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Abstract— One of the most common communication patterns
in sensor networks is routing data to a base station, while
the base station can be either static or mobile. Even in
static cases, a static spanning tree may not survive for a
long time due to failures of sensor nodes. In this paper, we
present an adaptive spanning tree routing mechanism, using
real-time reinforcement learning strategies. We demonstrate
via simulation that without additional control packets for
tree maintenance, adaptive spanning trees can maintain the
“best” connectivity to the base station, in spite of node
failures or mobility of the base station. And by using a
general constraint-based routing specification, one can apply
the same strategy to achieve load balancing and to control
network congestion effectively in real time.

Index Terms— constraint-based routing, real-time reinforce-
ment learning, routing tree, wireless sensor networks

I. I NTRODUCTION

Large-scale ad-hoc networks of wireless sensors have
become an active topic of research. Such networks share
the following properties:

• embedded routers– each sensor node acts as a router
in addition to sensing the environment;

• dynamic networks– nodes in the network may turn
on or off during operation due to unexpected failure,
battery life, or power management; attributes asso-
ciated with those nodes (locations, sensor readings,
load, etc.) may also vary over time;

• resource constrained nodes– each sensor node tends
to have small memory and limited computational
power;

• dense connectivity– the sensing range in general
is much smaller than the radio range, and thus the
density required for sensing coverage results in a
dense network;

• asymmetric links– the communication links are not
reversible in general.

Applications of sensor networks include environment
monitoring, traffic control, building management, object
tracking, etc.

This paper is based on “Adaptive Tree: A Learning-based Meta-
Routing Strategy for Sensor Networks,” by Y. Zhang and Q. Huang,
which appeared in the Proceedings of the IEEE 3rd Consumer Commu-
nications and Networking Conference 2006, Las Vegas, USA, January
2006. c© 2006 IEEE.

This work was funded in part by the Defense Advanced Research
Project Agency contract #F33615-01-C-1904.

Routing in sensor networks has very different charac-
teristics than that in traditional communication networks.
First of all, address-based destination specification is
replaced or augmented by a more general feature-based
specification [1], such as geographic location [2] and
information gain [3], or a fixed but maybe mobile sink.
Secondly, routing metrics are not just shortest delays,
but also energy usage [4] and information density [3].
Thirdly, in addition to peer-to-peer communication, mul-
ticast (one-to-many) and converge-cast (many-to-one) are
major traffic patterns in sensor networks. Even for peer-to-
peer communication, routing is more likely to be source
or sink driven than table-based [5], and source/sink pairs
often are dynamic (changing from time to time) or mobile
(moving during routing).

We have proposed Message-initiated Constraint-Based
Routing (MCBR) [6] for wireless ad-hoc sensor net-
works. MCBR is a framework of routing mechanisms
composed of the explicit specification of constraint-based
destinations, route constraints and QoS requirements for
messages, and a set of QoS-aware meta-strategies. With
the separation of routing specifications from routing
strategies, general-purposemeta routing strategies can
be applied. In contrast to most existing ad-hoc routing
strategies with no QoS support, MCBR takes QoS speci-
fications into account.

We have also proposed threedistributedmeta routing
strategies based on real-time reinforcement learning [7]:
real-time search [8], constrained flooding [9], and adap-
tive spanning tree [10]. All of these use the same re-
inforcement learning core, which estimates and updates
the cost from the current node to the destination. This
approach has a number of attractive properties: (1) explicit
use of destination and QoS specifications for finding
optimal routes; (2) automatic adaptation to different routes
when network conditions change; (3) no need for extra
maintenance packets; and (4) no infinite looping if a path
to the destination exists. In contrast to most existing QoS
routing, learning-based meta-strategies do not create and
maintain explicit routes; instead, packets discover and
improve the routes over time.

Adaptive trees, different from real-time search and con-
strained flooding routing strategies, do require a known
sink at its initialization. A spanning tree is constructed
at initialization, but automatically maintained during the
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routing process. Similar to the search-based meta strat-
egy [8], implicit confirmation and retransmission are used,
rather than sending periodical maintenance packets from
the sink node as in many tree-based routing protocols.
The basic ideas and protocol of adaptive trees have been
presented previously [7], [10]. The new contributions
of this paper include defining new routing metrics for
energy-aware load balancing to increase lifetime, and for
congestion-aware routing to reduce latency and increase
reliability.

