
Round-trip Time Variation in SmoothTCP in the
Face of Spurious Errors

Elvis Vieira
The University of Western Ontario/Department of Computer Science, London, Canada

Email: elvis@csd.uwo.ca

Michael Bauer
The University of Western Ontario /Department of Computer Science, London, Canada

Email: bauer@csd.uwo.ca

Abstract— In this paper, we review the definition of a
variant of TCP, called SmoothTCP, and describe one of its
versions which uses ICMP-SQ messages as its primary
control metric. This version of SmoothTCP is intended to
be used in environments subject to spurious errors, such as
in wireless networks. We evaluate the behavior of this
version of SmoothTCP by comparing it with the behavior of
Standard TCP in simulated environments with and without
spurious errors. When there are no spurious errors,
Standard TCP inherently drops packets and suffers large
variations in the congestion window size causing large
variations in round-trip time. In the case of spurious errors,
Standard TCP encounters wide round-trip time variations
around the retransmitted packet that was lost due to a
spurious error. In both cases, SmoothTCP exhibits better
performance with respect to round-trip time variation.

Index Terms—congestion control, RTT, spurious errors,
TCP performance, SmoothTCP, wireless performance.

I. INTRODUCTION

Previous work has demonstrated the existence of
design problems in congestion control of Standard
TCP[1] related to its use of packet drops to signal
congestion[2,3,4,5,6]. Indeed, packets drops should
indicate to the TCP sender a router queue, somewhere
between the sender and the receiver, is overloaded.
Therefore, the sender should decrease its sending rate in
order to return the queue to a normal size. But this is not
always true. A packet can be dropped for reasons other
than a full queue. An example is what happens in wireless
networks where the movement of the mobile node, the
properties of the transmission media, or other equipment
introducing noise, can introduce undesirable delays or
spurious errors in communication. Specifically, spurious
errors cause the sender to unnecessarily decrease its
sending rate which also increases round-trip time (RTT)
variation. In such situations, however, there is no reason
to decrease the sending rate since no router queue is
actually overloaded. Consequently, the sender is
penalized unnecessarily because of this signal
uncertainty. Additionally, using packet drops as the main
congestion indication creates another problem. Once a

packet is dropped in a queue, the sender does not know
immediately, but it must deduct by not receiving any
acknowledgement for the dropped packet. This takes
approximately one RTT, the time to send a packet and
receive its echo, which is a temporal gap too large.

Our work suggests that these problems can be
addressed by introducing the concept of smoothness.
Briefly, a congestion control mechanism, which has this
smoothness characteristic, should react to congestion
signals in a less “harsh” way than just halving its window
size, as does Standard TCP. This is because, if the
congestion control mechanism is “smooth”, then there is
almost no signal uncertainty. Specifically, this paper
proposes an instance of such mechanism, using only
ICMP-SQ messages to signal congestion. By using
ICMP-SQ messages, the uncertainty problem is
practically eliminated as long as an ICMP-SQ message is
sent only when the router queue is getting overloaded and
not when a spurious error happens. This can be done by
setting a queue size threshold and having ICMP-SQ
messages sent directly to the sender when that threshold
is reached.

The remainder of this paper is organized as follows.
Section II discusses the motivation behind this research
and some related work. Section III introduces the
definition of Smooth Congestion Control Algorithms and
describes the smoothness property and the general format
of their congestion window functions. Section IV
describes SmoothTCP which is an instance of a Smooth
Congestion Control Algorithm specifically defined to
deal with signal uncertainty and temporal gap problems.
In Section V, we present the RTT variation behavior of
SmoothTCP in normal networks, that is, not subjected to
spurious errors. In Section VI, we describe the RTT
variation behavior of SmoothTCP when spurious errors
are introduced in those networks. Finally, in Section VII,
we summarize some conclusions about the work that has
been done so far and presented in this paper.

II. MOTIVATIONS AND RELATED WORK

The work in [2] suggests that the threat to the stability
of the Internet originates not from flows having

48 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

alternative congestion controls, but from those not having
any congestion control at all, such as large-scale
multicasting flows or some real-time traffic. The stability
of the Internet, therefore, does not require that flows
decrease their sending rate by halving their window sizes,
as in Standard TCP [7]. In particular, to avoid congestion
collapse it is necessary to use a lower sending rate only
when there is a high loss rate.

