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Abstract— The IEEE 802.16 standard was designed for 
Wireless Metropolitan Area Network (WMAN). The 
coverage of this new technology is expanded up to 50 km.  
IEEE 802.16 also has inherent  QoS mechanism while the 
transmission rate can be up to 70Mbps. However, the main 
part of 802.16 – packet scheduling, was not defined and left 
as an open issue. In this paper, we present an uplink packet 
scheduling with call admission control (CAC) mechanism 
that is token bucket based. Also, a mathematical model of 
characterizing traffic flows is proposed. Simulations are 
carried out to validate our CAC algorithms and models. 
These results show that the delay requirements of rtPS flows 
are promised and the delay and loss can be predicted 
p r e c i s e l y  b y  u s i n g  o u r  m a t h e m a t i c a l  m o d e l s . 
 
Index Terms—IEEE 802.16, WiMAX, Token Bucket, 
Markov chain. 
 

I. INTRODUCTION 

Token bucket is a mechanism for controlling network 
traffic rate that injected to network. It works well for the 
“bursty” traffic. Two parameters are necessary in the 
token bucket mechanism: bucket size B and token rate r. 
Fig. 1 shows how it works. Each token represents a unit 
of bytes or a packet data unit. A packet is not allowed to 
be transmitted until it possesses a token. Therefore, over a 
period of time t, the maximum data volume to be sent 
will be  

 .  btr +*

We adopt the token bucket mechanism to schedule the 
packets in 802.16 network environments. 

802.16 is a new standard that aims at WMAN. The 
members of IEEE 802.16 had finished the original 802.16 
standard in 2001[1], and 802.16a, 802.16c in 2002, 2003, 
respectively. In 2004, a new IEEE 802.16[2] standard 
known as 802.16 REVd was published, which is a 
revision of original 802.16, 802.16a, and 802.16c. In the 
original IEEE 802.16, transmission is restricted to Line-
Of-Sight (LOS) but in the following standards, such as 
802.16a and 802.16c, it can be Non-Line-Of-Sight 
(NLOS)[3]. The bit rate of 802.16 is 32-134 Mbps at 
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Figure 1. Token bucket mechanism. 
channelization. The transmission range of 802.16 
lly 4-6 miles. 
AC part of 802.16 standard is not running under 
ense Multiple Access with Collision Avoidance 

CA) that was adopted by 802.11 standard.  
ses Time Division Duplex (TDD) or Frequency 
 Duplex (FDD) to access the medium resource. 
02.11, the first 802.16 standard has it inherent 
port, it divides all traffic flows into four classes 
g to their application type and each class has 
 priority. 
6 uses packet scheduling to achieve QoS support. 
r, there is no clear definition or implementation 
bout the algorithm. The 802.16 standard only 
the QoS parameters and some simple principles. 
r parts are open issues left to vendors. 

emainder of this paper is organized as follows. In 
II, we make a description about the IEEE 802.16 
 in detail. Section III includes some related work. 
 admission control and uplink packet scheduling 
are proposed and explained in Section IV and 
V. In Section VI, we present the token rate 
n model. Simulation results are shown in 

VII. We conclude this paper in Section VIII. 

II. IEEE 802.16 

2.16, the client-side node is called Subscriber 
(SS), and the server-side node is called Base 
BS). And, there are four QoS classes defined in 
Unsolicited Grant Service (UGS), real-time 
Service (rtPS), non-real-time Polling Service 
and Best Effort (BE). Table 1 shows these four 



 

QoS classes, where the upper class has higher priority 
than the lower ones. UGS packets are sent at a regular 
rate without the grant of each packet, so its delay 
requirement can be easily met. The nrtPS and BE traffic 
are non-real-time traffics, neither of them has delay 
requirements. Only rtPS flows, which is polled by BS in 
each frame, has the delay requirement.  

