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Abstract— One of the most common communication patterns
in sensor networks is routing data to a base station, while
the base station can be either static or mobile. Even in
static cases, a static spanning tree may not survive for a
long time due to failures of sensor nodes. In this paper, we
present an adaptive spanning tree routing mechanism, using
real-time reinforcement learning strategies. We demonstrate
via simulation that without additional control packets for

tree maintenance, adaptive spanning trees can maintain the
“best” connectivity to the base station, in spite of node
failures or mobility of the base station. And by using a

general constraint-based routing specification, one can apply
the same strategy to achieve load balancing and to control

Routing in sensor networks has very different charac-
teristics than that in traditional communication networks.
First of all, address-based destination specification is
replaced or augmented by a more general feature-based
specification [1], such as geographic location [2] and
information gain [3], or a fixed but maybe mobile sink.
Secondly, routing metrics are not just shortest delays,
but also energy usage [4] and information density [3].
Thirdly, in addition to peer-to-peer communication, mul-
ticast (one-to-many) and converge-cast (many-to-one) are
major traffic patterns in sensor networks. Even for peer-to-

network congestion effectively in real time. peer communication, routing is more likely to be source

or sink driven than table-based [5], and source/sink pairs
often are dynamic (changing from time to time) or mobile
(moving during routing).

We have proposed Message-initiated Constraint-Based

I. INTRODUCTION - ?
. Routing (MCBR) [6] for wireless ad-hoc sensor net-
Large-scale ad-hoc networks of wireless sensors hav

b ive tobic of h. Such networks sh \Works. MCBR is a framework of routing mechanisms
ecome an active topic of research. such networks s af:%mposed of the explicit specification of constraint-based
the following properties:

destinations, route constraints and QoS requirements for
. gmbedQed routers gach sensor node acts as a routeipessages, and a set of QoS-aware meta-strategies. With
in addition to sensing the environment; the separation of routing specifications from routing
« dynamic networks- nodes in the network may turn strategies, general-purposeeta routing strategies can
on or off during operation due to unexpected failure,pe applied. In contrast to most existing ad-hoc routing
battery life, or power management; attributes asSOgtrategies with no QoS support, MCBR takes QoS speci-
ciated with those nodes (locations, sensor readingsications into account.
load, etc.) may also vary over time; We have also proposed threléstributed meta routing
« resource constrained nodeseagh sensor node te_:nds strategies based on real-time reinforcement learning [7]:
to have small memory and limited computational reg|-time search [8], constrained flooding [9], and adap-
power; o _ . tive spanning tree [10]. All of these use the same re-
« dense connectivity- the sensing range in general inforcement learning core, which estimates and updates
is much smaller than the radio range, and thus thene cost from the current node to the destination. This
density required for sensing coverage results in gpnroach has a number of attractive properties: (1) explicit
dense network; o use of destination and QoS specifications for finding
« asymmetric links- the communication links are not gptimal routes; (2) automatic adaptation to different routes
reversible in general. when network conditions change; (3) no need for extra
Applications of sensor networks include environmentmaintenance packets; and (4) no infinite looping if a path
monitoring, traffic control, building management, objectto the destination exists. In contrast to most existing QoS
tracking, etc. routing, learning-based meta-strategies do not create and
. . : _ maintain explicit routes; instead, packets discover and
This paper is based on “Adaptive Tree: A Learning-based Meta-.

Routing Strategy for Sensor Networks,” by Y. Zhang and Q. Huang,'mprove_the rOUteS'Over time. .
which appeared in the Proceedings of the IEEE 3rd Consumer Commu- Adaptive trees, different from real-time search and con-

nications and Networking Conference 2006, Las Vegas, USA, Januargtrained rooding routing strategies do require a known
2006. (©) 2006 |EEE. ’

This work was funded in part by the Defense Advanced Researcﬁin.k _a_-t !ts i-nitialization. A spanning _tree_ is ConsltrUCted
Project Agency contract #F33615-01-C-1904. at initialization, but automatically maintained during the

