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Abstract—There are many difficult challenges ahead in the 
design of an energy-efficient communication stack for 
wireless sensor networks. Due to the severe sensor node 
constraints, protocols have to be simple yet scalable. To this 
end, collective social insects’ behavior could be adopted to 
guide the design of these protocols. We exploit the simple 
heuristics of ant colony in foraging and brood sorting to 
design a hierarchical and scalable data gathering protocol. 
Also, we demonstrate how it could exploit data correlations 
in sensor readings to minimize communications cost in the 
data gathering process towards the sink. This approach 
selects only a subset of sensor nodes to reconstruct data for 
the entire network. A distributed variance estimation 
algorithm is introduced to capture data correlations with 
negligible state maintenance. It is shown that this algorithm 
is able to predict the values rather accurately. Due to the 
general robustness of any nature-inspired algorithm, our 
data gathering protocol is reliable. It is fully distributed, 
and promises scalability and substantial energy savings. 
 
Index Terms—Data Gathering, Data Correlation, 
Clustering, Swarm Intelligence, Simulation, Sensor 
Networks 
 

I.  INTRODUCTION 

Wireless sensor technology is garnering a lot of 
interests due to its promises, enabling it to evolve rather 
rapidly. For instance, in terms of the sensor node 
hardware, the Mica2 mote has roughly eight times the 
memory and communication bandwidth as its 
predecessor, the Rene mote, developed in 1999 for the 
same power budget [1]. These sensor nodes have found 
use in many applications such as earthquake monitoring, 
target tracking and surveillance, and structural 
monitoring. The nodes are typically less mobile due to 
their unique application needs, substantially more 
resource constrained and more densely deployed than 

mobile ad hoc networks (MANETs). Even though, there 
have been significant advances in recent years, more 
energy-efficient solutions are required within the 
communication stack for the conservation of the battery 
power. An approach that is likely to succeed is the use of 
a hierarchical structure [2], which also promotes 
scalability of wireless sensor networks (WSNs). 

Clustering with data aggregation is an important 
technique in this direction, and it makes the tradeoff 
between energy efficiency and data resolution. Most 
clustering algorithms aim at generating the minimum 
number of clusters and transmission distance. These 
algorithms also distinguish themselves by how the 
clusterheads (CHs) are elected. The LEACH algorithm 
[3] and its related extension, TCCA [4] use probabilistic 
self-election, where each sensor node has a probability p 
of becoming a CH in each round. Such role rotation aims 
to distribute the energy usage for a more load-balanced 
operation. However, LEACH only works for single 
broadcast domain networks, and mostly operates in a 
suboptimally formed hierarchical structure due to its 
stochastic nature. TCCA overcame the former problem 
by allowing multihop clusters but still suffers from the 
latter. 

When developing WSN protocols, another crucial 
design issue to consider is the network reliability. To this 
end, social insect swarm behavior may provide an ideal 
model for the design of such less controllable systems. To 
our knowledge, very few researchers have considered or 
adopted such nature-inspired approaches for WSN 
design. However, a number of recent works has been 
based on different swarm behaviors in the design of 
routing protocols for MANETs. As there are many 
important similarities between these two ad hoc 
technologies, we believe building on these knowledge 
may be useful for WSNs. 
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In any random network deployment, many sensor 
nodes may also exhibit data correlations in their sensed 
data due to their overlapping sensing ranges. This issue 
may be addressed like a topology control issue where it 
could be formulated as a minimum graph covering 
problem, or as a data aggregation or compression 
problem that minimizes the amount of data transmitted to 
the sink through some in-network processing. In some 
applications, sensor nodes may also exhibit temporal 
correlation if the monitored physical characteristic has 
small variability. 

When the correlated data is exploited within the 
network, the sink gathers snapshots of reduced signal data 
values measured at the sensor nodes, and uses 
interpolation to derive the signal value at other points in 
the monitored region. Here, we exploit the temporal 
correlations in the sensor data. This correlation at a node 
is captured entirely based local observations with 
minimal state, and is used to control the node’s 
participation in the data gathering process towards the 
sink.  