Two key issues related to the TCP performance can be
identified under links subjected to errors: its inability to
separate the packet losses due to congestion from those
because of other problems; and its reliance on the timer to
recover from a failed retransmission cycle. One of the
effects of the issues cited above is spurious
retransmission timeouts, which reduce the performance of
TCP as they can start unnecessary retransmissions of
segments. These problems have been noted and addressed
by others:

1. Eifel Algorithm: In [3], Ludwig and Katz
proposed an algorithm, called Eifel, to deal with
spurious retransmission timeouts. They proposed
an alteration in TCP that uses either timestamps
sent in TCP segments or two of the reserved bits
in the TCP header to determine whether there was
any packet loss due to some error when an ACK
arrived in the sender.

2. Westwood TCP: In [4] and [5] Westwood TCP is
described. Instead of dropping the window size by
half of the value it was before a packet loss, it
proposed a linear decreasing of the congestion
window depending on the bandwidth measured on
each ACK arrival. This results in a performance of
up to four times that of the Standard TCP when
spurious errors occur.

3. F-RTO: The F-RTO algorithm is described in [6].
F-RTO only affects the TCP sender when there is
a retransmission timeout. Otherwise it behaves as
Standard TCP.

A TCP-friendly mechanism is described in [2] to
control unicast traffic using equation-based congestion
control. This mechanism avoids reducing the sending rate
to react to a single packet drop. Instead, the sender
adjusts its sending rate according to the measured rate of
loss events in a single round-trip time. The Family of
Binomial Congestion Control Algorithms [8] also looks
at the generalization of congestion control; the work in
[8] was the basis for the congestion control functions in
the present work.

III. SMOOTH CONGESTION CONTROL ALGORITHMS

The basic idea of the algorithms in previous work
[9,10,11] is to make changes in the congestion window as
small as possible. This is the basis for our smoothness
property [10], the main requirement for Smooth
Congestion Control Algorithms.

A. Smoothness

A congestion control mechanism will be said to have
smoothness characteristics if it has the following five
properties: a smooth curve; vertical smoothness;

horizontal smoothness; proactive smoothness; and
precision. These are defined as follows:

• Smooth Curve Property: An important
characteristic of TCP’s standard congestion
control algorithm is the action of halving its
congestion window in the face of a packet drop.
This sudden decrease marks a discontinuity point
on its evolution curve, and causes a fast and large
increase in the RTT. As a result, the first property
required for a smooth congestion control is that its
curve should have either no discontinuity points or
as few as possible. This requirement is called the
smooth curve property.

• Vertical Smooth Property: Formally, the
congestion control uses a function f(u) to translate
events u into window sizes. When f(u) is a
function of a variable where bursts with very large
amplitude can occur, like RTT, this cannot be
done linearly, since variations of RTT near 0 are
more important or significant than variations
among large values. For this reason, a hyperbolic
tangent function is proposed to introduce vertical
smoothness, making sure certain signals remain
within a specified range.

• Horizontal Smooth Property: Sometimes it is
important to know the frequency of an event (or
its rate) instead of its amplitude for congestion
control. Consequently in f(u), u should mean the
rate of those events. In our work u is taken to be
the smooth average rate as described in [12]1.

• Proactive Property: Suppose a packet is dropped
at a router because its queue is full. In order for
the sender to decrease its sending rate, the receiver
sends duplicate acknowledgment packets which
arrives approximately 1 RTT (more precisely, 1
RTT and 3 duplicate acknowledgment arrivals) in
the sender. This relatively long time, which we
refer to as a temporal gap, is one of the principal
reasons TCP reacts by halving the window [7].
 We can do better if other metrics are used to
signal congestion. Our work proposes the use of
the following metrics: RTT (details the relation
between the router queue size and RTT can be
found in [13]) and ICMP-Source Quench (ICMP-
SQ) Messages. Explicit Congestion Notification
(ECN) [14] can be used instead of ICMP-SQ, but
the latter has a smaller temporal gap since the
messages are to be sent directly to the sender (in
the opposite direction).