Index Terms— constraint-based routing, real-time reinforce-
ment learning, routing tree, wireless sensor networks
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routing process. Similar to the search-based meta strat- Most existing routing protocols are implicitly asso-
egy [8], implicit confirmation and retransmission are usedciated with their routing strategies. Traditional source-
rather than sending periodical maintenance packets frommitiated protocols (AODV, DSR, TORA, ABS, SSR) are
the sink node as in many tree-based routing protocolsstructure-based. There are also multipath strategies (e.g.
The basic ideas and protocol of adaptive trees have begh7]) that build and maintain multiple paths for extra
presented previously [7], [10]. The new contributionsrobustness. For dynamic networks, in addition to initial-
of this paper include defining new routing metrics forization, periodic or repair-based maintenance is required
energy-aware load balancing to increase lifetime, and foto keep the structure up to date. Therefore, structure-based
congestion-aware routing to reduce latency and increassrategies are more suitable for relatively stable networks,
reliability. since maintaining and repairing structures can be costly
In this paper, we present an in-depth study of thefor highly dynamic networks.
adaptive tree protocol, as well as performance analy- Structure-less routing strategies, e.g. greedy-based,
sis and comparisons with other peer routing protocolssearch-based or flooding-based, do not maintain the
Simulation results show that the adaptive tree protocohetwork structure explicitly. For example, GPSR uses
is robust in dynamic and unreliable environments, anda simple location-based greedy type of search, CADR
can be applied to achieve load balancing and to contralleploys a greedy strategy using the information gain
network congestion effectively in real time. metric. The challenge of greedy-based strategies is to
The remainder of the paper is organized as followsgo around network holes. Recent work on randomized
Section Il surveys most recent protocols developed in morouting [18] chooses the next hop according to some
bile ad hoc and sensor network communities. Section lldistribution. Instead of building and maintaining a routing
presents the main idea in the adaptive tree protocol. Sestructure, some of structure-less strategies establish a
tion IV analyzes the protocol via simulation and comparegpotential field”. Data from upstream flows downstream
performances with peer routing protocols. We show thagaccording to the potential field. Similar to structure-based
(1) without changing the routing strategy, by using theprotocols, however, the maintenance of the potential field
right routing metrics, adaptive trees can be energy-awaris necessary for dynamic network&earch-based methods
or congestion-aware, to increase lifetime or to reduceéormally discover routes by selecting the next “best”
latency, and (2) without additional control packets forhop at every node on the route. Routes may differ from
tree maintenance, adaptive spanning trees can maintapacket to packet, even to the same destination node.
the “best” connectivity to the base station, in spite of GEAR, Q-routing [19], [20], ant-based routing [21] and
node failures or mobility of the base station. Section VNADV-based routing [22] are search-basdtlooding-
concludes the paper. based methodson the other hand, allow each node to
independently make the decision of rebroadcast, while
making trade-offs between robust message delivery and
Il. RELATED WORK total energy cost. Gradient Broadcast [23] and Gradient
Routing [24] are flooding-based.

One may divide ad-hoc routing strategies into two he | | , s h
categoriesstructure-basear structure-lessA structure- In the last several years, many routing protocols have
een developed for wireless sensor networks, including

based routing strategy builds and maintains a routin%_ . _ . ;
structure, such as a spanning tree, a routing table, or on rid Routing [25], Directed Routing [26], Mint Rout-

or multiple paths, while a structure-less routing strategy"d [27], Backbone Routing [28], and the Constraint-
makes the decision of routing at every hop. based Routing Framework [6]-[10], [29]. Most of these

There are three elements for a routing protocol: desti-rOUting protocols have been implemented on Berkeley

nation specification, routing objectives and routing strate-g\10tes [f’ho]’ a W'tdelyl usBe d ksbensor Nr|1_ettwork d pCI;a_tgorm.
gies. Most existing protocols use fixed destination mong hese protoco’s, backbone, Wint, and rid are

specification, routing objective and routing strategy. Moststructure—based, Directed Routing and Constrained Flood-

mobile ad hoc routing protocols are address-based, whil'9 are flooding-based, and others, except the adaptive

GPSR [2] and GEAR [4] are geographical Iocation—tree protocoI., are search-baseq.