In this paper, we present an in-depth study of the
adaptive tree protocol, as well as performance analy-
sis and comparisons with other peer routing protocols.
Simulation results show that the adaptive tree protocol
is robust in dynamic and unreliable environments, and
can be applied to achieve load balancing and to control
network congestion effectively in real time.

The remainder of the paper is organized as follows.
Section II surveys most recent protocols developed in mo-
bile ad hoc and sensor network communities. Section III
presents the main idea in the adaptive tree protocol. Sec-
tion IV analyzes the protocol via simulation and compares
performances with peer routing protocols. We show that
(1) without changing the routing strategy, by using the
right routing metrics, adaptive trees can be energy-aware
or congestion-aware, to increase lifetime or to reduce
latency, and (2) without additional control packets for
tree maintenance, adaptive spanning trees can maintain
the “best” connectivity to the base station, in spite of
node failures or mobility of the base station. Section V
concludes the paper.

II. RELATED WORK

One may divide ad-hoc routing strategies into two
categories:structure-basedor structure-less. A structure-
based routing strategy builds and maintains a routing
structure, such as a spanning tree, a routing table, or one
or multiple paths, while a structure-less routing strategy
makes the decision of routing at every hop.

There are three elements for a routing protocol: desti-
nation specification, routing objectives and routing strate-
gies. Most existing protocols use afixed destination
specification, routing objective and routing strategy. Most
mobile ad hoc routing protocols are address-based, while
GPSR [2] and GEAR [4] are geographical location-
based. Directed Diffusion [1] first proposed a general
attribute-based publish/subscribe scheme in ad-hoc sensor
networks. In most cases, routing objectives are implicitly
embedded in strategies. For example, AODV [11], DSR
[12] and TORA [13] use shortest path, i.e., minimum
number of hops, as the routing objective, while ABR [14]
uses the degree of association stability, and SSR [15] uses
signal stability or strength as one of the routing objectives
in addition to the shortest path. GEAR uses energy level as
a routing objective, in addition to the shortest path, while
information-driven routing, such as CADR [3] and IDR
[16], uses information gain to guide the routing process.

Most existing routing protocols are implicitly asso-
ciated with their routing strategies. Traditional source-
initiated protocols (AODV, DSR, TORA, ABS, SSR) are
structure-based. There are also multipath strategies (e.g.
[17]) that build and maintain multiple paths for extra
robustness. For dynamic networks, in addition to initial-
ization, periodic or repair-based maintenance is required
to keep the structure up to date. Therefore, structure-based
strategies are more suitable for relatively stable networks,
since maintaining and repairing structures can be costly
for highly dynamic networks.

Structure-less routing strategies, e.g. greedy-based,
search-based or flooding-based, do not maintain the
network structure explicitly. For example, GPSR uses
a simple location-based greedy type of search, CADR
deploys a greedy strategy using the information gain
metric. The challenge of greedy-based strategies is to
go around network holes. Recent work on randomized
routing [18] chooses the next hop according to some
distribution. Instead of building and maintaining a routing
structure, some of structure-less strategies establish a
“potential field”. Data from upstream flows downstream
according to the potential field. Similar to structure-based
protocols, however, the maintenance of the potential field
is necessary for dynamic networks.Search-based methods
normally discover routes by selecting the next “best”
hop at every node on the route. Routes may differ from
packet to packet, even to the same destination node.
GEAR, Q-routing [19], [20], ant-based routing [21] and
NADV-based routing [22] are search-based.Flooding-
based methods, on the other hand, allow each node to
independently make the decision of rebroadcast, while
making trade-offs between robust message delivery and
total energy cost. Gradient Broadcast [23] and Gradient
Routing [24] are flooding-based.