• Precision Property: Another problem is that a
packet drop is not always the best way to signal
congestion. A packet drop does not always mean
that the packet was discarded as a result of
congestion in a router queue. For example, a
packet could be dropped because of a CRC error.
For that reason, we say that there is a signal
uncertainty. Algorithms like Eifel [3] and F-RTO

1 The smooth average of n terms is:
 ⎯u(un)=(1-α)*⎯u(un-1)+α*un where α is 1/8 or ¼.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 49

© 2006 ACADEMY PUBLISHER

[6] eliminate some of the uncertainties, but not
completely. The possibility of using ICMP-SQ
messages or ECN in a proactive manner also
enhances the precision of the congestion signaling.
A router only sends them when the threshold of a
RED queue is reached. On the other hand, RTT
increases could be provoked by events other than
congestion, like a router table update. Therefore,
RTT would not be as precise as ICMP-SQ or ECN
messages.

B. SmoothTCP Algorithms

For our notion of smoothness, we would like to be able
to make infinitesimal adjustments dw to the current
congestion control window wt, that is, the new window
wt+dt after the infinitesimal time dt would be given by:

dw+w=w tdt+t (1)

For that, we think of the adjustment dw as being
defined as a function of some set of variables p1,..,pi,..,pn

describing the network state and congestion conditions.
Let us temporarily define dw = D. Furthermore, let us use
only w to denote wt since most of our functions do not use
time (t) as independent variable. Specifically, we are
interested in changes in w, that is an increment or
decrement to the existing window size depending on
changes in p1,..,pi,..,pn..where D is formulated as:

n
n

i
i

1
1

dp
p
w

+...+dp
p
w

+...+dp
p
w

=D (2)

As per our previous discussion of “smoothness”, we
assume that each partial derivative is of the form:

))M+p(Btanh(C+A=
p
w

iiii pippp
i

 (3)

Equation (2) defines a family of functions. When such
a family includes only smooth functions, we call it a
Family of Smooth Congestion Control Algorithms (or
briefly, Smooth Algorithms).

B. Fairness

In order to enforce SmoothTCP connections sharing
approximately the same bandwidth, the following idea,
inspired from Standard TCP, is also used to ensure
fairness. If D is the increment defined in (2), then the
final value dw added to w in (1) is redefined as follows:

w×D= dw 0 D
D/w= dw 0 > D

 (3)

Consequently, having n connections sharing different
window sizes, after some finite number of changes in
p1,..,pi,..,pn., the n connections should have approximately
the same window size. This is because the connections
having the largest windows receive the smallest window
increments. In contrast, the connections having the
smallest windows sizes suffer the smallest decrements.

IV. SMOOTHTCP

Basically, SmoothTCP is different from Standard TCP
in its slow-start and congestion-avoidance algorithms.
Indeed, it was designed to provide a smoother window
size variation than Standard TCP.

A. Congestion Avoidance

We can then introduce the form of the functions for the
partial derivatives that define the particular instance of
Smooth Algorithms called SmoothTCP:

dq
q
w

+de
e
w

+df
f
w

+dx
w

+dj
w

=D (4)

Where j is the variation in RTT, x is the variation in the
number of timeout retransmits, f is the variation in the
number of fast retransmits, e is the variation in the
number of ECN acknowledgments packets and q is the
variation in the number of ICMP-SQ messages. Then, the
individual partial derivatives are:

)M+q(Btanh(C+A=
q
w

)M+e(Btanh(C+A=
e
w

)M+f(Btanh(C+A=
f
w

)M+x(Btanh(C+A=
x
w

)M+j(Btanh(C+A=
j

w

qqqq

eeee

ffff

xxxx

jjjj

 (5)

Therefore, SmoothTCP is defined as a family of
functions where any instance can be a function of these
five metrics. When the corresponding partial derivative
for a certain metric in (4) or (5) is different from 0, that
metric is called a control metric.