based. Directed Diffusion [1] first proposed a general 1he Adaptive Tree Protocol is between structure-based
attribute-based publish/subscribe scheme in ad-hoc sensdfpd Structure-less. It is structure-based since it builds
networks. In most cases, routing objectives are implicitly2Nd maintains a tree structure; it is structure-less since
embedded in strategies. For example, AODV [11], psRhe parent of a_node may change while forwarding a
[12] and TORA [13] use shortest path, i.e., minimumdata packet. Unlike structure-_bas_ed protocols, no control
number of hops, as the routing objective, while ABR [14] packets are necessary to maintain the tree structure.
uses the degree of association stability, and SSR [15] uses
signal stability or strength as one of the routing objectives
in addition to the shortest path. GEAR uses energy level as
a routing objective, in addition to the shortest path, while In this section, we will first introduce constraint-based
information-driven routing, such as CADR [3] and IDR routing and reinforcement-learning kernel, then present
[16], uses information gain to guide the routing processthe adaptive tree protocol.

IlIl. ADAPTIVE TREEPROTOCOL
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A. Routing Specification destination has a local route constrdint [,,,, wherel is

ithe message load attribute (e.g., number of messages in
{he node’s queue) ang, is the load limit. One can also
use geographical constraints (e.g., directional routing) to
reduce collision and save energy for a flooding-based
strategy. In general, local route constraints redefine the

Based RoutindMCBR): instead of developing protocols ne&/vg;chonnlc_e c_';:wty on_? mess?ge-b%-_met_ssagembalsls.
with special attributes and objectives, a meta-routing , . " explicitly Specilies routing objectives. Ce_l
protocol is aimed at supporting @assof routing spec- objective functiorv is defTed on a sgt of attrlbutgs.:
ifications. Even with the same meta-strategy, differenl‘% E ’112_>< d]; +/.1” t; R . Wher.,?Ai IS Ithe dgmamTﬁf
messages can have different strategies when they ha\%)lr tou ]?Z ar: (;S gse IOE)OS' Ivereal numoers. the
different specifications. This is along the line of Smart’alU€0f o ata nodey, denoted(v), is o(ay, a, ..., an),
Packets for Active Networks [31]: however, in MCBR where a; is the cyrrent attnbyte value of attributeat
packets do not carry code. Only the specification (and p0§10dtﬁv' A .ltofal obpctw € functtlonhc_aa b Za contshtanthsu;:h t
sibly an additional selection of a particular meta-strategy S the Linit ransmission Cost, Which induces the shortes
is passed through the network. For networks with smal ath if the objectlve. IS T“'”'m'zed- Fo'r another example,
data frames, one can even encode various specificatior%I energy-aware objective can be definedms c, where

in nodes and let packets only carry a specification ID with” is the amount Of_ use_d energy n the node, andnd .
parameters. c are constants. With this objective, energy-aware routing

. A . . can be achieved. Similarly, one may ukgn + c as a
In MCBR, a routing specification consists of the desti local objective, where is the number of neighbors. With

nation specification, local route constraints, and a glob Io. o L ) :
P g at is objective, connectivity-aware routing can be achieved.

routing objective. Constraints and objectives are specifie S . L TR
: . . . ulti-objectives can be obtained by combining individual
in terms of attributes. Attributes can be anything from_ . " ; X

objectives, e.g., in a weighted sum.

geographical locations to network bandwidths, from sen- 20 .
: . A local objective can be aggregated over the routing
sor values to internal clocks. The values of attributes can : 2 o
ath to form a global routing objective. global additive

be constant, such as a node identifier or a unit cost, cf? L : . . n
can change from time to time. fouting destinationis Objective functionO is defined as0(p) = 5., o(vi),

L . . whereo is a local objective function ang consists of a
explicitly represented by a set of constraints on attributes.
Sequence of nodes,, ..., v,.