In the last several years, many routing protocols have
been developed for wireless sensor networks, including
Grid Routing [25], Directed Routing [26], Mint Rout-
ing [27], Backbone Routing [28], and the Constraint-
based Routing Framework [6]–[10], [29]. Most of these
routing protocols have been implemented on Berkeley
motes [30], a widely used sensor network platform.
Among these protocols, Backbone, Mint, and Grid are
structure-based, Directed Routing and Constrained Flood-
ing are flooding-based, and others, except the adaptive
tree protocol, are search-based.

The Adaptive Tree Protocol is between structure-based
and structure-less. It is structure-based since it builds
and maintains a tree structure; it is structure-less since
the parent of a node may change while forwarding a
data packet. Unlike structure-based protocols, no control
packets are necessary to maintain the tree structure.

III. A DAPTIVE TREE PROTOCOL

In this section, we will first introduce constraint-based
routing and reinforcement-learning kernel, then present
the adaptive tree protocol.
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A. Routing Specification

Many protocols have been proposed for a variety of
destination attributes and routing objectives in the last
few years: for example, geographical (GPSR), energy-
aware (GEAR), information-directed (IDR) routings. We
advocate the framework ofMessage-initiated Constraint-
Based Routing(MCBR): instead of developing protocols
with special attributes and objectives, a meta-routing
protocol is aimed at supporting aclassof routing spec-
ifications. Even with the same meta-strategy, different
messages can have different strategies when they have
different specifications. This is along the line of Smart
Packets for Active Networks [31]; however, in MCBR,
packets do not carry code. Only the specification (and pos-
sibly an additional selection of a particular meta-strategy)
is passed through the network. For networks with small
data frames, one can even encode various specifications
in nodes and let packets only carry a specification ID with
parameters.

In MCBR, a routing specification consists of the desti-
nation specification, local route constraints, and a global
routing objective. Constraints and objectives are specified
in terms of attributes. Attributes can be anything from
geographical locations to network bandwidths, from sen-
sor values to internal clocks. The values of attributes can
be constant, such as a node identifier or a unit cost, or
can change from time to time. Arouting destinationis
explicitly represented by a set of constraints on attributes.
For example, in geographical routing, destinations are
specified in terms of location constraints. Furthermore, in
addition to destinations,local route constraints, if any, are
specified explicitly. Examples of local route constraints
are: avoiding a noisy area, avoiding congestion, and
avoiding low-energy nodes, etc. One may also specify the
regions or trajectories for information dissemination, e.g.,
the comb-needle model for queries and events [32] and
traffic information over road structures. Finally, arouting
objective is explicitly stated, such as a shortest path,
maximizing energy levels over the route, maximizing
connectivity over the route, or minimizing congestion.

A network can be represented as a graph〈V,E〉, where
V is the set of nodes andE is the set of connections.
For an asymmetric network,(v, w) ∈ E does not imply
(w, v) ∈ E. Given adestination constraintCd

m of mes-
sagem, a nodev is a destination nodefor m iff Cd

m

is satisfied atv. For example, address-based routing, i.e.,
sending a message to a node with an addressad, can
be represented using the destination constrainta = ad,
where a is the address attribute. Geographical routing,
e.g., sending a message to a circular region centered
at (x0, y0) with radius c, can be represented using the
destination constraint(x − x0)2 + (y − y0)2 ≤ c, where
x andy are location attributes.

Given a local route constraintCr
m of messagem, the

active network of 〈V, E〉 for m is a subnet〈Vm, Em〉,
such thatv ∈ Vm iff Cr

m is satisfied atv and(v, w) ∈ Em

iff v, w ∈ Vm and (v, w) ∈ E. For example, a message
that should avoid congested nodes while routing to its

destination has a local route constraintl ≤ lm, wherel is
the message load attribute (e.g., number of messages in
the node’s queue) andlm is the load limit. One can also
use geographical constraints (e.g., directional routing) to
reduce collision and save energy for a flooding-based
strategy. In general, local route constraints redefine the
network connectivity on a message-by-message basis.