A. The Stable State

When the network does not suffer any alteration of
state, such as the addition or deletion of TCP connections
or other types of flows, each SmoothTCP connection
converges to a particular window size. This happens
because all variables involved in (4) do not undergo any
changes, that is, dj=dx=df=de=dq=0. So the
corresponding window increment dw is zero, dw=0.

Even if all SmoothTCP connections reach the
convergence point, they can end up having different
window sizes. These values for the window sizes will
not be modified unless some event provokes changes in
the network bandwidth. Having different converged
window sizes results in different bandwidths for each
SmoothTCP connections.

B. Fairness Factor

A new mechanism should be provided allowing
SmoothTCP to get out of the stable state and continue its
search for a shared bandwidth which is approximately the
same for all SmoothTCP connections having the same

50 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

origin and destination. Adding a new increment κ to D
that is not dependent on any increment of the variables in
(4) does the trick:

κ+dq
q
w

+de
e
w

+df
f
w

+dx
w

+dj
w

=D (6)

κ is called fairness-factor. Its effect is to add small
increments to dw=D/w (see (3)) and thus to w in order to
increase the sending rate of the connection each time
there is a new acknowledgment packet. As the receiving
rate of the connection is kept constant, the queue of the
bottleneck router will start to retain some packets and
eventually become overloaded. As a result, congestion
signals would be sent and the sender would start to
decrease w by dw=D × w (see (3)). The constant κ can
be thought as a function of the number of
acknowledgment arrivals.

C. Slow-Start

The congestion avoidance of SmoothTCP starts after a
certain window size is reached. Therefore, SmoothTCP
needs to have a slow-start procedure like the one in TCP.
Furthermore, the slow-start procedure of SmoothTCP
needs to converge to a certain point in order for its
congestion avoidance to take control of the window size.
To do this, we also use a hyperbolic tangent (tanh) to
implement our new slow-start procedure. Using the
number of packet acknowledgments (a) arriving at the
sender as independent variable, and Aa = -Ca in (3)
becomes:

))M-a(Btanh(A-A=dw aaaa (7)

Considering the initial value for the number of packet
acknowledgments as 0 and the initial window size as 1
MSS, (7) can be transformed to:

()() 1+2T-T]+B.acoshln
B
A

-A.2[a=w a
a

a
a (8)

The function given by (8) converges to a fixed point
given by the limit:

1+T-T+)2ln(
B
A

2=wlim=w
a

a

a
c (9)

Consequently, the new slow-start algorithm can be
defined as:

The function newAck() waits for the arrival of a new
packet acknowledgment. When any acknowledgment
arrives, the algorithm continues to the next step. The
objective of the new slow-start algorithm is to match the
value of this limit to a stable window. Initially, let Wc be
the limit given by (9) for some initial Aa. Each of the
iterations tests a new function. That function has the same
coefficients Ba and Ma, but different coefficients Aa. In
each of the iterations (see Fig. 1), the window size is
continuously incremented by dw (see (7)). When any
congestion signal (packet drop) is detected, a new value
for Aa, A’

a, is calculated which starts a new iteration. If
the window size reaches Wc and no congestion signal is
detected, then the slow-start function has found the stable
window and the procedure terminates.

Figure 1. Slow-start evolution.

For computing the new value for A’
a for Aa in the slow-

start algorithm, we used the function:

ln(2)

2
dB

+T+)2ln(
B
A

2dB-)2ln(A

=A'

2
a

a

a
aa

a (10)

Where d is the difference between the current value for
wc and the current window w. Finally, for calculating the
new value for a corresponding to a given value w/2 for
the window w, the inverse function of w is used:

()

a

)2ln(T21Tw
2A
-B

B2

1eln

a

2

a

a

−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

=

+⎥
⎦

⎤
⎢
⎣

⎡ −−+

 (11)

Since it is out of the scope of this work, we are not
going into more details about the slow-start procedure.
However, the work in [10] contains more details about
the slow-start procedure, including some discussion about
its performance.