For example, in geographical routing, destinations are . . .
P geograp 9 There are in general two classes of routing. One is

specified in terms of location constraints. Furthermore, inan cast namely finding an optimal path from the source
addition to destinations$ocal route constraintsif any, are y y 9 b P

specified explicitly. Examples of local route constraintstO oneof the destination nodes; it isnicasti its destina-

are: avoiding a noisv area. avoiding condestion anéion is unique. The other imulticast namely finding an
. 9 y ' g 9 : optimal tree from the source @l the destination nodes.

voiding low-energy n .Onem I ify th .
a O.d g low-energy ode;, ete O. € may aiso specfyt € An MCBR specificationfor a messagen is a tuple
regions or trajectories for information dissemination, €.9.,, o 4 o ;
. v)  Ce . C7 ,Om>. The goal of routing is to deliver the
the comb-needle model for queries and events [32] and ™’ ~ ™ ~m’ “( :
message fromy,, to one (anycast) or all (multicast) of

traffic information over road structures. Finallyr@uting S A i g

objective is explicitly stated, such as a shortest path,the destmapon nodgk’m sat|sfy|nlg Cin V'ajl sequence
S ... 'or atree of intermediate nodegs v ,...,v? " such that

maximizing energy levels over the route, Maximizing -, . vetiod abi andmin. O (m) Twomrhessa es are

connectivity over the route, or minimizing congestion. m m fhp Y \P)- 9

A network can be represented as a graph£), where congdered to have the sartype if they have the same
. . . destination and local route constraint as well as the same
V is the set of nodes andl is the set of connections.

For an asymmetric networKp, w) € E does not impl fouting objective.
ymrn O, W T Py One should notice that global route constraints are
(w,v) € E. Given adestination constrainC¢, of mes-

. - . P not defined in MCBR. It is well-known that finding an
sagem, a nodew is a destination noddor m iff C . . o - . L
) o —~m  optimal path with an additive objective while satisfying
is satisfied ab. For example, address-based routing, i.e. . L i .
. : an additive constraint is NP-hard. Unicast MCBR with
sending a message to a node with an addtgsscan

. o ) n itivi jective i ntiall igh hor
be represented using the destination constraigt a4, an additive objective is essentially weighted shortest

) . . . ath problem Our goal is to make MCBR a simple (in
where ¢ is the address attribute. Geographical routlngp P 9 . : ple (
. . . terms of computation) yet still powerful (in terms of
e.g., sending a message to a circular region centere : .
: . . representation) mechanism for ad-hoc sensor networks.
at (zo,y0) with radiusc, can be represented using the

destination constraintr — x¢)? + (y — v0)? < ¢, Where

Many protocols have been proposed for a variety o
destination attributes and routing objectives in the las
few years: for example, geographical (GPSR), energy
aware (GEAR), information-directed (IDR) routings. We
advocate the framework dflessage-initiated Constraint-

z andy are location attributes. B. Reinforcement Learning Kernel
Given alocal route constraintC], of messagen, the MCBR separates routing specification from rout-
active network of (V, E) for m is a subnet(V,,, E,,), ing strategies. We have proposed learning-based meta-

such that € V,,, iff C is satisfied av and(v,w) € E,, strategies for MCBR [7]. Real-time reinforcement learn-
iff v,w eV, and (v,w) € E. For example, a message ing [33] has been studied and applied mostly in agent-
that should avoid congested nodes while routing to itdased path planning [34]. We apply this powerful tech-
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nique to developdistributed meta routing strategies for Initialization phase:

sensor networks. for all v do NQ,,(v) « inf end

Given a routing specification of a message, including received (m, Q) atw from nodeu do
the destination and routing objective, one can define d. NQ,,(u) — Q;
cost function on each node, call&@-value indicating 2. Q,, « (1 — @)@, + (0, +MiN,NQ,,(v));
the minimum cost-to-go from this node to the destination3. p/ « argmin,NQ,,(n); (random tie break)
Initial Q-values of nodes can be obtained during networkd.  if p,, # p!. then broadcas{m, Q,,); pm < pl,; end
initialization if the sink node is known, or estimated end
when the node receives a packet of that type at the fir%{
time . Furthermore, a node also stores its neighbors’ Q-
values NQ-valueswhich are estimated initially according  received (m, Q) atw from nodeu do
to the neighbors’ attributes and updated when packets ate  if satisfied(?,) then
received from neighbors. 2. Q. < 0; broadcast(m, 0); return;