In this paper, we investigate the T-ANT protocol, 
introduced initially in [5], more in depth and extend it to 
support some in-network processing to remove redundant 
data without the sink’s control. This protocol adopts the 
clustered strategy realized using useful principles of the 
ant colony behavior. It achieves the objective of uniform 
cluster formation by exploiting two swarm behaviors, 
namely foraging and brood sorting. T-ANT achieves 
substantially better performance than that of a flat 
minimum hop routing strategy, LEACH as well as 
TCCA. 

The rest of the paper is organized as follows. Section 2 
presents the perspective of this area of research. Various 
clustering algorithms, nature-inspired algorithms and data 
gathering protocols proposed in the literature are 
discussed. In Section 3, the details of the T-ANT 
clustering algorithm and the associated data variability 
estimation algorithm are described. The comprehensive 
simulator used to experiment with this protocol is 
described in Section 4. Various experiments and the 
corresponding results are presented and analyzed in 
Section 5. The paper concludes with the main findings of 
this work in the final section. 

II.  RELATED WORK 

Intense research in the field of sensor network 
technology in recent years has fueled further development 
in micro-sensor technology and low-power analog/digital 
electronics. To support scalable data gathering, it is 
realized that the approach that is likely to succeed to 
provide an energy-efficient solution is to adopt a 
hierarchical structure. To this end, various clustering 
algorithms have been proposed in different context. 
Generally, clustering algorithms segment a network into 
non-overlapping clusters comprising a CH each. Non-CH 
nodes transmit sensed data to CHs, where the data signals 
could be aggregated and transmitted to the sink. Initially, 
these algorithms focused on the connectivity problem [6-

8] but later energy-efficiency was more of interest in 
wireless ad hoc and sensor networks [3, 4, 9-13]. 

Another crucial design aspect of WSNs is the network 
reliability and fault-tolerance. It has been demonstrated in 
different context that the collective behavior of social 
insects has many attractive features, not the least 
robustness and reliability. However, there are only very 
limited WSN proposals inspired by such biological 
behaviors. Due to some parallels to MANETs, we 
reviewed some nature-inspired algorithms proposed for 
this domain. The first MANET routing algorithm based 
on ant colony principles is ARA [14]. It exploited the 
pheromone laying behavior of ants. Pheromone is a 
quality metric indicating the goodness of a path. 
Although pheromone evaporates, subsequent ants leave 
additional pheromone and thus reinforce the path. Over 
time, ants establish the shortest path between food and 
their nest in a full-distributed and autonomous manner. 
Ants are flooded towards destinations while establishing 
the reverse paths to the ant source. The gradual decay of 
pheromone introduces a form of negative feedback to 
prevent old routes from remaining in the forwarding 
tables when routes fall out of favor with ants. The 
shortest paths become preferable, and most ants use them. 
However, longer paths are not entirely lost as some ants 
may still maintain such routes. Routing schemes based on 
such ant colony behavior is both robust and adaptable. 
When the shortest route is lost due to some event, the 
longer routes provide alternative options. Other nature-
inspired protocols were discussed in [5]. 

The problem of gathering correlated data in WSNs has 
been recently addressed by means of either compression 
or topology control-like approaches. The main focus in 
the compression approach is to reduce the total number of 
bits transmitted towards the sink using suitable coding 
techniques. In [15], the authors proposed a distributed 
compression technique based on the Slepian-Wolf model, 
and the level of compression is determined centrally by 
the sink. This node tracks the correlation structure among 
nodes, and then, individually informs each sensor node 
the number of bits to be used for encoding. They have 
however assumed that the network is a single broadcast 
domain. Moreover, the sink would prove to be a 
bottleneck in a larger network, and could lead to the 
scalability problem. Single-input coding strategies were 
adopted in [16] to encode a node’s data based on a 
neighbor node. As the problem of finding the minimum-
energy data gathering tree is NP-complete, they presented 
approximation algorithms to construct a near-optimal 
data gathering tree for foreign-coding and self-coding 
schemes. In [17], the authors proposed efficient 
approximation algorithms also based on Slepian-Wolf 
coding to optimize the transmission structure and the rate 
allocation at each node. In all these approaches, all sensor 
nodes are required to participate in data transmission at 
every round even though at reduced number of bits 
transmissions. 