Traffic flows in 802.16 are treated as connections. A 
traffic flow must establish connection with its BS before 
transmitting. The operation process of 802.16 is shown in 
Fig. 2[4][5]. The blocks drawn with dotted line in Fig. 2 
are the parts undefined in 802.16. The traffic policing 
model can be simply achieved by applying token bucket 
mechanism[4]. 

The 802.16 standard divides transmission time into 
super frames and each super frame is divided into a 
downlink sub-frame and an uplink sub-frame. Downlink 
means the direction of transmission is from BS to SS, and 
the uplink means the direction is reversed. The downlink 
scheduling is considered simple because there is only one 
sender, BS. Hence we focus on the uplink scheduling. 

After a BS accepts a new connection, BS will poll this 
new connection and give the SS the opportunities of 
sending its BW requests. This connection should send its 
bandwidth request (BW request) to the BS and wait for 
receiving BW grants (i.e. time slots for transmitting data) 
from BS. In this paper, we use the architecture in [4]: a 
connection sends its queue length as a BW request. The 
grants are the result of the uplink packet scheduling at BS 
and will be included in uplink MAP (UL-MAP) field in 
the downlink sub-frame. The 802.16 frame structure is 
depicted in Fig. 3. 

The BW request contention period is designed for the 
lower priority classes, such as nrtPS and BE. The period 
lets these classes content for the opportunities of sending 
BW requests when system is too busy to poll all flows. 

TABLE I.   
802.16 QOS CLASSE

Class Name Traffic Type 

UGS Real-time CBR 

rtPS Real-time VBR 

nrtPS Non-real-time traffic 

Best Effort Non-real-time traffic 

III. RELATED WORK 
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Figure 3. 802.16 frame structure. 
i Wongthavarawat, and Aura Ganz [4] proposed an 
packet scheduling mechanism with CAC. The 

 bandwidth is allocated according to strict priority.  
GS class has the highest priority, and the BE class 
 lowest priority.  The class of higher priority will 
ed earlier than the lower one.  The scheduling of 
lass is defined by the 802.16 standard.  They 
 earliest deadline first (EDF) service discipline to 
lass. Packets with earliest deadline will be 
led first. They applied weight fair queue (WFQ) 
 discipline to this service flow.  They schedule 
packets based on the weight of the connection 
etween the connection’s nrtPS average data rate 
tal nrtPS average data rates).  The remaining 
idth is equally allocated to each BE connection. 
l-service curve mechanism was adopted in this 
 They make use of it to predict the deadline of rtPS 
s.  They also proposed a CAC model. This paper is 
h contribution and serves as our primary reference. 
ral researches have proposed similar packet 
ling methods. Xiaojun Xiao, Winston K.G. Seah, 
hung Ko, and Yong Huat Chew [6] proposes a 
ling with hybrid and hierarchical architecture. 
olution designed a primary scheduler in BS and a 
ary scheduler in SS. The authors analyze the 
 of token rate and bucket size of a given traffic 
.  They presented some algorithms that are 
ions of measurement-based traffic specification 
).  Our method is different from theirs.  We find 

riate token rate by analyzing Markov Chain state 
cording to delay requirements of connections. 
ammed Hawa, and David W. Petr [7] proposes a 

 mechanism of weighted fair queue (WFQ) and 
 queue. Allocating the BW-request contention size 

nk sub-frame is also discussed in this paper. The 
f BW-request contention period was determined 
ing to the amount of transmitting data. 
nnel condition and some other factors were 
ered in [8].  In this paper, Reuven Cohen and Liran 
proposed a policy-based scheduling to maximize 
dwidth utilization.  According to different load of 

onous, channel condition, and tolerated jitter, they 
ed some different scenarios.  Each scenario has its 
ler tasks.  
e research about characterizing a traffic flow by 
ucket had been done such as [9]. Puqi Perry Tang 

ung-Yuan Charles Tai use the measurement-based 
ches to find appropriate token rate and bucket size. 
], Tarkan Taralp, Michael Devetsikiotis, and 
SS BS
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Figure 4. A transmission of an rtPS connection that lasts for 6 
frames. 
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Figure 5. Sharing bi packets in two frames. 