The learning-based meta routing strategies typicalh3. end
consist of arinitialization phase, dorwardingphase, and 4. NQ,,(u) < rNQ,, + (1 —1)Q;
aconfirmationphase. Learning happens in all phases. Fob.  Q,, < (1 — a)Q., + a0y + MiN, NQ,, (v));
each packet sent out from a node, the current Q-value @&. if |(NQ,,(p,) — MiN,NQ,,(n)| > 6
the node for the type of message is attached. All the nodea Dm — argmin, NQ,,,(n); (random tie break)
are set to be in promiscuous listening mode. Whenever 8. end
node overhears a packet of typefrom noden with Q- 9. if designatedf) then sendm, Q,,) to p,,; end
value Q(n), whether it is the designated receiver or not, end
it updates the corresponding NQ-value by

orwarding phase:

Confirmation phase:

and re-estimates its own Q-value using the equation 1. NQm(v) — NQm(v) +¢ _
2. pp < argmin,NQ,,(n); (random tie break)
Qm — (1 = a)Qm + a(op + min NQp(n)) (2) 3. if (resend)then sendm, Q,,) to p,,; end

: . . _ end
wherer is an update rate and is a learning rateg,, is

the current value of the local objective function, ands
a neighbor of this node.

Using Q-value estimateseal-time search[8] passes
the packet to the “best” neighbor according to the currenfyith the smallest NQ-value. A fixed maximum number
estimatesconstrained floodind9] decides if and when of retransmissions at any node may be applied when the
to rebroadcast the packet according to the estimates, angplicit confirmation fails.
adaptive spanning tre¢10] forwards the packet to its  The pseudo code is illustrated in Figure 1. NQ-value
parent, with parents possibly changing over time pointingpdates are designed as follows. In line 4 of the for-

Figure 1. Adaptive spanning-tree meta-strategy.

to a neighbor with the best Q-value estimate. warding phase, we use link loss rates for calculating
r, i.e., v «— L/(R + L) where L is the number of
C. Adaptive Spanning Tree failed transmissions and is the number of successful

i ¢ he oth _ he ad transmissions. If link loss rates are high, NQ-value of that
. Different from the ot er two meta—strgteg|es, t e e_l,ap'neighbor will not be changed much; if link loss rates are
tive tree protocol requires a known sink at the initial- ;556 15 zer0, NQ-value is updated with the new received
ization. An adaptive spanning tree can be built using;;,6 | jine 1 of the confirmation phase, each failed

the reinforcement learning core described in the preViouéonfirmation increases NQ-value of that neighbor oy
section. The initialization phase builds an initial spanningeg, exampler — eX/(B+1) n this case: increases with

tree rooted at the sink. The initial spanning treé Mayys nmper of failed transmissions exponentially. In our
not be optimal, and in the mobile sink case, ConneCt'°n§xperimentS we sef and « be 1. and the maximum

may change from time to time. Each node other tharhumber of retransmissions be 1 or 2. Similar to the real-

thg imk nqdhe has”a pointer Ito its r[]:)arfent, Wh,'Ch 'i th‘?ime search strategies [8], changing these parameters will
neighbor with smallest NQ-value. The forwarding phas€,,nqe the overall performance of various routing metrics.
passes the received packet to its parent. A node’s parent

may change if the neighbor with the smallest NQ-value _ )

changes. Each packet will be forwarded once, including®- Properties of Adaptive Tree Protocol

the sink node that broadcasts with Q-value 0 each time Unlike the most existing routing trees, the adaptive
receiving a packet. Implicit packet confirmation is used:routing tree can adjust to a better structure during routing
if the packet is not heard from the forwarded node withinwithout extracontrol packets; Figure 2 illustrates such a
a certain time period, the NQ-value of that node isscenario. Furthermore, asymmetric or broken links will be
updated, and the parent pointer is reset to the neighbaemoved automatically; Figure 3 illustrates the situation.
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In both casesnpode-ID:Q-value is illustrated in each
circle and the arrow points to its current parent.
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Figure 2. Adaptive to a better connection: (a) initial tree (b) node B

sends a packet to A, and nodes C, D, and E hear, in addition to A (c)
node D changes its parent to B with lower Q-value.