Another type of algorithm that aims to reduce the 
number of transmissions by making redundant nodes to 
sleep were proposed in [18] and [19]. In principle, these 
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approaches are similar to topology control algorithms 
such as SPAN [20] and ASCENT [21]. However, the 
node redundancy in the data gathering issue is of the 
application perspective, whereas it is mainly of the 
routing perspective in the latter. In [18], the authors 
proposed a scheme to reduce number of transmissions 
and provided approximate results to aggregate queries 
through spatial data correlation. Only a subset of nodes 
disseminates data to the sink. A set of CHs is selected 
using a simple localized scheme. It uses only the edges of 
the forwarding tree for selection of CHs and routers. With 
a similar aim of forcing redundant nodes to sleep, Gupta 
et al. [19] formulated this problem as finding the 
minimum dominating set problem, which is a well-known 
NP-complete problem. Accordingly, they proposed a 
distributed approximation algorithm and a couple of 
centralized heuristics to select a small correlation-
dominating set, which is sufficient to infer data of the 
remaining nodes. For their distributed algorithm, each 
node is expected to collect k-hop neighborhood 
information to form the correlation hypergraph. It is also 
assumed that the correlation structure is fixed. Even 
though a more complete spatial correlation is achievable 
here, the computation of the correlation weighting 
coefficients has energy cost in the order of the 
transmission cost, and the storage requirement is 
exponential in the number of neighbors. Thus, in this 
paper, we extend the T-ANT protocol to exploit temporal 
data correlation in sensor readings, which only involves 
local decisions, and has smaller energy and storage costs. 

III.  THE T-ANT PROTOCOL 

There are two main components to this protocol. The 
first aspect is related to the CH election and clustering, 
whereas the second involves the estimation of the data 
variance and redundancy detection. These are described 
in the following subsections, respectively. 

A.  The Clustering Algorithm 
T-ANT adopts two-phase clustering process involving 

the cluster setup and steady state phases. To guide the CH 
election, we chose to use a swarm of ants. Through the 
use of a swarm of ants, we could guarantee that the 
network always maintains an optimal number of clusters. 

During the node initialization, the sink releases a 
number of ants (i.e. control messages). Ramos and 
Merelo [22] suggest that the ratio of the number of ants to 
the number of objects (i.e. sensor nodes) should equal 
0.1. When the sink releases an ant, it chooses one of its 
neighbors at random. The ant could travel into the 
network as deep as restricted by its time-to-live (TTL) 
field. When an ant arrives at a node, the next node is 
randomly chosen (excluding the sender) for its 
subsequent stop if TTL has not expired. If TTL expires, 
the ant remains at this node. If however the final ant 
location overlaps with another ant, the former ant must 
find another location.  

The cluster setup (CS) phase is controlled through a 
CS timer. When this timer expires, a node checks to see 
whether it possesses an ant. If the node has an ant, it 

becomes a CH. When a node becomes a CH, it advertises 
to its neighbors by broadcasting an ADV message with its 
node id and a TTL field to constrain the ADV 
propagation. Upon receiving an ADV message, a regular 
node records the CH id, the sender’s id as its parent, the 
hop distance to this CH, the number of ADV messages 
received so far and total hop distance to all seen CHs, and 
then rebroadcasts if its TTL permits. A node decides to 
join a cluster when its join-timer expires. It then 
computes its pheromone level based on its total hop 
distance (h) to CHs, the number of CHs (n) in its 
neighborhood, and its normalized residual energy. The 
pheromone expression is based on the forwarding 
probability formula used in the ant routing algorithm 
[23], but expanded as: 
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*h  is the node’s hop distance to the selected CH, Eresi 
is the residual energy, Emax is the reference maximum 
battery energy and k is the learning rate of the algorithm ( 
= 0.1). This expression ensures that  is higher when 
the node is only reachable by fewer CH nodes (smaller 
n), far from CHs (

pΔ

∑ ih ), has higher residual energy (Eresi) 

or is nearer to its selected CH ( ). A regular node 
chooses the best cluster to join based on its hop distance 
to the CH, which would ensure minimal energy 
dissipation during the data collection rounds. The node 
joins a cluster by sending a JOIN message with its id, the 
selected CH id and its pheromone level. If the CH is in 
range, the message is transmitted directly; otherwise it is 
forwarded through its parent to the CH. When a CH 
receives JOIN messages, it finds the member with the 
highest pheromone level to attract its ant for the 
following CS phase. 