Ioannis Lambadaris analyzed traffic flows with different 
types of arrival and infinite queue 

IV. CALL ADMISSION CONTROL 

Our CAC is based on the estimation of bandwidth 
usage of each traffic class, while the delay requirement of 
rtPS flows shall be met.  

A.  Naïve Estimation of Bandwidth 
Assume that each connection is controlled by two 

token bucket parameters: token rate ri (bps) and bucket 
size bi (bits). And let f be the frame length, n be the 
session length of this connection. According to token 
bucket mechanism, the maximum data of this rtPS 
connection will be:  

 . (1) ii bfnr +**

The bandwidth used at any frame can be estimated by 
dividing n*f in (1) as:  

 
fn

br i
i *
+ . (2) 

Using (2) as a metric of CAC, bandwidth will be 
enough for a connection at all time. However, for rtPS 
flows, delay requirement is not considered here. 
Therefore, a new parameter di as delay requirement of an 
rtPS flow is required. Using ri, bi and di, we shall develop 
a better estimation of bandwidth for a rtPS connection. 

B.  An Example 
If an rtPS connection has a session from time t to t+6f, 

(which means n=6), the maximum size should be sent 
during each frame is shown in Fig. 4. The gray blocks 
represent the maximum size to be sent during that frame. 
And let delay requirement of this connection di=3*f. 

Therefore, data arrived during frame [t, t+f] must be 
sent out during frame [t+2f, t+3f] at latest. We know that 
during a frame f, this connection will send data of rif+bi 
bits at most. If data generating rate is bigger than ri, bi is 
consuming. In the extreme case this connection may run 
out of bi at a certain frame. Assume that bi is totally 
consumed during frame [t+2f, t+3f], as Fig. 4, this 
situation makes the maximum size should be sent out 
during frame[t+4f, t+5f] to be rif+bi bits. In Fig. 4, the bi 
comes from the frame [t+2f, t+3f]. So only the frame 
[t+3f, t+4f] can share the bi bits of the frame [t+4f, t+5f]. 
Fig. 5 shows the result. 

Hence, we estimate the data volume to be transmitted 
within a time frame as: 

 
2

* i
i

bfr + .  

Therefore, the bandwidth used within a time frame can 
be estimated as:  

 
f

br i
i *2
+ .  

C.  Our Bandwidth Estimation 
Let n and f still be the session duration and frame 

length respectively. When a traffic flow wants to 
establish a connection with BS, it sends parameters ri, 
and bi to the BS and waits for the responses from BS. An 
extra parameter, delay requirement di, will be sent by 
rtPS flows.  

In order to meet delay requirement of rtPS packets, 
packets generated at time t must start to send after mi-1 
frames after t, where  

 ⎥
⎦

⎥
⎢
⎣

⎢
=

f
dm i

i .  

If data rate is bigger than token rate, tokens in token 
bucket will be consumed. These bi bits can be shared by 
mi-1 frames before deadline. 

Therefore, our estimation of the data volume in a time 
frame is:  

 
1−

+
i

i
i m

dfr .  

And, the bandwidth of the flow is estimated as:  

 
fm

dr
i

i
i *)1( −
+ . (3) 

D. Call Admission Control  
Let NrtPS be the number of rtPS connections, Bdemand be 

the bandwidth required by all rtPS connections, we can 
know that Bdemand can be calculated as: 

 ∑ −
+=

rtPSN

i i

i
idemand fm

drB )
*)1(

( .    (4) 
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In order to avoid starvation of some traffic classes, we 
set a threshold of bandwidth used for each class. They are: 
TUGS, TrtPS, TnrtPS and TBE, TUGS+TrtPS+TnrtPS+TBE≦Buplink, 
where Buplink is the total bandwidth of uplink. When the 
bandwidth occupied by a class is over its threshold, this 
class will have lower priority to the bandwidth resource.  