MCBR explicitly specifies routing objectives. Alocal
objective functiono is defined on a set of attributes:o :
A1 × A2 × . . . × An → R+, whereAi is the domain of
attributei andR+ is the set ofpositivereal numbers. The
valueof o at a nodev, denotedo(v), is o(a1, a2, . . . , an),
where ai is the current attribute value of attributei at
nodev. A local objective function can be a constant such
as the unit transmission cost, which induces the shortest
path if the objective is minimized. For another example,
an energy-aware objective can be defined asku+c, where
u is the amount of used energy in the node, andk and
c are constants. With this objective, energy-aware routing
can be achieved. Similarly, one may usek/n + c as a
local objective, wheren is the number of neighbors. With
this objective, connectivity-aware routing can be achieved.
Multi-objectives can be obtained by combining individual
objectives, e.g., in a weighted sum.

A local objective can be aggregated over the routing
path to form a global routing objective. Aglobal additive
objective functionO is defined asO(p) =

∑n
i=0 o(vi),

whereo is a local objective function andp consists of a
sequence of nodesv0, . . . , vn.

There are in general two classes of routing. One is
anycast, namely finding an optimal path from the source
to oneof the destination nodes; it isunicastif its destina-
tion is unique. The other ismulticast, namely finding an
optimal tree from the source toall the destination nodes.

An MCBR specificationfor a messagem is a tuple〈
v0

m, Cd
m, Cr

m, Om

〉
. Thegoal of routing is to deliver the

message fromv0
m to one (anycast) or all (multicast) of

the destination nodesV d
m satisfyingCd

m via a sequence
or a tree of intermediate nodesp : v1

m, . . . , vn−1
m such that

Cr
m is satisfied atvi

m andminp Om(p). Two messages are
considered to have the sametype if they have the same
destination and local route constraint as well as the same
routing objective.

One should notice that global route constraints are
not defined in MCBR. It is well-known that finding an
optimal path with an additive objective while satisfying
an additive constraint is NP-hard. Unicast MCBR with
an additive objective is essentially aweighted shortest
path problem. Our goal is to make MCBR a simple (in
terms of computation) yet still powerful (in terms of
representation) mechanism for ad-hoc sensor networks.

B. Reinforcement Learning Kernel

MCBR separates routing specification from rout-
ing strategies. We have proposed learning-based meta-
strategies for MCBR [7]. Real-time reinforcement learn-
ing [33] has been studied and applied mostly in agent-
based path planning [34]. We apply this powerful tech-
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nique to developdistributed meta routing strategies for
sensor networks.

Given a routing specification of a message, including
the destination and routing objective, one can define a
cost function on each node, calledQ-value, indicating
the minimum cost-to-go from this node to the destination.
Initial Q-values of nodes can be obtained during network
initialization if the sink node is known, or estimated
when the node receives a packet of that type at the first
time . Furthermore, a node also stores its neighbors’ Q-
values,NQ-values, which are estimated initially according
to the neighbors’ attributes and updated when packets are
received from neighbors.

The learning-based meta routing strategies typically
consist of aninitialization phase, aforwardingphase, and
a confirmationphase. Learning happens in all phases. For
each packet sent out from a node, the current Q-value of
the node for the type of message is attached. All the nodes
are set to be in promiscuous listening mode. Whenever a
node overhears a packet of typem from noden with Q-
valueQ(n), whether it is the designated receiver or not,
it updates the corresponding NQ-value by

NQm(n) ← rNQm(n) + (1− r)Q(n) (1)

and re-estimates its own Q-value using the equation

Qm ← (1− α)Qm + α(om + min
n

NQm(n)) (2)

wherer is an update rate andα is a learning rate,om is
the current value of the local objective function, andn is
a neighbor of this node.

Using Q-value estimates,real-time search[8] passes
the packet to the “best” neighbor according to the current
estimates,constrained flooding[9] decides if and when
to rebroadcast the packet according to the estimates, and
adaptive spanning tree[10] forwards the packet to its
parent, with parents possibly changing over time pointing
to a neighbor with the best Q-value estimate.