*h

Before the next CS timer expires, the ants wander to 
the nodes with the highest pheromone level among their 
neighbors, and these nodes will be the subsequent CHs. 
Before an ant leaves its current node, an amount of anti-
pheromone is laid to mimic a rapid decay of pheromone 
level [5]. This ensures that the ants do not return to the 
same node too soon, which promotes load balancing. 

The given pheromone expression guides the evolution 
of the swarm to achieve the separation behavior between 
ants in the swarm [5]. It is found empirically that 
separation is attained rather quickly within 3-5 rounds as 
an optimal swarm size is used. Another useful swarm 
behavior is alignment [5]. In our context, the area served 
by each ant represents the alignment property. It is 
reflected by the number of members in a cluster. When 
the swarm evolves to achieve separation, alignment is 
also achieved as a side-benefit. The phenomenon due to 
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both behaviors is captured by the following fitness 
functions, respectively. The CH election fitness function 
S to capture the separation behavior is: 
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where nc is the number of CH nodes, ni is the number 
of ADVs seen by CH i and hij is CH i’s hop distance to 
CH j. The clustering fitness function A to represent the 
alignment behavior is as follows: 

  (4) ∑
=
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i
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where nr is the number of regular nodes and hi is node 
i’s hop distance to its CH. 

In the steady state phase, if a regular node is 
considered redundant, it sends or forwards its sensory 
data to its CH. It is possible that the foraging ants may die 
due to the environmental uncertainty or node failure. To 
avoid a reducing number of ants in the network over time, 
ants have a finite lifetime. When ants die, the sink re-
releases the same optimal number of ants to restart the 
process. In order to determine the nodes that have 
redundant information and thus, could be made to sleep, 
we introduce the following algorithm to capture data 
correlations. 

B.  The Variance Estimation Algorithm 
In order to decide a node’s participation in the data 

gathering process, we need to determine whether its data 
is redundant. We choose not to base this selection 
decision on spatial correlation due to the amount of data 
to be collected and stored from the k-hop neighbors as 
well as the subsequent computation cost involved in the 
value prediction even as a linear combination of the 
neighbor values. 

To reduce the amount of state at each node, only 
temporal correlation is maintained. If the variability of 
the monitored value falls below the specified application 
bound, the node’s data is considered redundant, and it 
locally decides to sleep. This decision is made during the 
CS phase. Finding a factor’s variability problem could be 
analogized to the round-trip time (RTT) variance 
estimation problem in setting of the retransmission 
timeout value in the TCP transport protocol. The timeout 
algorithm allows a TCP entity to cope with the highly 
dynamic Internet traffic. This RTT variance estimation is 
based on the Jacobson’s algorithm, and is specified as 
part of TCP in RFC2988 [24]. Jacobson introduced a 
variation measure called mean deviation, and used it with 
the exponential smoothing technique to capture the 
dynamic nature of Internet traffic. As it is obvious that 
TCP is successful in adapting to this dynamism, a similar 
estimation algorithm could prove useful for our purpose 
to capture the sensor data variability. 

To enable such estimation, each node maintains an 
average value (represented as s_val) that stores the 

weighted sensor data value based on present and past 
values as follows: 

s_valk+1 = (1-g)×s_valk + g×valk+1  (5) 

where s_vali is the smoothed value at the ith time 
instant, vali is the actual sensed value at the ith time 
instant and g is a constant, 0<g<1. In order to capture the 
measure of dispersion of the sensed data, we adopt the 
mean deviation metric as follows: 

s_devk+1 = (1-h)×s_devk + h×|valk+1 - s_valk| (6) 

where s_devi is the smoothed variability of the sensed 
values at the ith time instant and h is a constant, 0<h<1. 
Finally, the sensed value for the (k+1)th time instant can 
be predicted as follows: 

 val  = s_val1
*
+k k+1 + s_devk+1 (7) 

where val  is the predicted value at the ith time 
instant. If the predicted and actual values deviate lesser 
than the application bound, this value is uninteresting for 
the application and could be approximated by the sink 
from the historic data. Thus, this node should not 
participate in further data gathering rounds until data 
variability exceeds the bound. Since redundant nodes are 
decided during the CS phase, these nodes will not be 
involved in the clusters formation. Also, the ants will 
only forage among the active nodes. As sensing the 
environment is continuously performed by all nodes, an 
inactive node many rejoin during the next CS phase, if its 
value falls outside the threshold. 

