
Based on "Grid Scheduling Using 2-Phase Prediction (2PP) of CPU Power", by Nguyen The Loc, Said Elnaffar, Takuya Katayama, and Ho Tu Bao,

which appeared in the Proceedings of the IIT’06, IEEE Communication Society Press, IEEE Catalogue Number 06EX1543C, ISBN 1-4244-0674-9,

Dubai, UAE (November 19-21, 2006), © 2006 IEEE.

A Dynamic Scheduling Algorithm for Divisible

Loads in Grid Environments

Nguyen The Loc
Hanoi National University of Education, Hanoi, VietNam

Email: locnt@hnue.edu.vn

Said Elnaffar
College of IT, UAE University, Al-Ain, UAE

Email: elnaffar@uaeu.ac.ae

Abstract—Divisible loads are those workloads that can be

partitioned by a scheduler into any arbitrary chunks. The

problem of scheduling divisible loads has been defined for a

long time, however, a handful of solutions have been

proposed. Furthermore, almost all proposed approaches

attempt to perform scheduling in dedicated environments

such as LANs, whereas scheduling in non-dedicated

environments such as Grids remains an open problem. In

Grids, the incessant variation of a worker's computing

power is a chief difficulty of splitting and distributing

workloads to Grid workers efficiently. In this paper, we

first introduce a computation model that explains the

impact of local (internal) tasks and Grid (external) tasks

that arrive at a given worker. This model helps estimate the

available computing power of a worker under the

fluctuation of the number of local and Grid applications.

Based on this model, we propose the CPU power prediction

strategy. Additionally, we build a new dynamic scheduling

algorithm by incorporating the prediction strategy into a

static scheduling algorithm. Lastly we demonstrate that the

proposed dynamic algorithm is superior to the existing

dynamic and static algorithms by a comprehensive set of

simulations.

Index Terms—CPU power prediction, divisible loads, Grid

scheduling.

I. INTRODUCTION

A Divisible Load [1] is the load that can be arbitrarily

partitioned into any number of fractions. It is typically

encountered in many domains of science and technology

such as protein sequence analysis, simulation of cellular

micro physiology, parallel and distributed image

processing, video processing, and multimedia [2]. The

loads of these applications are inherently colossal such

that more than one worker is needed to handle them. The

profusion of workers in a distributed computing

environment such as the Grid [2] makes the latter a

promising platform for processing divisible loads. As

usual, this begs the typical scheduling question of how to

divide a workload that resides at a computer (master) into

chunks and how to assign these chunks to other Grid

computers (workers) so that the execution time

(makespan) is minimal.

Numerous scheduling approaches and algorithms have

been proposed, however, the majority of them assume

that the computational resources at workers are dedicated.

This assumption renders these algorithms impractical in

distributed environments such as the Grid where

computational resources are expected to serve local tasks,

which have the higher priority, in addition to the Grid

tasks. The purpose of our research is to develop an

efficient multi round scheduling algorithm for non-

dedicated dynamic environments such as Grids.

The contributions of our paper can be summarized as

follows:

Building a computation model that explains the
performance of the worker under the impact of
processing local applications as well as Grid tasks.
Developing a new strategy, 2PP (Two Phase
Prediction), for predicting the computing power of a
worker, i.e., the fraction of the original CPU power
that can be donated to the incoming Grid
applications.
Proposing a new dynamic scheduling algorithm by
incorporating the prediction strategy 2PP into the
MRRS (Multi-round Scheduling with Resource

Selection) algorithm [3, 4], which is originally a
static scheduling algorithm.

The rest of the paper is organized as follows. Section II

reviews some of the static and dynamic scheduling

algorithms. In Section III, after defining the scheduling

problem in non-dedicated environments we present a

performance model for the computations that take place

at workers. This model helps estimate the computing

power of a worker under the fluctuation of local

applications vs. Grid tasks. Section IV explains how our

CPU power prediction strategy, 2PP, is built on top of

this worker computation model. Section V reviews the

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 57

© 2007 ACADEMY PUBLISHER

MRRS static algorithm and explains how to integrate it

with 2PP in order to build our proposed dynamic

scheduling algorithm. Section VI describes the

experiments we have conducted in order to evaluate our

work. Section VII concludes the paper.

