue Size (Sdrop) :  
The difference (Sdrop-τ) should be enough to 
accommodate the burst of packets following a 
retransmitted packet. If it is too small and packets 
are dropped as a consequence, RTT is also 
increased. 

Therefore, in a network subjected to spurious errors we 
can adjust the RTT variation by basically adjusting κ. 
However, too small values of κ can lead to unfair 
bandwidth sharing by the SmoothTCP connections [10]. 
In our experiments, we have used values of  κ between 
0.001 and 0.005 with fairness comparable to Standard 
TCP and RTT variation as those illustrated in this paper.  

APPENDIX A  FAIRNESS-FACTOR EFFECT

The following figures show additional results of 
simulations performed in the environment shown by Fig. 
2. Fig. 13 and Fig. 14 show the behavior of SmoothTCP 
when κ=0.005. Fig. 15 and Fig. 16 show the behavior 

when κ=0.010. In both set of simulations 3 spurious 
errors are inserted randomly. For this set of simulations, 
they happened at 81.13s, 254.14s and 427.19s, the same 
periods of time in the simulations presented before. All 
other configuration parameters are kept the same used in 
the previous simulations. 

Figure 13. RTT Variation and congestion window of SmoothTCP when 
κ=0.005. 

Figure 14. Router queue size and number of ICMP-SQ messages in 
SmoothTCP when κ=0.005. 

Figure 15. RTT Variation and congestion window of SmoothTCP when 
κ=0.010. 
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Figure 16. Router queue size and number of ICMP-SQ messages in 
SmoothTCP when κ=0.010.  
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