The principle of our CAC algorithm is: First, system 
calculates the current available bandwidth. Second, for 
new incoming flows, system estimates the bandwidth it 
will take and the system will decide to grant this new 
flow or not. For rtPS flow, (3) is used to estimate its  
bandwidth; for the other three flows, ri , the token rate, 
will be used to estimate bandwidth. Our CAC algorithm 
is as follows: 

 
Step 1. Calculate the remaining uplink bandwidth 

Bremain: Bremain=Buplink-BUGS-BrtPS-BnrtPS-BBE . 
Step 2. Compare Bremain to the bandwidth requirement 

of the new connection. If there is enough capacity, the 
system accepts the incoming flow. If not, go to Step 3. 

Step 3. Check if the lower-class flows has taken more 
bandwidth than its threshold (TrtPS, TnrtPS ,or TBE). If not, 
go to Step 4. If there is, the system will allocate the less 
time slots for these lower-class flows, then go to step 2. 

Step 4. Check if higher-class flows has has taken more 
bandwidth than its threshold (TrtPS, TnrtPS ,or TBE). If not, 
go to Step 5. If there is, the system will choose some 
higher-class flows to degrade their ri. That is, “stealing” 
bandwidth from the upper-class flows. 

Step 5. The system denies the incoming flow. 
 
Stealing bandwidth from upper class may be an issue. 

Stealing bandwidth from BE and nrtPS flows is relatively 
simple. We can easily decrease the bandwidth used by 
them because of they are not real-time flows. To steal 
bandwidth from the other two real-time classes, we will 
choose some connections of these two classes and 
degrade their ri, e.g. make ri to be c․ri, where 0＜c＜1. 

V. UPLINK PACKET SCHEDULING 

In our uplink packet scheduling algorithm, We adopt 
Earliest Deadline First (EDF) mechanism proposed in [4]. 
There is a database that records the number of packets 
that need to be sent during each frame of every rtPS 
connection. Our uplink packet scheduling algorithm is 
described below. 
 

Step 1. Apply the arrival-service curve and database 
mentioned in section III and [4] to the arriving packets 
during last frame of each rtPS connection.  Calculate the 
deadlines of these packets by applying (3) and record 
them in the database. 

Step 2. Grant all the UGS connections. 
Step 3. Grant all the rtPS connections according to the 

rtPS database. Due to possible degradation of ri, we 
should restrict the maximum grant size of a connection to 
(4). 

Step 4. Assume that the total bandwidth requirements 
of nrtPS connections and BE connections are RnrtPS and 
RBE.  We allocate Min(RnrtPS, TnrtPS) bandwidth to nrtPS 

connections first. Then allocate Min(RBE, TBE) bandwidth 
to BE flows. The TnrtPS and TBE are threshold parameters 
mentioned in the last section. 

Step 5. If there is remaining bandwidth, we check if 
RnrtPS＞TnrtPS.  If it is, nrtPS connections shall be granted 
with Min(remaining bandwidth, RnrtPS-TnrtPS) bandwidth. 
Also, If there is remainder bandwidth, we look if RBE＞

TBE. If it is, we grant Min(remainder bandwidth, RBE-BBE) 
to BE flows. 

Step 6. If there is remaining bandwidth and there are 
some non-real-time connections that need BW-request 
contention opportunities, we allocate the remainder 
bandwidth to nrtPS and BE connections in order for BW-
request contention periods. 

VI. TOKEN RATE ESTIMATION MODEL 

We have presented our CAC and uplink packet 
scheduling model in previous sections.  Each connection 
in our scenario is controlled by token rate ri and bucket 
size, bi.  The CAC and uplink packet scheduling are also 
based on the token bucket mechanism. However, not 
every traffic flow has a token rate parameter and bucket 
size parameter originally. In this section, we proposed a 
mathematical model to estimate the appropriate token rate 
of a traffic flow based on the queuing delay and loss rate 
requirements. We assume that the arrival of the traffic 
flow is Poisson.  The cases of infinite queue and finite 
queue are analyzed.  Both cases are single server and 
single queue ,because each traffic flow has its individual 
token rate and bucket size. 