i
*

IV.  SIMULATION FRAMEWORK 

The performance of T-ANT clustering is evaluated 
using a discrete-event simulator. To enable a 
comprehensive study, the effects of both routing and 
MAC protocols are integrated. In the description of the 
simulator, we assume that each sensor node is aware of: 

• its neighbors due to the occasional beaconing by 
the sink and the cluster setup phase; and 

• the network is synchronized by means of any 
time synchronization protocols . 

The radio model is assumed to follow isotropic 
propagation. As for the MAC choice, we adopted the 
CSMA protocol due to its simplicity and its promise of 
scalability. However, a straightforward application of this 
protocol in a convergecast scenario is a recipe for failure. 
In the periodic monitoring type application, when the 
sensor data timer expires, all nodes capture their sensory 
value and convert to digital via an analog-to-digital 
converter (ADC) linked to the sensing hardware. 
Assuming a time-synchronized clustered network, all 
nodes generate the sensory message for transmission 
towards their CHs at the same time. If no precaution was 
taken, their transmissions would interfere resulting in 
many collisions and retransmissions. In order to reduce 
such collisions, Huang and Zhang [25] proposed that a 
node should delay its transmission relative to its distance 
to the destination (h) and the node density. As there is 
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likely to be many nodes at each hop, an additional 
random offset is also included to further reduce the 
collision probability. We choose to adopt a similar 
temporal coordination with respect to a node’s CH. 
However, it was modified here to be less conservative to 
reflect the smaller scope of a cluster rather than an entire 
network as in [25]. The random wait time function (T) is 
accordingly given as: 

 T(h) = (1 + r).τh  (8) 

Where r is a uniformly distributed random number 
from 0 to 1 and τ is the average one-hop delay. 

At the network layer, we adopted a simple routing 
mechanism in Greedy Routing Scheme (GRS) to control 
the network’s forwarding behavior. The forwarding 
objective is to minimize the number of hops between the 
sink and the other nodes. To establish this minimum hop 
routing tree, the sink occasionally broadcasts a beacon 
message with a hop count, which is initialized to zero. 
Upon receiving the beacon, each node records the sender 
id, increments the hop count by one, and then 
rebroadcasts it. A node only rebroadcasts if the new hop 
count is smaller than its stored value. Since we are 
focusing on a quasi-stationary type of application, the 
sink node only needs to perform occasional beaconing to 
avoid significant overhead. This forwarding rule 
establishes a minimum hop tree rooted at the sink. 
Finally, the T-ANT scheme is implemented between the 
application and the network layer, and thus, the overall 
system framework is as shown in Fig. 1. 

 
 Application 

T-ANT 

GRS 

CSMA 

Radio 

ADC 

Sensor 

 
Figure 1.  The simulation framework. 

 
Based on the given simulation framework, we 

investigated T-ANT’s performance against LEACH, 
TCCA and a flat strategy (i.e. the application sits directly 
on GRS). However, since LEACH can’t be applied 
directly to a multihop network, we modified this 
algorithm to use a routing protocol to forward messages 
whenever the destination is not within a node’s radio 
range. We termed this modified algorithm as multihop-
LEACH (or m-LEACH). The results from this 
comparison and other evaluations are presented further. 

V.  RESULTS AND DISCUSSIONS 

For these simulation experiments, we assumed that 
there are 100 sensor nodes distributed randomly in a 
square M×M region with M = 500 m. The transceiver 

energy parameters are set as: Eelec = 50 nJ/bit and εfs = 10 
pJ/bit/m2. The energy for data aggregation is set to EDA = 
5 nJ/bit per signal [3]. The control and data message sizes 
are fixed at 30 bytes, and sensory data is generated at 2-
second interval. Each CH node retains its CH status for 
20 seconds. The number of ants is fixed at 10 and the 
anti-pheromone rate is 0.1. 