II. RELATED WORK

Most of the studies that focus on scheduling divisible

loads are based on the Divisible Load Theory [1]. The

goal of load scheduling is to minimize the overall

execution time (hereafter called makespan) by finding an

optimal strategy of splitting the original load received by

the master computer into a number of chunks as well as

distributing these chunks to the workers in the right order.

The first scheduling algorithm, named MI (Multi-

Installment) [1], optimizes the makespan by exploiting

the overlap between computation and communication

processes. Beaumont [5] proposes another multi-round

scheduling algorithm that fixes the execution time

throughout each round. Yang et al. extend the MI

algorithm by making it more realistic by factoring in the

computation and communication latencies. Their UMR

(Uniform Multi Round) algorithm [6] is ultimately based

on the premise of making the total time of data transfer

and execution the same in each round for each worker.

This assumption enables them to analyze the constraints

and determine the near-optimal number of rounds as well

as the size of chunks in each round. Based on the

theoretical analysis as well as simulation results [4],

UMR exhibits the best performance among its family of

algorithms.

The MRRS (Multi-round Scheduling with Resource

Selection) algorithm [3,4] extends the UMR by

considering the network bandwidth and latency in

addition to the computation capacity of workers.

Furthermore, the MRRS is the first scheduling algorithm

for divisible loads that is featured with a resource

selection policy that finds the best subset of available

computers.

The above described algorithms are deemed static

because they assume that the full computational capacity

of workers is constantly available and can be readily

tapped into, which makes them impractical for dynamic

environments such as the Grid. Workers hooked to the

Grid are supposed to handle locally arriving tasks, first,

and donate their unused time to the external Grid tasks.

As a result, any scheduling that assumes guaranteed CPU

capacity of a worker is deemed implausible in this

dynamic environment.

The RUMR [7] algorithm is a step towards dynamicity

as it shows tolerance towards errors in predicting the

available CPU power using the Factoring method.

However, all of the RUMR parameters are determined

once before the RUMR starts and remain fixed

afterwards, which makes RUMR a non-adaptive

scheduling algorithm. Apparently, dynamic algorithms

are more appropriate for Grids.

To the best of our knowledge, the algorithm discussed

in [8] is the first dynamic scheduling algorithm for

divisible loads in non-dedicated environments. It employs

the tendency-based prediction strategy described in [9,10]

in order to be adaptive to the Grid. In this paper, we

introduce a new dynamic algorithm, named 2PP, for

which the theortical analysis and the experimental results

show that it outperforms the previous static and dynamic

algorithms.

III. GRID COMPUTATION MODEL

A. Heterogeneous Configuration

We adopt the same computation model used in

[1,5,6,7] where a master computer is connected to n
worker computers in a star-topology network.

We assume that the master uses its network

connection in a sequential fashion. i.e., it does not send

chunks to some workers simultaneously. Workers can

receive data from network and perform computation

simultaneously [1]. The following notations will be used
throughout this paper:

Wi: worker i
Ltotal: the total amount of workload that resides at the
master.
m: the number of scheduling rounds.
chunkji : the fraction of total workload that the master
delivers to Wi in round j (i = 1,...,n ; j = 1,...,m).
Si: computation speed of Wi.
cLati: the fixed overhead time needed by Wi to start

computation

nLati : the overhead time incurred by the master to

initiate a data transfer to Wi.

Bi: the data transfer rate of the connection link
between the master and Wi.
ESi: estimated speed of worker i for Grid tasks on the
next round.
roundj: the fraction of workload dispatched during
round j.
Tcompji: computation time required for Wi to process

chunkji

Tcommj,i: communication time required for the

master to send chunkji to Wi

B. Problem Statement

The task scheduling problem in non-dedicated

environments can be defined as follows. If we have:

A total amount of divisible load Ltotal that resides at

the master.

Worker 1

Master

Figure 1. Star-topology

Worker i

Worker NWorker i+1

...

...

58 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

A non-dedicated computational platform consists of

the master and n workers connected with each other

by a star-topology network (Fig. 1).

And dynamic availability of CPU capacity, i.e. CPU

power Si of worker i varies over time (i = 1,2,...,n),

which was not the case in previous studies [1,5,6],

Our ultimate question is: given the above platform

settings, in what proportion should the workload Wtotal be

split up among the heterogeneous, dynamic workers so

that the overall execution time is minimum?