C. Adaptive Spanning Tree

Different from the other two meta-strategies, the adap-
tive tree protocol requires a known sink at the initial-
ization. An adaptive spanning tree can be built using
the reinforcement learning core described in the previous
section. The initialization phase builds an initial spanning
tree rooted at the sink. The initial spanning tree may
not be optimal, and in the mobile sink case, connections
may change from time to time. Each node other than
the sink node has a pointer to its parent, which is the
neighbor with smallest NQ-value. The forwarding phase
passes the received packet to its parent. A node’s parent
may change if the neighbor with the smallest NQ-value
changes. Each packet will be forwarded once, including
the sink node that broadcasts with Q-value 0 each time
receiving a packet. Implicit packet confirmation is used:
if the packet is not heard from the forwarded node within
a certain time period, the NQ-value of that node is
updated, and the parent pointer is reset to the neighbor

Initialization phase:

for all v do NQm(v) ← inf end
received (m, Q) at w from nodeu do

1. NQm(u) ← Q;
2. Qm ← (1− α)Qm + α(om + minvNQm(v));
3. p′m ← argminnNQm(n); (random tie break)
4. if pm 6= p′m then broadcast(m, Qm); pm ← p′m; end

end

Forwarding phase:

received (m, Q) at w from nodeu do
1. if satisfied(Cd

m) then
2. Qm ← 0; broadcast(m, 0); return ;
3. end
4. NQm(u) ← rNQm + (1− r)Q;
5. Qm ← (1− α)Qm + α(om + minvNQm(v));
6. if |(NQm(pm)−minnNQm(n)| > δ
7. pm ← argminnNQm(n); (random tie break)
8. end
9. if designated(m) then send(m, Qm) to pm; end

end

Confirmation phase:

timeout (m to v)
1. NQm(v) ← NQm(v) + c;
2. pm ← argminnNQm(n); (random tie break)
3. if (resend)then send(m, Qm) to pm; end

end

Figure 1. Adaptive spanning-tree meta-strategy.

with the smallest NQ-value. A fixed maximum number
of retransmissions at any node may be applied when the
implicit confirmation fails.

The pseudo code is illustrated in Figure 1. NQ-value
updates are designed as follows. In line 4 of the for-
warding phase, we use link loss rates for calculating
r, i.e., r ← L/(R + L) where L is the number of
failed transmissions andR is the number of successful
transmissions. If link loss rates are high, NQ-value of that
neighbor will not be changed much; if link loss rates are
close to zero, NQ-value is updated with the new received
value. In line 1 of the confirmation phase, each failed
confirmation increases NQ-value of that neighbor byc.
For example,c ← eL/(R+1). In this casec increases with
the number of failed transmissions exponentially. In our
experiments, we setδ and α be 1, and the maximum
number of retransmissions be 1 or 2. Similar to the real-
time search strategies [8], changing these parameters will
change the overall performance of various routing metrics.

D. Properties of Adaptive Tree Protocol

Unlike the most existing routing trees, the adaptive
routing tree can adjust to a better structure during routing
without extracontrol packets; Figure 2 illustrates such a
scenario. Furthermore, asymmetric or broken links will be
removed automatically; Figure 3 illustrates the situation.
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In both cases,node-ID:Q-value is illustrated in each
circle and the arrow points to its current parent.

(a)

(b)

(c)

Figure 2. Adaptive to a better connection: (a) initial tree (b) node B
sends a packet to A, and nodes C, D, and E hear, in addition to A (c)
node D changes its parent to B with lower Q-value.

A fundamental question is whether this process of
adaption induce infinite loops. The following theorem
states that such a situation is not possible, if the network is
relatively stable, i.e., the optimal structure do not change
during the process.

Theorem 1:Given a network〈V, E〉, assuming there is
a path from any node to the root and the actual Q-value
is stable, a packet will be delivered inO(nd), wheren is
the number of nodes in the network andd is the depth of
the tree. Furthermore, it approaches to an optimal path if
the initial Q-value estimates areadmissible, i.e., no larger
than the actual Q-values.
Proof. The formal proof is similar to that of [8], [34].

Theorem 2:If a node v with Q-value Qv lost its
connection to its parent, and nodew connects to the
subtree rooted atv via v′ with the smallest Q-valueQw.
Node v′ will change its parent innv(Qw − Qv)/c steps
wherec is the minimal local cost andnv is the number
of nodes in subtreev.
Proof. At each step, there is at least one node with its
value increased byc. The worst case is to visit each node
(Qw −Qv)/c times before pointing tow.