The performance metrics being investigated are:  
• Clustering fitness: This metric is based on the 

fitness function given as (4). It represents the 
goodness of the cluster formation in terms of 
alignment involving all regular nodes. 

• CH election fitness: This metric is based on the 
fitness function given in (3). It represents the 
goodness of all the elected CH nodes in terms of 
CH separation. 

• Average energy per round: This metric represents 
the average energy dissipated by all the nodes in 
a round of data dissemination. 

• Network lifetime: This metric represents the time 
period from the instant the network is deployed to 
the moment when the first sensor node runs out 
of energy. 

Fig. 2 depicts the clustering fitness value at different 
simulation time. For T-ANT, the initial value is high 
indicating that the swarm has not yet achieved the 
alignment behavior as the ants are randomly released into 
the network. However, as pheromone is laid and anti-
pheromone takes effect during CS phases, the swarm 
alignment improves. Within the third evolution, the 
swarm is able to align. As for the other schemes, the 
fitness value varies rather wildly. Unlike T-ANT, TCCA 
mostly operates in sub-optimal fashion. Also for m-
LEACH, the fitness value is always smaller than the other 
schemes due to the ADV messages being limited to first-
hop neighbors. Any uncovered nodes would have to 
resort to direct transmission to the sink. Since m-LEACH 
and TCCA have probabilistic CH election, it is possible 
that the CHs may even be clumped. When the CHs are 
clumped, the disparity among clusters is large in terms of 
their number of members, as each CH contends for the 
same regular nodes pool.  
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Figure 2.  Clustering fitness at different simulation time of T-ANT, 

m-LEACH and TCCA.  
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In Fig. 3, the CH election fitness is depicted for the 
same three algorithms. Again, consistent behavior as 
above is obtained. For T-ANT, it has a higher function 
value initially, but it quickly converged somewhat. The 
ants move to better location based on the computed 
pheromone level, and within the fifth round, the swarm is 
able to achieve the separation behavior. This behavior 
ensures the elected CHs are distributed as uniformly as 
possible. Even after the uniformity is achieved, the ants 
keep moving at each round to ensure that the CH role is 
shared among nodes, and energy-load balancing is 
attained. As for the other schemes, the topology barely 
settles and mostly has a lower value than T-ANT. A 
lower value indicates that the CHs in these schemes are 
mostly too close to each other. In m-LEACH, the fitness 
function quite often assumes a zero value compared to 
TCCA. This is mainly due to its restricted ADV 
propagation, where a CH is unable to recognize another 
CH located only two hops away. 
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Figure 3.  CH election fitness at different simulation time of T-

ANT, m-LEACH and TCCA. 

 
Since cluster size was shown to have a significant 

impact on clustering algorithms [4], we varied ADV’s 
TTL value and compared these algorithms. In Fig. 4, 
these algorithms exhibit the presence of an optimal 
cluster size. However, T-ANT achieves significantly 
more energy savings than m-LEACH and TCCA for 
cluster sizes up to four. T-ANT achieves energy savings 
of more than 30% against m-LEACH. When cluster size 
is two, T-ANT dissipates 27% lesser energy compared to 
TCCA. This observation is consistent with fitness values 
reported in Figs. 2 and 3. Since m-LEACH and TCCA 
mainly operates with sub-optimally formed topology, 
their energy dissipations are higher. However, for larger 
cluster sizes, T-ANT’s benefit is less apparent. This is 
mainly caused by the energy expended during the cluster 
setup phase that is significantly larger as ADV messages 
are flooded further, and the JOIN messages have to be 
forwarded many hops before reaching their CHs. 
Similarly, during the steady state phase, significant intra-
cluster traffic is generated negating T-ANT’s benefits. 
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Figure 4.  Average energy usage per round against the cluster size 

of T-ANT and TCCA (and m-LEACH similar to TCCA with cluster 
size one). 