Formally, we need to minimize the following objective

function:

minmax
1 1

,,1
,...2,1

i

k

m

j

ijk
ni

TcompTcomm

where the expression between brackets is the total

running time, that is, the sum of waiting time,

communication time and computation time of worker Wi.

C. Non-Dedicated Platform

We use an M/M/1 queuing system [11] to model the

activities that take place at the worker machine. Local

and Grid tasks arrive at workers in order to be processed

(Fig. 2). If a Grid task cannot be served upon arrival, it

joins the service queue whose capacity is assumed to be

unlimited. This queuing system has the following

characteristic:

The input process. The arriving tasks consist of Grid

tasks and local tasks. Grid tasks are the chunkji

portions of total load Ltotal, which are dispatched by

the master. The local tasks are tasks that are produced

by local applications (e.g. desktop applications) at the

worker. The arrival of the local tasks at Wi is assumed

to follow a Poisson distribution with an arrival rate i

and their service demands follow an exponential

distribution with a service rate i .

The service mechanism. During the execution of a

Grid task on a certain worker, some local tasks may

arrive causing to interrupt the execution of the lower

priority Grid tasks. We consider the execution of the

local tasks as preemptive, i.e. a local task must be

executed until completion once it gets started. The

local tasks are processed on a first-come-first-served

basis.

The worker's capacity. From the Grid tasks’ point of

view, the state of a worker alternates between

unavailable and available depending on whether the

worker is busy with a local task or not, respectively.

As stated earlier, Si denotes the maximum computing

power of worker Wi that can be donated to Grid tasks

when the worker is absolutely available.

The execution time Tcompji of chunkji on worker Wi can

be expressed as:

Tcompji = X1 + Y1 + X2 + Y2 + … + XNL + YNL

where
NL: the number of local tasks that arrive during the
execution of chunkji

Yk: execution time of the local task k (k = 1,2,...,NL)
Xk: execution time of kth section of chunkji. We have:

X1 + X2 +...+ XNL = chunkji / Si

From the M/M/1 queuing theory [11] we have:

ii

k

i

jii
YE

S

chunk
NLE

1
;)(

Since NL and Yk are independent random variables (k =
1,2,...,NL) we can derive

NL

k

kjiji XNLTcompETcompE
1

|

NL

k ii

ji

k

i

ji

k
S

chunk
YENLE

S

chunk
YE

1 1

where i = i/ i , which represents the CPU Utilization.
i , i , i are representative on the long run but cannot be

used to estimate the imminent execution time that will
take place on a given worker. Therefore, we introduce the
adaptive factor i, which represents the credibility of
performance prediction associated with worker i and it is
initialized to 1 at the beginning of the scheduling process
(i.e., in the first round). At the end of each round, i is
updated as follows: i = FSi / ESi where FSi denotes the
factually measured available CPU power. Now the
expected value of the execution time of chunkji is

ii

iji

S

chunk

1

Since the actual power of workers available to the Grid
tasks varies over time, we have to forecast how i

changes, as explained next.

IV. THE 2-PHASE PREDICTION (2PP) STRATEGY

Our scheduling algorithm consists of two components:

the 2-Phase Prediction (2PP) strategy and the MRRS-

based scheduling algorithm. Before any scheduling round

commences, the 2PP strategy is invoked to estimate the

available CPU power (ESi) at each worker. In light of the

CPU power estimation the MRRS splits and dispatches

the appropriate load chunks at each round.

For the sake of readability, we drop the use of the

subscript i that refers to worker i in this section. In order

to estimate the next for a particular worker, we consider

the historically measured time series c1, c2,...,cn. Data

point ct is the value of at time t. This time series of is

sampled at some frequency (e.g., 0.1 Hz) during the

execution of a round. However, we are interested in

estimating for the upcoming round, not for the

upcoming time tick. Therefore, we need to compress the

original time series into interval time series by

aggregating the former as follows: If we denote D as the

aggregation degree, where Input P(t)

Worker

Output

Figure 2. M/M/1 queue

Queue

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 59

© 2007 ACADEMY PUBLISHER

D = execution time of a round × frequency of original
time series

Then the interval time series V1, V2, …,Vk (k = n/D
can be calculated as follows:

D
V

D

j

jDrkn

r

1

)1(

Each value Vr is the average value of the adaptive factor
over a round. The 2PP strategy operates on this Vr time
series in order to predict Vk+1 of the next round. Since
plays the role of a smoothing factor that progressively
adjusts the estimated CPU power available, we should
expect that its interval average, Vr , will oscillate between
some periods of stability and others of conversion as
shown in Fig. 3. During the stability stage, the available
CPU power exhibit less variation as it approaches some

constant. The time intervals (T1, T2) and (T3, T4) are

examples of the stable stages. During the conversion

stage, the available CPU power tends to experience major

changes due to an increase or decrease in the arrival rate

of local tasks. The time intervals (T2, T3) and (T4, T5) are

instances of conversion stages. Toggling between

different stages can be detected by comparing the current

absolute deviation VT - Mean with a threshold value

threshold. Algorithm 1 outlines the 2PP strategy where:
VT : the value of current data point.
VT-1: the value of last data point.
VT+1: the estimated value of the next data point.
Mean: the mean value of data points in current stage.
T: current time point
H: the starting point of current stage

The procedure UpdateMean() simply adjusts the mean

as follows:

1

...1

HT

VVV
Mean THH

The procedure UpdateThreshold() updates the

threshold as follows: if L denotes the number of historical

thresholds, and VT - Mean denotes the current

threshold value, then the updated threshold is:

The predicted value of VT+1 is used as an estimate for the

adaptive factor, , for the upcoming round. Subsequently,

we can compute the average speed, ESi, of workeri on the

next round as follows: ESi=Si(1- i)/ i

Algorithm 1: 2PP Strategy
Begin

CurrentStage = “stable”; threshold = 2(V2 – V1);
Repeat

if CurrentStage == “stable”
if VT - Mean >threshold

begin // Conversion stage is starting
UpdateThreshold();
CurrentStage = “conversion”;
VT+1 = 2.VT – VT-1;

end
else // Stable state, continue

begin
UpdateMean(); VT+1 = 2.Mean –VT ;

end
else // CurrentStage == “Conversion”

if (VT – VT-1) (VT-1-VT-2) <0
begin // Stable state is starting

CurrentStage = “stable”; H = T-1;
UpdateMean(); VT+1 = 2.VT – VT-1;

end
else // Conversion, continue

VT+1 = 2.VT – VT-1;
Until all of Wtotal is processed;

End

V. MRRS SCHEDULING

We sketch here the static scheduling algorithm MRRS

and refer the reader to [3,4] for more information and the

detailed derivations.

A. Induction Relation for Chunk Sizes

Fig. 4 depicts how the MRRS algorithm distributes work

chunks to workers. At time T1, the master starts sending

roundj+1 amount of load to all workers and the last

worker Wn starts working on chunk j concurrently. To

fully utilize the network bandwidth, the dispatching of the

master and the computation of Wn should finish at the

same time T2:

n

n

nj
n

i i

ij

i cLat
S

chunk

B

chunk
nLat

,

1

,1

If we replace chunkj+1,i and chunkj,n by their expression

we derive:

roundj+1 = roundj × +

where
n

i ii

i
nnn

SB

S
SBB

1

n

i i

i
n

i i

i
in

n

n

BB
nLatcLat

S 11

From the induction equation (1) we can compute:

roundj = j(round0 -) +

V

Mean

Mean

VT-2

VT-1

VT

Time

Stable StableT1 T2 T3 T4 T5

Figure 3. 2-Phase Prediction (2PP) Strategy

r =1,2,…,k

(1)

(2)

1L

MeanVthresholdL
threshold

T

60 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

where

n

n
n

i i

i

n

i i

i
inn

SB

B
nLatcLat

1

1

B. Determining the Parameters of the Initial Round

In this section we compute the optimal number of rounds,

m, and the size of the initial load fragment that should be

distributed to workers in the first round, round0. Let

F(m,round0) denote the makespan:

),(0roundmF

n

i

i

i

j

n

m

n
n

i i

i nLat
BSB

round
11

0
1

1

1

1 m

n

n

nn

n
S

cLatm

Our objective is to minimize the makespan F(m,round0) ,

subject to:

0
1

1
, 00 total

m

LroundmroundmG

This constrained optimization problem can be solved by

the Lagrangian method [12]. After solving this equation

system we obtain m. Using (3) one can then compute

round0. At last, using (2) and (1) we will obtain the value

of roundj and chunkj,i respectively (i=1..n, j=1..m).