V. NORMAL RTT BEHAVIOR OF SMOOTHTCP

Using these equations and algorithms, we have
simulated, using Network Simulator (NS-2) [15] diverse
scenarios of the model of a network with a bottleneck
link as shown in Fig. 2. The simulation time used was
600s.

slow_start=true
WHILE slow_start AND newAck() DO
 IF(w<Ws) AND (no_congest_signal)THEN
 IF(congestion_signal)THEN
 d = wc – w
 wc = lim a→∞ (w) //(Eq.9)
 Aa= A’

a (d) //(Eq.10)
 w = w/2

a = W-1(w)
 ELSE
 w = w+Aa-Ca tanh(Ba(a+Ma))
 a = a+1
 ELSE
 slow_start = false
END WHILE

Wc

a' a

W’
c

W’’
c

a’’

(b)

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 51

© 2006 ACADEMY PUBLISHER

All these simulations have the sender transmitting
constant-size packets of 586 bytes and the SmoothTCP
coefficients used were Aa=40, Ba=0.003038, Aq=0.0,
Bq=0.5493, Cq=0.0625 and Mq=0.0. All SmoothTCP
connections have fairness-factor of κ=0.005. The link
between the router and the sender is 1 Mbps with latency
of 1ms and between the router and the receiver is
0.03125Mbps with latency of 8ms. Modified drop-tail
queues of 20-packet size were implemented in the router
in order to send ICMP-SQ messages when the queue size
reaches the threshold (τ) of 7 packets. That means that,
when the size of the queue is below τ, no ICMP-SQ
messages are sent. However, an ICMP-SQ message is
sent for each packet arriving in the router queue if the
size is equal or above.

On the graphics showing the simulations result
presented next, we have the following legend:

• Congestion window: “cwnd” is used to note the
congestion window for Standard TCP and
SmoothTCP. Additionally, the number of the
connection (1 or 2) is concatenated to both
strings. Both values are given in packets.

• RTT: RTT values are given in seconds and noted
as RTT in the graphics for both Standard and
SmoothTCP.

• Current queue size: The queue size in the
router is given in packets and the string “size1” is
used to note it in the graphics.

• Number of ICMP-SQ messages: The string
“nicmpsq”is used to note the number of ICMP-
SQ messages that arrives in both senders
(Standard TCP or SmoothTCP). Additionally, the
number of the connection (1 or 2) is concatenated
to the strings.

• Packet Drops: The number of packets dropped
in the router is noted by “pdrops1” independently
on the type of the connection (Standard TCP or
SmoothTCP).

• Packet Arrival Rate: The number of packets
arriving in the router per second, it is noted by
the string “parvlr1”.

Figure 2. Bottleneck link model.

 A. Standard TCP

Fig. 3, Fig. 4 and Fig. 5 illustrate the behavior of
Standard TCP. The main results can be enumerated as
follows:
1. Congestion window and RTT: In these

experiments, the window size of Standard TCP and
RTT varies a lot. Fig. 3 shows that the window size
is periodically decreased (mostly halved) in both
connections, indicating that the sender has detected a

packet drop. Because of this behavior, the RTT also
has huge variations, most of the time between 1.4 s
and 3 s.

2. Router queue size and the number of ICMP-SQ
messages: The router queue size also follows the
behavior of the window size (see Fig. 4).
Periodically, the queue is filled up and packets are
dropped, after the queue size reaches a minimum.
Both points happened after the window size in the
sender reaches the maximum and the minimum.
Regarding the number of ICMP-SQ messages sent
by the router to the senders, the two curves are
almost linear. That means the average of the queue
size was above of the queue threshold.

3. Packet drops and arrival rate of packets in the
router queue: The number of packets dropped by
the router also follows an almost linear growth (See
Fig. 5). For the arrival rate of packets, the spaces can
be seen where no packets arrive since the sender is
waiting for the packet dropped being confirmed.

Figure 3 . RTT and congestion window in Standard TCP.

Figure 4. Router queue size and number of ICMP-SQ messages in
Standard TCP.

52 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

Figure 5. Packet drops and arrival rate in Standard TCP.

B. SmoothTCP

Fig. 6, Fig. 7 and Fig. 8 illustrate the behavior of
SmoothTCP. Briefly, we have:
1. Congestion window and RTT: The window size of

SmoothTCP and its RTT is smaller and has less
frequent variations that Standard TCP (see Fig. 7).
This characteristic of SmoothTCP is controlled by
the fairness-factor (κ). Increasing the fairness factor
also increases the variations in RTT.