First, we show how to calculate the queuing delay 
when the queue size is infinite, when the token rate and 
bucket size are given. Second, we show how to calculate 
the queuing delay and loss rate when the queue size is 
finite, given the token rate and bucket size.  At last, we 
show a simple search algorithm for finding the adaptive 
token rate of a traffic flow, given the queuing delay 
requirement, and the loss rate requirement.  

A. Infinite Queue 
Assume that there is a traffic flow with Poisson arrival, 

where λi is the mean arrival rate. ri and bi represents the 
token rate and bucket size of this traffic flow. 

Markov Chain is adopted to analyze the problem.  We 
use discrete time Markov Chain. Each Markov Chain 
state is defined as State(t, p) where t represents the 
number of tokens stocked in the bucket and p represents 
the number of packets that stay in the queue. The time 
interval between two Markov Chain states is 1/ ri, that is, 
the time of generating a token. Hence we can find the 
probability P of n packets that arrive during the time 
interval 1/ri is: 

 
!

)(
n
enP

n αα −⋅
= , where 

i

i

r
λα =  .  

Because the time interval of our Markov Chain model 
is 1/ ri, there is at least one token generated when packets 
arrival. We take the State(bi, 0) as the beginning state of 
our Markov Chain.  The transitions of State(bi, 0) are 
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shown in Fig. 6. The transitions of other states are all the 
similar. They are shown in Fig. 7. We take State(t, 0) as 
an example, which is a brief view of general case. 

Assume state(t, p) is denoted by π(bi-t+p) and let 

  .  ∑
∞

=

=
2

)(
i

iPM

We can list balance equations as follows.  

 )1()0()0( ππ ⋅=⋅ PM  . (5) 

And for n≧1, we have:  

 
( )

∑
−

=

⋅++−+⋅

=+⋅
1

0
)0()1()1()(

)0()(
n

k
PnknPk

MPn

ππ

π
 . (6) 

Assume the Z-transform of Poisson and [π(0), π(1), 
π(2)…] is Gp(z) and Gπ(z). Then apply Z-transform to (6) 
and simplify it. And then using (5), we can get  

 
)(

)1()0()0()(
zGz
zPzG

P−
−⋅⋅

=
π

π  . (7) 

And, we know:  

  . (8) 1)(lim
1

=
→

zG
z π

Use (7) and (8), we find that:  

 α
λπ −⋅

−
=

er
r

i

ii)0(  , where 
i

i

r
λα = . (9) 

To find [π(0), π(1), π(2)…], we should make use of (5) 
to find π(1) first. After we know π(0) and π(1), we can 
utilize (6), π(0) and π(1)  to find π(2). Continue this 
process we can find any π(n). The average queuing delay 
davg can be expressed as  

 
M/D/1/

avg

dbucket) in the token no P(see
0bucket) in the token P(seed

⋅
+⋅= . (10) 

where dM/D/1 is the mean delay of a M/D/1 queue and 

its value[8] is 

 
)(2

2

iii

ii

rr
r

λ
λ
−
−  , given ri＞λi. (11) 

And,  

 . (12) 
∑
=

=
1-b

0k

i

(k)-1

bucket) in the token no P(see

π

Substitute dM/D/1 and P(see no token in the bucket) in 
(10) for (11) and (12) we can calculate the average delay 
of this flow if we give the parameters ri and bi

B. Finite Queue 
Now we consider the case of finite queue with queue 

size q. This traffic flow has an extra parameter lq, which 
means its loss rate requirement. We still use Markov 
Chain to solve this case, but the number of states become 
limited, e.g. [π(0), π(1), …, π(bi+q-1)]. The transitions of 
states are the same as previous case except the last one. 
The transitions of the last state, State(0, q-1), are shown 
in Fig. 8 

The balance equations are listed below.  