(a)

(b)

(c)

(d)

Figure 3. Adaptive to an asymmetric or broken connection: (a) current
tree (b) C sends a packet to A with no confirmation (c) C updates its
parent link to B with new Q-value (d) E updates its parent and F updates
its Q-value when they hear a transmission from C.

E. Routing Specifications for Adaptive Trees

One of the most important advantages of MCBR is
that one can separate meta-routing strategies from routing
objectives, so that different objectives can be achieved for
different type of messages using the same meta-strategy.

We have experimented two types of routing specifica-
tions, in addition to the shortest hop-counts.

1) Energy-aware: Instead of assuming constant cost
for each hop, we can specify energy-aware cost functions,
c(e), wheree is an attribute indicating the current energy
level, such thatc(e1) ≤ c(e2) if e1 ≥ e2. e.g., c(e) =
emax/(e + 1) where emax is a constant indicating a
maximum energy level. It is easy to see that for this cost
function, if e is high, thenc is low, and if e is low, c
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becomes high. With this cost function, load balancing can
be achieved automatically.

2) Congestion-aware:Let l be the current transmission
queue length of a node. The larger thel, the more
congested. Letc(l) be a cost function, such thatc(l1) ≤
c(l2) if l1 ≤ l2. We can use a simple cost function such
as c(l) = l + 1. With this cost function, routing will
automatically select pathes with smaller queue length or
less congested nodes. This will results low latency and/or
higher reliability for large traffic.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the
adaptive tree protocol using a simulator that is particularly
designed for sensor networks [35].

A. Radio and MAC Models

Our protocol study uses the radio propagation model
and the MAC layer communication model provided by
PROWLER [36], a probabilistic sensor network simulator.
PROWLER [36], written in Matlab, is an event-driven
simulator that can be set to operate in either deterministic
mode (to produce replicable results while testing an
algorithm) or in probabilistic mode that simulates the
nondeterministic nature of the communication channel.
PROWLER consists of aradio propagation modeland a
MAC-layer model.

The simple radio model inPROWLER attempts to
simulate the probabilistic nature in wireless sensor com-
munication observed by many [37] [27]. The propagation
model determines the strength of a transmitted signal at
a particular point of the space for all transmitters in the
system. Based on this information the signal reception
conditions for the receivers can be evaluated and colli-
sions can be detected. The transmission model is given
by:

Prec,ideal(d) ← Ptransmit
1

1 + dγ
, where 2 ≤ γ ≤ 4 (3)

Prec(i, j) ← Prec,ideal(di,j)(1 + α(i, j))(1 + β(t)) (4)

wherePtransmit is the signal strength at the transmitter
and Prec,ideal(d) is the ideal received signal strength at
distanced, α and β are random variables with normal
distributionsN(0, σα) andN(0, σβ), respectively. A net-
work is asymmetric ifσα > 0 or σβ > 0. In (4), α
is static depending on locationsi and j only, andβ is
dynamic which changes over time. A nodej can receive
a packet from nodei if Prec(i, j) > ∆ where ∆ > 0
is the threshold. There is a collision if two transmissions
overlap in time and both could be received successfully.
Furthermore, an additional parameterperror models the
probability of a transmission error caused for any other
reason. The default radio model inPROWLER hasγ = 2,
σα = 0.45, σβ = 0.02, ∆ = 0.1 and perror = 0.05.
Figure 4 shows a snapshot of the radio reception curves
in this model.

The MAC layer communication is modeled by a simpli-
fied event channel that simulates the Berkeley motes’ [30]

Figure 4. Snapshot of radio reception curves for the default model.

CSMA MAC protocol. When the application emits the
SendPacketcommand, after a randomWaiting Time in-
terval the MAC layer checks if the channel is idle. If not,
it continues the idle checking until the channel is found
idle. The time between idle checks is a random interval
characterized byBackoffTime. When the channel is idle
the transmission begins, and afterTransmissionTime the
application receives thePacketSentevent. After the re-
ception of a packet on the receiver’s side, the application
receives aPacketReceivedor Collided PacketReceived
event, depending on the success of the transmission.