A fundamental question is whether this process of
adaption induce infinite loops. The following theorem (d)
states that such a situation is not possible, if the network i'Iiigure 3. Adaptive to an asymmetric or broken connection: (a) current
relatively stable, i.e., the optimal structure do not changeree (b) C sends a packet to A with no confirmation (c) C updates its
during the process. parent link to B with new Q-value (d) E updates its parent and F updates
Theorem 1:Given a network'V, E), assuming there is its Q-value when they hear a transmission from C.
a path from any node to the root and the actual Q-value
is stable, a packet will be delivered ®(nd), wheren is
the number of nodes in the network aids the depth of E. Routing Specifications for Adaptive Trees
the tree. Furthermore, it approaches to an optimal path if One of the most important advantages of MCBR is
the initial Q-value estimates aegimissiblgi.e., no larger that one can separate meta-routing strategies from routing

than the actual Q-values. objectives, so that different objectives can be achieved for

Proof. The formal proof is similar to that of [8], [34M  different type of messages using the same meta-strategy.
Theorem 2:If a node v with Q-value @, lost its We have experimented two types of routing specifica-

connection to its parent, and node connects to the tions, in addition to the shortest hop-counts.

subtree rooted at via v’ with the smallest Q-valu€),,. 1) Energy-aware: Instead of assuming constant cost

Node v" will change its parent im,(Q., — Q.)/c steps  for each hop, we can specify energy-aware cost functions,
wherec is the minimal local cost and,, is the number ¢(e), wheree is an attribute indicating the current energy
of nodes in subtree. level, such thaic(e;) < c(e2) if ey > ea. €.9.,¢(e) =
Proof. At each step, there is at least one node with itse,,,.../(e + 1) where e,,., iS @ constant indicating a
value increased by. The worst case is to visit each node maximum energy level. It is easy to see that for this cost
(Qw — @v)/c times before pointing tav. W function, if e is high, thenc is low, and ife is low, ¢

© 2006 ACADEMY PUBLISHER



JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 17

becomes high. With this cost function, load balancing can
be achieved automatically.

2) Congestion-awaretet/ be the current transmission
gueue length of a node. The larger tlkhethe more rec_kl
congested. Let(l) be a cost function, such thati;) < — Pre ':Sp=':'-]
c(lp) if 13 <lo. We can use a simple cost function such
as c(l) = I + 1. With this cost function, routing will
automatically select pathes with smaller queue length or
less congested nodes. This will results low latency and/ot
higher reliability for large traffic.

Signal power [P_tranzs=1]

B
limit

IV. SIMULATION RESULTS

In this section, we analyze the performance of the
adaptive tree protocol using a simulator that is particularly
designed for sensor networks [35].

A. Radio and MAC Models distanice 41

Our protocol study uses the radio propagation model
and the MAC layer communication model provided by
PROWLER [36], a probabilistic sensor network simulator.

PROWLER [36], written in Matlab, is an event-driven CSMA MAC protocol. When the application emits the

simulator that can be set to operate in either determiniStigendPacketcommand after a randoiWaiting Time in-

mode_ (to prO(_juce repl!gat_)le results Wh".e testing ar[erval the MAC layer checks if the channel is idle. If not,
algorithm) or in probabilistic mode that simulates the. . : . . .
it continues the idle checking until the channel is found

nondeterministic nature of the communication channel.

PROWLER consists of aadio propagation modeand a idle. The _tlme between |QIe checks is a random. |n.terval
characterized byackoffTime When the channel is idle
MAC-layer model . : R
. . . the transmission begins, and affansmissioriTime the
The simple radio model inPROWLER attempts to L :

. _— L application receives thBacketSentevent. After the re-
simulate the probabilistic nature in wireless sensor com-"" . S -

. . ception of a packet on the receiver’s side, the application
munication observed by many [37] [27]. The propaganonr ceives aPacketReceivedor Collided PacketReceived
model determines the strength of a transmitted signal at

a particular point of the space for all transmitters in theevent, depending on the success of the transmission.

system. Based on this information the signal reception
conditions for the receivers can be evaluated and collig Routing Application Models

sions can be detected. The transmission model is given i . ]
by: Our simulation tests were done RMASE [38], an

1 application built onPROWLER. RMASE provides network
Precideat(d) — Ptransmitmv Where2 <y <4 (3) gf[-:-hneratlon and performance evaluations for routing algo-
rithms.