2. Router queue size and the number of ICMP-SQ
messages: SmoothTCP generally results in a smaller
queue size than Standard TCP and the number of
ICMP-SQ messages is almost the same as in
Standard TCP (see Fig. 7). Because of the value of
the queue threshold (τ), a large number of ICMP-SQ
messages is sent by the router when the queue
occupancy is above τ. If τ was chosen larger, a
smaller number of ICMP-SQ messages would be
sent, but the slow-start procedure would take more
time to converge.

3. Packet drops and arrival rate of packets in the
router queue: The number of packets dropped by
the router when SmoothTCP is used is only large
during the slow-start phase (see Fig. 8). No packets
are dropped in the congestion avoidance phase.
Having no packet drops in the congestion phase also
contributes to ensuring small variations in RTT. In
particular, there is a notable difference between the
behavior of the packet arrival rates of SmoothTCP
and Standard TCP. While in Standard TCP, large
bursts of packet arrivals happen periodically, in
SmoothTCP they are smaller and less frequent.
Regardless, they have almost the same throughput.
For Standard TCP, the first connection transferred
988,384 bytes and the second 1,192,600 bytes. For
SmoothTCP, the first connection transferred
1,046,272 bytes and the second 1,230,656 bytes.

Figure 6. RTT and congestion window in SmoothTCP.

Figure 7. Router queue size and number of ICMP-SQ messages in
SmoothTCP.

Figure 8. Packet drops and arrival rate in SmoothTCP.

VI. RTT BEHAVIOR OF SMOOTHTCP IN CONNECTIONS
SUBJECT TO SPURIOUS ERRORS

The same bottleneck link shown in Figure 2 was
simulated as having 3 spurious errors occurring on each
connection during the 600s of the simulation. The time

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 53

© 2006 ACADEMY PUBLISHER

where those errors happened was chosen randomly,
although we enforced a large interval between them to
isolate any effect that one can have in another. For these
simulations, they happened at 81.13s, 254.14s and
427.19s.

A. Standard TCP

Fig. 9 and Fig. 10 illustrate the behavior of Standard
TCP. The main results can be enumerated as:
1. Congestion window and RTT: For these

experiments, the window size of Standard TCP and
the RTT varies significantly. Fig. 9 shows points
where the window size is halved in both connections,
indicating that the sender has detected a packet drop.
Because of this behavior, we cannot clearly identify
where the spurious errors happen or verify their
effects. That means that Standard TCP masks the
effects of packet drops and the spurious errors.

2. Router queue size and the number of ICMP-SQ
messages: In these experiments, the router queue
size also follows the behavior of the window size as
shown by Fig. 10. The number of ICMP-SQ
messages sent by the router to the senders are nearly
linear over the time of the simulation, i.e., the two
curves in Fig. 10 are almost linear. Likewise, it is not
clear where are the effects of spurious errors on the
queue size and the number of ICMP-SQ messages.

B. SmoothTCP

Fig. 11 and Fig. 12 illustrate the behavior of
SmoothTCP. Briefly, we have:
1. Congestion window and RTT: For these

experiments, the window size and RTT of
SmoothTCP are smaller and have less frequent
variations than Standard TCP. Fig. 11 shows three
points where there are large decrements in RTT.
Immediately before each of those points, there is a
spurious packet error and one packet is lost. When
the lost packet is retransmitted, all the
acknowledgments, for packets sent after it, are
confirmed at once. It causes the RTT decrement. In
the Appendix A there are more results showing the
effect in RTT variation for other values of κ.

2. Router queue size and the number of ICMP-SQ
messages: When a spurious error occurs, the router
queue size suffers a large decay in its queue size.
This is because the sender does not send any further
packet once the number of them sent, and not
confirmed, has reached the window size. Therefore,
the sender keeps waiting for the acknowledgment of
the retransmitted packet what makes the occupancy
of router queue be reduced.

Figure 9. RTT and congestion window in Standard TCP.

Figure 10. Router queue size and number of ICMP-SQ messages in
Standard TCP.

Figure 11. RTT and congestion window in SmoothTCP.