B. Routing Application Models

Our simulation tests were done inRMASE [38], an
application built onPROWLER. RMASE provides network
generation and performance evaluations for routing algo-
rithms.

RMASE provides a convenient graphical interface to
define the most common network topologies. The basic
topology is a rectangular x-y grid. Thegrid size, spacing,
density, shift and offsetparameters allow one to specify
a variety of topologies, from rectangular and triangular
grids to totally random placements. One can also specify
one or more network holes, with a specific location
and size or randomly placed. One can also import node
locations from a file, used in real experiments.

The routing scenario model inRMASE define the
properties and behaviors of thesourceand destination,
containing a set of source and destination nodes for a
routing application, respectively.RMASE also defines a
set of performance metrics that will be discussed in the
following section.

RMASE supports a layered architecture, including at
least the MAC layer, a routing layer, and the application
layer, with the MAC layer at the bottom and the applica-
tion layer at the top. It is the algorithm designer’s choice
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to put individual functions at different layers so that
common functions can be shared by different algorithms.

In our tests, the network is a7×7 sensor grid with small
random offsets. The maximum radio range is about3d,
whered is the standard distance between two neighbor
nodes in the grid. Figure 5 shows an instance of the
connectivity of such a network. The default radio model
in PROWLER is used in most experiments. The radio
data rate is 40Kbps and each packet has 960 bits. The
application sends out one packet per second from the
sources.

The results are based on the average of 10 random runs.

Figure 5. Instance of radio connectivity.

C. Performance Metrics

We have developed a set of performance metrics for
comparing different routing algorithms inRMASE, includ-
ing latency, delivery ratio, and energy efficiency.

• Latency: average delays of packets from sources to
the destination.

• Delivery ratio: the total number of packets received
at the sinks vs. the total number of packets sent from
all the sources.

• Energy efficiency: be the ratio between the total
number of packets received at the sink(s) vs. the total
number of transmissions in the network.

All these metrics are calculated using their cumulative
average values, i.e., at timet, the performance value is
the average from0 to t.

It is hard to compare the lifetime metric for differ-
ent routing algorithms, although it is one of the most
important metrics for battery-powered unattended sensor
networks. One definition of the network lifetime has been
the time to network separation [4]. This definition has the
disadvantage that it cannot distinguish between separation
of half the network and separation of a single node, and
between a single node that is peripheral and a single node
that is the base station. Another definition can be the time
until the network loss rate is above a given threshold. Loss
rate measures the relevance to the application: a single
connected peripheral node leads to a small loss rate, while
a single disconnected base station leads to a large loss rate
(if it is the source or the sink). Similarly, separation of
half the network leads to a large loss rate. However, both

of these definitions require to run the simulation until
the property of life-time is satisfied. We define lifetime
predication as follows:

• Lifetime prediction: Let ē =
∑

ei/n be the average
energy left in the network wheren is the total
number of nodes in the network andσe be the
standard deviation of energy distribution. We call
L = ē − 3σe the lifetime prediction metric, which
is used to approximate the lifetime metric. From
this metric, one can see that if two algorithmsA
and B use the same amount of energy, but ifB is
energy-aware and uses energy more evenly across
the network thanA does,B is predicted to have a
longer lifetime.

D. Effects of Routing Metrics

We first exam the effects of two routing metrics de-
scribed in Section III-E, comparing them to the shortest
hop-counts or shortest path objective.

1) Energy-aware:Using the cost function in Section
III-E.1, we see that the cost doubles if more than half
of the energy is consumed. To see this effect clearly, we
set the maximum energy at each node to be 100, each
transmission consumes a unit power, receiving or idling
power is ignored. The source is at a node close to(0, 0)
and the sink is at a node close to(6, 6). The source sent
a total of 50 packets.

Assuming all links are reliable and if the adaptive
tree is optimal initially, there would be a single path
for the shortest path objective (Figure 6) but there are
multiple paths for a load balancing objective (Figure 7).
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Figure 6. A single routing path by the shortest path objective.

Figure 8 shows the lifetime prediction metric comparing
load balancing objective and the shortest path objective.
The load balancing objective has larger values indicating
longer lifetime.