Prec(i,J) — Precjideal(di ;) (1 +a(i,))(1+ B8(t)) (4  Ruase provides a convenient graphical interface to
where Py,qnsmi: is the signal strength at the transmitter define the most common network topologies. The basic
and P,....aca1(d) is the ideal received signal strength at topology is a rectangular x-y grid. Thggid size spacing
distanced, o and 8 are random variables with normal density shift and offsetparameters allow one to specify
distributionsN (0, 0,) and N (0, 03), respectively. A net- a variety of topologies, from rectangular and triangular
work is asymmetric ifo, > 0 or o5 > 0. In (4), «  Orids to totally random placements. One can also specify
is static depending on locatiorisand j only, and3 is ~one or more network holes, with a specific location
dynamic which changes over time. A noglean receive and size or randomly placed. One can also import node
a packet from nodeé if P...(i,7) > A whereA > 0 locations from a file, used in real experiments.
is the threshold. There is a collision if two transmissions The routing scenario model iRRMASE define the
overlap in time and both could be received successfullyproperties and behaviors of theurce and destination
Furthermore, an additional parametes..,, models the containing a set of source and destination nodes for a
probability of a transmission error caused for any otherouting application, respectiveN\RMASE also defines a
reason. The default radio model RROWLER has~y = 2, set of performance metrics that will be discussed in the
0o = 045, 05 = 0.02, A = 0.1 and pe,ror = 0.05.  following section.

Figure 4 shows a snapshot of the radio reception curves RMASE supports a layered architecture, including at
in this model. least the MAC layer, a routing layer, and the application

The MAC layer communication is modeled by a simpli- layer, with the MAC layer at the bottom and the applica-
fied event channel that simulates the Berkeley motes’ [30fion layer at the top. It is the algorithm designer’s choice

Figure 4. Snapshot of radio reception curves for the default model.
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to put individual functions at different layers so that of these definitions require to run the simulation until
common functions can be shared by different algorithmsthe property of life-time is satisfied. We define lifetime
In our tests, the network isax 7 sensor grid with small  predication as follows:
random offsets. The maximum radio range is abijt « Lifetime prediction Let € = 3" ¢, /n be the average
whered is the standard distance between two neighbor  energy left in the network where is the total
nodes in the grid. Figure 5 shows an instance of the  number of nodes in the network ang. be the
connectivity of such a network. The default radio model standard deviation of energy distribution. We call
in PROWLER is used in most experiments. The radio L = & — 30, the lifetime prediction metric, which
data rate is 40Kbps and each packet has 960 bits. The s used to approximate the lifetime metric. From
application sends out one packet per second from the this metric, one can see that if two algorithris
sources. and B use the same amount of energy, butbfis
The results are based on the average of 10 random runs. energy-aware and uses energy more e\/enly across
the network thanA does, B is predicted to have a
longer lifetime.

D. Effects of Routing Metrics

We first exam the effects of two routing metrics de-
scribed in Section IlI-E, comparing them to the shortest
hop-counts or shortest path objective.

1) Energy-aware:Using the cost function in Section
. IlI-E.1, we see that the cost doubles if more than half
— ' of the energy is consumed. To see this effect clearly, we
set the maximum energy at each node to be 100, each
transmission consumes a unit power, receiving or idling
power is ignored. The source is at a node clos€lt®)
and the sink is at a node close (i, 6). The source sent
a total of 50 packets.

C. Performance Metrics Assuming all links are reliable and if the adaptive
Fee is optimal initially, there would be a single path
or the shortest path objective (Figure 6) but there are
multiple paths for a load balancing objective (Figure 7).

Figure 5. Instance of radio connectivity.

We have developed a set of performance metrics fo
comparing different routing algorithms RMASE, includ-
ing latency, delivery ratio, and energy efficiency.

« Latency average delays of packets from sources to
the destination.