54 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

Figure 12. Router queue size and number of ICMP-SQ messages in
SmoothTCP.

VI. FINAL CONSIDERATIONS AND CONCLUSION

Showing what specifically happens when the
parameters of SmoothTCP are changed is beyond the
scope of this paper, but it can be seen in [9,10,11].
However, we can briefly summarize those effects as:

• Fairness-factor (κκκκ): This parameter together with
coefficient Cq is responsible for the adjustment of
the fairness characteristic of SmoothTCP.
Although other parameters have some effect on
RTT variation, κ seems to have the greatest
influence. By increasing κ, we also increase the
RTT variation. In our simulations, we concluded
that SmoothTCP connections with κ values from
0.001 until 0.005 result in RTT variation much
smaller than TCP.

• Ba: This parameter controls the convergence time
of the slow-start procedure, that is, the duration of
the slow-start. As the region of the congestion
window curve in which the slow-start procedure
acts is very unstable in terms of RTT variation, we
might wish to have a short time for the slow-start.

• Queue Threshold (ττττ) and Queue Size (Sdrop) :
The difference (Sdrop-τ) should be enough to
accommodate the burst of packets following a
retransmitted packet. If it is too small and packets
are dropped as a consequence, RTT is also
increased.

Therefore, in a network subjected to spurious errors we
can adjust the RTT variation by basically adjusting κ.
However, too small values of κ can lead to unfair
bandwidth sharing by the SmoothTCP connections [10].
In our experiments, we have used values of κ between
0.001 and 0.005 with fairness comparable to Standard
TCP and RTT variation as those illustrated in this paper.

APPENDIX A FAIRNESS-FACTOR EFFECT

The following figures show additional results of
simulations performed in the environment shown by Fig.
2. Fig. 13 and Fig. 14 show the behavior of SmoothTCP
when κ=0.005. Fig. 15 and Fig. 16 show the behavior

when κ=0.010. In both set of simulations 3 spurious
errors are inserted randomly. For this set of simulations,
they happened at 81.13s, 254.14s and 427.19s, the same
periods of time in the simulations presented before. All
other configuration parameters are kept the same used in
the previous simulations.

Figure 13. RTT Variation and congestion window of SmoothTCP when
κ=0.005.

Figure 14. Router queue size and number of ICMP-SQ messages in
SmoothTCP when κ=0.005.

Figure 15. RTT Variation and congestion window of SmoothTCP when
κ=0.010.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 55

© 2006 ACADEMY PUBLISHER

Figure 16. Router queue size and number of ICMP-SQ messages in
SmoothTCP when κ=0.010.

REFERENCES

[1] J. Nagle. RFC0896: “Congestion Control in IP/TCP
Internetworks”, Network Working Group, IETF, Jan.,
1984.

[2] S. Floyd, M. Handley, J. Padhye and J. Widmer.
“Equation-Based Congestion Control for Unicast
Applications: the Extended Version”, Technical Report,
TR-00-003, ICSI, Berkeley, CA, Mar., 2000.

[3] R. Ludwig and R. Katz. “The Eifel Algorithm: Making
TCP Robust Against Spurious Retransmissions”, ACM
SIGCOMM 00 Computer Communication Review, Vol 30-
1, Jan., 2000, pp. 30-36.

[4] M. Gerla, M. Sanadidi, R. Wang, A. Zanella, C. Casetti
and S. Mascolo. “TCP Westwood: Congestion Window
Control Using Bandwidth Estimation”, Proceedings of
IEEE Globecom 2001, Vol 3, San Antonio, Texas, Nov.,
2001, pp. 1698-1702.

[5] Zanella, G. Procissi, M. Gerla, and M. Y. Sanadidi. “TCP
Westwood: Analytic Model and Performance Evaluation”,
Proceedings of IEEE Globecom 2001, San Antonio, Texas,
Nov, 2001, pp. 1703-1707.

[6] P. Sarolahti, M. Kojo and K. Raatikainen. “F-RTO: an
enhanced recovery algorithm for TCP retransmission
timeouts”, ACM SIGCOMM 03 Computer Communication
Review, Vol 33-2, ACM Press, 2003, pp. 51–63.