 ( ) )0()1()1()0(1)0( PPP ⋅=−−⋅ ππ  . (13) 

For  bi+q-2≧n≧1,  

 
( )

( )∑
−

=

⋅++−+⋅

=−⋅
1

0
)0()1()1()(

)1(1)(
n

k
PnknPk

Pn

ππ

π
 . (14) 

There is no clear mathematic solution for the equations 
above found by us, so a recursion method was introduced. 
We can find all π(n) very fast by means of computer. The 
average queuing delay can be expressed as 

 

i

qb

k kbMaxj
i

avg

r

NqbkjMinjPk

d

i

i

∑ ∑
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=

∞
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⎝
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,where N=0.5 if j=0; N=0, otherwise. The average loss 
rate can be expressed as 
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Figure 6. The transitions of State(bi, 0). 

After we solve [π(0), π(1), …, π(bi+q-1)], we can 
estimate the average queuing delay and average loss rate 
by equations above. Given a reasonable bi to the traffic 
flow, we can use a simple search algorithm to find 
appropriate ri according to its dq and lq. We can put this 

Figure 7. The transitions of other Markov Chain states. 
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model in the SS. When a new traffic flow comes, SS can 
use this model so as to find appropriate ri, then the BS 
can schedule according this ri.
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Figure 8. Avg. delay vs. number of rtPS calls. 

C. A Simple Search Algorithm 
Assume  that  a Poisson arrival traffic flow with three 

parameters: mean arrival rate, λ i, queuing delay 
requirement, dreq, and loss rate requirement, lreq. If we 
give it a reasonable value of bucket size, bi, we can find 
the appropriate token rate, ri, for it by applying a simple 
search algorithm.  

In the algorithm a factor a is can be assigned a value 
between 0 and 1 by the network operator. The factor a  
represents the degree of finding the appropriate token rate. 
The small a makes better result than large one but longer 
time for finding than larger a.  In other words, the smaller 
the a, the closer to optimal value of token rate can be 
found. The algorithm works as follows:   

 
Step 1. Set a reasonable initial value to ri.  Check if the 

dreq and lreq are satisfied by applying (15) and (16).  If 
satisfied, go to Step 2.  Else go to Step 3. 

Step 2. Set ri‧(1-a) to ri,new.  Check if the dreq and lreq 
are satisfied by applying (15) and (16).  If satisfied, set 
ri,new to ri and repeat this step. Else we take ri as the 
answer. 

Step 3. Set ri‧(1+a) to ri,new.  Check if the dreq and lreq 
are satisfied by applying (15) and (16).  If not satisfied, 
set ri,new to ri and repeat this step. Else we take ri as the 
answer. 

VII. SIMULATION RESULTS 

We show the simulation results in this section. We 
validate our CAC and uplink packet scheduling first.  
Then the simulation results about our delay and loss rate 
calculation model are shown.  Finally we briefly describe 
the multiplexing of two Poisson traffic flows. 
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Figure 9. Avg. throughput of each class in method 1. 

A. CAC and Uplink Packet Scheduling 
Two methods of CAC and uplink packet scheduling 

are compared here. Method 2 was proposed in [4] and 
method 1 was proposed by us. 
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Figure 10. Avg. throughput of each class in method 2. 

The parameters of four classes are listed in Table II. 
The begin time of each flow is Poisson distribution. All 
flows send data during each frame in full speed. Frame 
duration f is 1ms and simulation time is 150ms. The 
capacity of uplink is 37.5 Mbps. The queue size is infinite. 
The size of BW-request is 48 bits. rtPS connections send 
BW-requests on a per-frame basis. There are 100 flows of 

UGS, nrtPS, and BE. Each connection has random 
beginning time and does not terminate. For the purpose of 
making the effect of CAC and uplink packet scheduling 
obvious, all connections send data in full speed.  