« Delivery ratia the total number of packets received
at the sinks vs. the total number of packets sent from
all the sources.

« Energy efficiencybe the ratio between the total
number of packets received at the sink(s) vs. the total
number of transmissions in the network.

All these metrics are calculated using their cumulative
average values, i.e., at time the performance value is
the average fronf to t.

It is hard to compare the lifetime metric for differ-
ent routing algorithms, although it is one of the most Figure 6. A single routing path by the shortest path objective.
important metrics for battery-powered unattended sensor
networks. One definition of the network lifetime has beenFigure 8 shows the lifetime prediction metric comparing
the time to network separation [4]. This definition has theload balancing objective and the shortest path objective.
disadvantage that it cannot distinguish between separatiorhe load balancing objective has larger values indicating
of half the network and separation of a single node, andbnger lifetime.
between a single node that is peripheral and a single node 2) Congestion-aware:In this test, we again let the
that is the base station. Another definition can be the timsink node close td6,6), and let each node have 50%
until the network loss rate is above a given threshold. Losshance to be a source node which will send a packet
rate measures the relevance to the application: a singlandomly within 10 seconds. We compare latency and
connected peripheral node leads to a small loss rate, whildelivery ratios between the congestion-aware objective in
a single disconnected base station leads to a large loss r&ection 1lI-E.2 and the shortest path objective. Figure 9
(if it is the source or the sink). Similarly, separation of and 10 show that the congestion-aware objective has much
half the network leads to a large loss rate. However, botlshorter latency and slightly better delivery ratios.
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Figure 7. Multiple paths by load balance objective.
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Figure 10. Delivery ratio: congestion-aware vs. shortest path.
E. Comparison with Peer Protocols

In this section, we evaluate the routing performance

of the adaptive spanning tree in two settings: (1) node

failures and (2) mobile sinks, and compare performancetlowever, performance oBackbone degrades quickly
of the adaptive spanning tree with other peer routind""th the increasing of link fgllgreand does not work
protocols. well overall due to the collision between data packets

The two peer routing algorithms used for comparinga”d regular maintenance packets from the sink node.
performances with the adaptive tree protocol are: Reducing intervals of maintenance packets will improve

. Backbone tre¢Backbone[28]) — this algorithm uses the performance oGrid in this case. The adaptive tree
directed diffusion [1] to create a backbone tree inprotocol works better than the other two protocols, with

the initialization phase and passes packets to paren%ge highest delivery ratios in all three cases.

during routing. To handle the problem of asymmetric  2) Mobile sinks:To test the robustness of the adaptive
|inkS, it establishes a Symmetric link neighborhOOd intree protoco| with moving SinkS, we set the sink veloc-
the initialization. To save energy, there is no periodicities be 0.05d/s and 0.1d/s in bothand y directions,
maintenance packets. respectively. The source is &b,0), and the sink is at
« Grid Routing (Grid) [25] — this algorithm builds (1, 1) initially. Figure 12, 13 and 14 show delivery ratios,
a spanning-tree with “grid” information to avoid packet latencies, and energy efficiency, respectively, for
long and unreliable links; There are periodic treepoth velocities. From these figures, we see that: (1)
maintenance packets at every 15 - 25 seconds.  similar to faulty links, the adaptive tree protocol has high
A total of 50 packets are sent for both tests. delivery ratios in mobile sink scenarios. (2) The latency
1) Node failures:To test the robustness of the adaptiveof packets increases in general due to the fact that the
tree protocol under un-predicable link failures, we setmobile sink is moving away from the source, resulting
link failure probabilitiesp.... to be 0, 0.05 and 0.1, longer paths. FoBackbong latency does not change after
respectively. The source is at a node closdd) and 5 seconds since no more packets received after 5 seconds.
the sink is at a node close {6, 6). Figure 11 shows the (3) Backbone also has the highest energy efficiency in
delivery ratios of the three algorithms. From the graphthis case, since all the packets received are within one
we see thaBackbone works very well when there are hop and no forwarding for packets more than one hop.
no fault links. The symmetric links guarantee the 100%Grid has the least efficiency due to extra maintenance
delivery of packets at this rate (1 packet per second)packets.
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