2) Congestion-aware:In this test, we again let the
sink node close to(6, 6), and let each node have 50%
chance to be a source node which will send a packet
randomly within 10 seconds. We compare latency and
delivery ratios between the congestion-aware objective in
Section III-E.2 and the shortest path objective. Figure 9
and 10 show that the congestion-aware objective has much
shorter latency and slightly better delivery ratios.
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Figure 7. Multiple paths by load balance objective.
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Figure 8. Lifetime prediction metric: load balance vs. shortest path.

E. Comparison with Peer Protocols

In this section, we evaluate the routing performance
of the adaptive spanning tree in two settings: (1) node
failures and (2) mobile sinks, and compare performances
of the adaptive spanning tree with other peer routing
protocols.

The two peer routing algorithms used for comparing
performances with the adaptive tree protocol are:

• Backbone tree(Backbone[28]) – this algorithm uses
directed diffusion [1] to create a backbone tree in
the initialization phase and passes packets to parents
during routing. To handle the problem of asymmetric
links, it establishes a symmetric link neighborhood in
the initialization. To save energy, there is no periodic
maintenance packets.

• Grid Routing (Grid ) [25] – this algorithm builds
a spanning-tree with “grid” information to avoid
long and unreliable links; There are periodic tree
maintenance packets at every 15 - 25 seconds.

A total of 50 packets are sent for both tests.
1) Node failures:To test the robustness of the adaptive

tree protocol under un-predicable link failures, we set
link failure probabilitiesperror to be 0, 0.05 and 0.1,
respectively. The source is at a node close to(0, 0) and
the sink is at a node close to(6, 6). Figure 11 shows the
delivery ratios of the three algorithms. From the graph,
we see thatBackbone works very well when there are
no fault links. The symmetric links guarantee the 100%
delivery of packets at this rate (1 packet per second).
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Figure 9. Latency: congestion-aware vs. shortest path.
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Figure 10. Delivery ratio: congestion-aware vs. shortest path.

However, performance ofBackbone degrades quickly
with the increasing of link failures.Grid does not work
well overall due to the collision between data packets
and regular maintenance packets from the sink node.
Reducing intervals of maintenance packets will improve
the performance ofGrid in this case. The adaptive tree
protocol works better than the other two protocols, with
the highest delivery ratios in all three cases.

2) Mobile sinks:To test the robustness of the adaptive
tree protocol with moving sinks, we set the sink veloc-
ities be 0.05d/s and 0.1d/s in bothx and y directions,
respectively. The source is at(0, 0), and the sink is at
(1, 1) initially. Figure 12, 13 and 14 show delivery ratios,
packet latencies, and energy efficiency, respectively, for
both velocities. From these figures, we see that: (1)
similar to faulty links, the adaptive tree protocol has high
delivery ratios in mobile sink scenarios. (2) The latency
of packets increases in general due to the fact that the
mobile sink is moving away from the source, resulting
longer paths. ForBackbone, latency does not change after
5 seconds since no more packets received after 5 seconds.
(3) Backbone also has the highest energy efficiency in
this case, since all the packets received are within one
hop and no forwarding for packets more than one hop.
Grid has the least efficiency due to extra maintenance
packets.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 19

© 2006 ACADEMY PUBLISHER



0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unpredicatble link loss probabilities x%

D
el

iv
er

y 
ra

tio
s

backbone
grid
A−tree

Figure 11. Delivery ratios at different failure rates.
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V. CONCLUSION

We have presented in this paper the adaptive tree proto-
col, a type of reinforcement-based meta-routing strategy
for the constraint-based routing. We have studied the
properties of such protocol and shown in our experiments
that the adaptive tree protocol is robust for un-predicable
link failures and mobile sinks. We have also demonstrated
the use of different routing objectives for achieving load
balancing and reducing congestion. The parameters in the
protocol, such as learning rates for Q-values, update rates
for NQ-values, parent reset thresholdδ, and the maximum
number of retransmissions for failed confirmations, can be
tuned to make the routing best for a particular application.
Lots of research still need to be done on the selection
of parameter values and understanding the relationship
between different parameters.
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