[7] V. Jacobson. “Congestion Avoidance and Control”, ACM
SIGCOMM 88 Computer Communication Review, ACM
Press, 1988, pp. 314-328.

[8] D. Bansal and H. Balakrishnam. “TCP-Friendly
Congestion Control for Real-time Streaming
Applications”, Technical Report, MIT-LCS-TR-806, M.I.T
Laboratory for Computer Science, Cambridge, MA, May,
2000.

[9] E. Vieira and M. Bauer. “Smoothness Properties in
Congestion Control for TCP”, 3rd International Conference
on Computing Communications and Control Technologies,
Austin, USA, Jul, 2005.

[10] E. Vieira and M. Bauer. “Smooth TCP”, Proceedings of
the IV Latin American Network Operations and

Management Symposium (LANOMS 2005), Porto Alegre,
Brazil, Aug, 2005.

[11] E. Vieira and M. Bauer. “Smooth TCP”, Proceedings of
the IEEE Consumer Communications and Networking
Conference (CCNC 2005), Las Vegas, USA, Jan, 2006.

[12] V. Paxson and M. Allman. RFC2988: “Computing TCP's
Retransmission Timer”, Network Working Group, IETF,
Nov., 2000.

[13] G. Appenzeller, I. Keslassy and N. McKeown. “Sizing
Router Buffers”, ACM SIGCOMM 04 Computer
Communication Review, 2004, pp. 281-291.

[14] K. Ramakrishnan, S. Floyd and D. Black. RFC3168: “The
Addition of Explicit Congestion Notification (ECN) to IP”,
Network Working Group, IETF, Sep., 2001.

[15] K. Fall and K. Varadhan. ”The ns Manual”,
http://www.isi.edu/nsnam.

ACKNOWLEDGMENT

This work was supported in part by a PhD scholarship
from CNPQ, Brazil.

Elvis M. Vieira received the B.S degree in computer science
from Federal University of Santa Catarina, Brazil, in 1989. He
also received the M.S. degree in computer science computer
from Federal University of Santa Catarina, Brazil, in 1996.
Currently, he is a PhD candidate in computer science at The
University of Western Ontario, Canada.

After his graduation, he has been working in the IT
Department of Federal University of Santa Catarina, Brazil, as
System Administrator. He also authored and co-authored
several papers in application network management and, lately,
in congestion control of TCP. His research interests cover the
performance evolution, design and control of distributed
computer communication systems, wireless and scheduling
algorithms.

Michael Bauer received his PhD from University of
Toronto, Canada.

He is a Professor of and Chair of the Department of
Computer Science at the University of Western Ontario. He
was also Chair of the Department from 1991-1996. From 1996-
2001 he was the Associate Vice-President Information
Technology at the University of Western Ontario. He has
published over 100 papers on various topics in the computing
field and has collaborated with a number of companies on joint
research projects. His research interests include distributed
computing, particularly the management of distributed
applications and systems, network management, software
engineering, and high performance computer networks.

Dr. Bauer is a member of the IEEE and the Association for
Computing Machinery (ACM) and has served on various
committees of both organizations. He has also served on the
organizing and program committee of numerous conferences
and has refereed for a variety of international journals.

56 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

	jcm01022229.pdf
	jcm01022229.pdf
	I. Introduction
	II. RELATED WORK
	III. The T-ANT Protocol
	A. The Clustering Algorithm
	B. The Variance Estimation Algorithm
	IV. Simulation Framework
	V. Results and Discussions
	VI. Conclusions
	Acknowledgment
	References

	jcm01023037.pdf
	Introduction
	IEEE 802.16
	Related Work
	Call Admission Control
	A. Naïve Estimation of Bandwidth
	B. An Example
	C. Our Bandwidth Estimation
	D. Call Admission Control
	Uplink Packet Scheduling
	Token Rate Estimation Model

	A. Infinite Queue
	B. Finite Queue
	C. A Simple Search Algorithm
	Simulation Results

	A. CAC and Uplink Packet Scheduling
	B. Delay and Loss Estimation
	C.Multiplexing
	Conclusion
	References