From Fig. 8 we can find that the average delay of rtPS 
used by our method is almost constant no matter how 
many rtPS calls exist. Fig. 9 and Fig. 10 show that the 
average throughput of each class by applying method 1 
and method 2.  From Figure 9, we can find that the 
average throughput of UGS connections is almost zero.  
That is starvation of UGS connections by applying 
method 2.  However, there is no starvation when applying 
our method.  Although we set a threshold parameter for 
each class, but the UGS did not reach its threshold when 
the numbers of rtPS connections are 200, 400, 800, and 
1600.  The reason is that too many rtPS connections 
occupy the bandwidth first. In Fig. 11, our method 
performs better in call acceptance ratio. Our method can 
receive more rtPS calls and guarantee their delay 
requirements. 

TABLE II.   
SIMULATION PARAMETERS 

 ri (kbps) bi (bits) dreq(ms) Packet 
Size(bits) 

UGS 192 64 - 64 

rtPS 640 15k 20 256 

nrtPS 2000 15k - 256 

Best 
Effort 512 8k - 128 
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Figure 12. Avg. queuing delay vs token rate. 
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Figure 11. Acceptance ratio of rtPS call vs number of rtPS calls. 

B. Delay and Loss Estimation 
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Figure 13. Avg. delay vs token rate. 

Assume a traffic flow with Poisson arrival and its 
simulation parameters are listed in Table III.The 
simulation time is (  ms. Fig. 12 
shows that the average queuing delay obtained by 
simulation and our calculation model given different 
token rates.  We can see that the results of simulation and 
our calculation model are very close.  This means our 
model is precise. 

) 71 10rate arrivalmean ×−

Then we show the result of finite queue case. The 
parameters of the simulation are all the same as infinite 
queue case except an extra parameter, queue size.  The 
queue size is 5120 bits. Fig. 13 shows the average delay 
obtained by simulation and our calculation model given 
different token rates.  Figure 14 shows the average loss 
rate obtained by simulation and our calculation model 
given different token rates.  From them we can find both 
queuing delay and loss rate are very close between the 
simulation and our calculation model.  The error 
percentage of queuing delay is 5.1% at most.  This proves 
that our models are correct and precise. 

C.Multiplexing 
Assume there are n Poisson rtPS connections [c1, c2, …, 

cn] whose mean arrival rate are [λ1, λ2, …, λn]. If we 
give these n connections the same bucket size b and they 
have the same delay and loss requirements, which are d 
and l, we can find the appropriate token rates [r1, r2, …, rn] 
by applying the same simple search algorithm. Now we 
assume there is a Poisson rtPS connection csum whose 
mean arrival rate is λ1+λ2…+λn and has the same 
delay and loss requirement as those of n connections. 
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Figure 14. Avg. loss rate vs token rate. 

The Poisson connection has the property that the mean 
arrival rate of combining two connections with mean 
arrival rate λ1 andλ2 respectively is λ1+λ2. Hence we 

can see csum as the aggregation of [c1, c2, …, cn]. If we 
also give this connection bucket size b and apply the 
simple search algorithm, we can find that the appropriate 
token rate of this flow is r1+r2+…+rn. 

The results shown above means: if there are n Poisson 
rtPS connections whose delay and loss rate requirements 
are all the same and we give a reasonable value of bucket 
size, b, to them, the total token rate they need is the sum 
of their individual token rate, but the total bucket size 
they need is only b.  Our bandwidth reservation for rtPS 
connections heavily depends on their bucket size.  For the 
n traffic flows mentioned above, 

1−
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, 

where f
dm = .   

Less bandwidth can be reserved through multiplexing 

TABLE III.   
SIMULATION PARAMETERS 

Parameter Value 

Mean Arrival Rate(kbps) 640 

Bucket Size (bits) 5120 

Packet Size (bits) 512 

Queue Size (bits) 5120 
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when we make reservation for rtPS connections. 

VIII. CONCLUSION 

In this paper we proposed a QoS-supported uplink 
packet scheduling and CAC mechanisms. Bandwidth 
needed by real-time flows can be correctly reserved while 
promising their delay requirements. We also proposed a 
model to convert Poisson traffic flow into token bucket-
based connection. Multiplexing was also mentioned and 
evaluated in this paper. In the future, how to integrate 
CAC and uplink scheduling with token rate estimation 
model may be another issue we will concern. 
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