In Fig. 5, the improvement gained through T-ANT is 
further exemplified by the network lifetime graph. For 
this investigation, we have fixed the initial battery energy, 
Emax at 0.1J. It is evident that T-ANT exhibits the longest 
lifetime with all nodes remaining fully functional. It is 
found that T-ANT achieves almost 3.5 times the lifetime 
of m-LEACH and almost five times of the flat approach. 
It also achieves up to 50% longer lifetime than TCCA.  
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Figure 5.  Network lifetime against simulation time of T-ANT, 

TCCA, m-LEACH and the flat strategy. 

To investigate the effectiveness of the proposed 
estimation algorithm, we gathered daily temperature data 
(in Fahrenheit) of 100 Australian weather stations for the 
whole year of 2004 [26]. Using naturally gathered data, 
we exhibit the extend of correlations inherent in real data. 
For the variance estimation algorithm, the constants 
asume these values: g = 0.125 and h = 0.25. 

In Fig. 6, the accuracy of the adopted variance 
estimation algorithm is investigated. The continuous line 
represents the predicted values, whereas the crosses 
represent the actual observed data against the left y-axis. 
The error ratio between these two values is shown using 
the triangle marker on the right y-axis. As expected, the 
initial forecasts are quite far from the actual values. 
However, as more values are used for the smoothing 
process, the prediction improves significantly. 
Occasionally, when there are sudden changes in the 
temperature with steep vertical rises or drops, the error 
ratio becomes quite large indicating the need for the 
affected node to report back to the sink. Otherwise, it is 
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evident that the chosen variance estimator algorithm 
accurately predicts the naturally generated data. 
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Figure 6.  Actual and predicted temperature data values of a single 

node shown on the primary y-axis against simulation time. The 
secondary y-axis shows the error ratio between the two values. 

To observe the effect of the temporal correlation 
suppression on the network, a plot of number of sleeping 
nodes against simulation time is shown with the error 
ratio in Fig. 7. When the error ratio is higher than the 
application bound, more nodes are involved in the data 
gathering process. However, when the prediction is rather 
accurate, more nodes are made to sleep as evident from 
the peaks of the continuous line in Fig. 7. For this 
application data and the chosen bound, the scheme is able 
to make more than 30% nodes to sleep on average. Even 
without any expensive spatial correlation exercise, it is 
evident that we have the potential to make significant 
energy savings due to the inherent temporal data 
correlations in this naturally generated data.  
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Figure 7.  Number of inactive nodes (i.e. sleeping) shown on the 

primary y-axis against simulation time. The secondary y-axis shows the 
error ratio between the two values. 

Finally, to investigate the effect of data sensitivity on 
the network performance, we vary the application bound. 
As expected, Fig. 8 confirms that the energy cost reduces 
with the increase in the application bound. As the 
application bound is increased, the energy cost reduces 
exponentially. When the application is lesser sensitive to 
minor changes, there would be many more nodes inactive 
in the network with lesser radio usage. Thus, the 
proposed scheme exploits the increased insensitivity of 
the application by making more nodes to sleep. 
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Average energy cost per data collection round against 
the application bound. 

VI.  CONCLUSIONS 

To our knowledge, the T-ANT is the first nature-
inspired approach for data gathering in wireless sensor 
networks. The algorithm uses a swarm of ants to control 
the clusterhead election in a distributed manner. It is 
shown that T-ANT achieves two desirable swarm 
behaviors, namely separation and alignment. Due to 
these, a uniform distribution of clusterhead is guaranteed 
enabling the network to operate in an optimal manner 
throughout its lifetime. Even though this is possible in a 
centralized approach as in LEACH-C [3], our algorithm 
is distributed, robust and does not require position 
knowledge. T-ANT also stores less state overhead in 
memory than LEACH or TCCA. 

The T-ANT protocol is also able to exploit the inherent 
data correlations in the sensed data signals. To avoid the 
amount of state necessary to capture the spatial 
correlation among neighbors, we resorted to capture 
temporal correlation only. This involves only local 
decision-making. The variance estimation algorithm 
introduced here captures sensor data variability with 
negligible state maintenance. It is demonstrated that T-
ANT with data redundancy detection achieves significant 
energy savings for periodic monitoring applications. 
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