C. Worker Selection Policy

Let V denote the original set of N available workers

(|V|=N). In this subsection we explain our resource

selection policy that aims at finding the best subset V*

(V* V, |V*|=n) that minimizes the makespan.

Policy I (>1)

When >1 we get

C

SB

SB
SB

BL
Vmakespan

Vi ii

ii
nn

ntotal
MRRS

*

)(

*)(

where C is a constant n

Vi

i cLatmnLatC .
*

we can see that under this policy, V* is the subset that

maximizes the objective function

*

*)(
Vi ii

ii

SB

SB
V

subject to >1 or

*Vi nn

n

ii

i

SB

B

SB

S

One can observe that this is a Binary Knapsack [13]

problem that can be solved using the Horowitz-Sahni

algorithm [13].

Policy II (1)

When <1, we have to find out the subset V* such that

minimizes the objective function ()

**

*
Vi ii

ii

Vi ii

i

SB

SB

SB

S
V

subject to <1 or

*Vi nn

n

ii

i

SB

B

SB

S

Similarly, when =1 we have to find out the subset V*

such that minimizes the objective function ()

subject to =1 or

nn

n

Vi ii

i

SB

B

SB

S

*

It can be seen that, this is an Integer Nonlinear

Optimization [13] problem. In [3,4] we have designed a

Branch and Bound algorithm, called OSS, to solve it.

Next, we shed light on some details germane to the

worker selection algorithm OSS.

To begin with, let us denote by V the set of subset of V:

V = {X: X V}.

LEMMA 1. Consider the following function:

}:max{:
1

XWBB
B

X

R

iik

k

V

Lower() is a lower bound of function (), i.e.

Lower(X) (X) (X V)

Proof. Assume that X = {W1, W2, ... Wr}. We have:
r

i

r

i ii

ii

ii

i
kik

SB

SB

SB

S
BBBi

1 1

:

)()(

1

1
XXL

SB

SB

SB

S

SB

SB

SB

S

r

i ii

ii

r

i ii

i

kk

kk

kk

k

Let us denote:

(3)

W1

Transfer

Compute

W2

Transfer

Compute

Transfer

Compute
Wn

T1 T2

nLatn

chunkj+1,1/B1

cLatn

chunkjn/Sn

roundj roundj+1 roundj+2

Figure 4. Scheduling process using the MRRS algorithm

Time

chunkj+1,2/B2

chunkj+1,n/Bn

Lower:

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 61

© 2007 ACADEMY PUBLISHER

û = (û1, û2, ... ûn) : the current solution, ûi {0,1}. ûi

=1 if worker i is selected (Wi belongs to V*), otherwise

ûi =0.

u = (u1, u2, ... un) : the best solution so far, ui {0,1}

â : the value of the current solution, i.e., the value of

() associated with the subset û

a : the value of the best solution so far, i.e., the value of

() associated with the subset u

Function Numerator (û) /* return () at the subset of V

that correspond with û */

Begin

y:=0;

for i:=1 to n do if (ûi =1) then y:=y + Si/ (Bi+Si);

return (y);

End;

Function pi (û) /* return () at the subset of V that
correspond with û */

Begin

y:=0;

for i:=1 to n do if (ûi =1) then y:=y + BiSi/ (Bi+Si);

return (Numerator(û) /y);

End;

Procedure OSS (V) /* Input:V; Output: u, a, V* */

Begin

a:= ; â := 0; j:=1;

While (true) Do

Begin

1. /* estimate the lower bound */

find };,...,,max{ 21max njj BBBB

Lower:=1/Bmax;

if a â + Lower then go to 2;

/* forward */

ûj:=1; â:= pi(û) ; j:=j+1;

if j n then go to 1.

if Numerator (û) > Z then

/* update the best solution */

begin u:= û ; a:= â; end;

/* remove worker j from the current solution */

ûn :=0; â:=pi(û);

2. /* back track */

find i=max{k | k<j and ûk =1}

if no such i then return;

ûi :=0; j:=i+1; go to 2 ;

End

End

In the OSS algorithm, a forward move consists of

inserting the next worker Wj into the current solution û. A

backtracking move consists of removing the last inserted

worker from the current solution. After a backtracking

move, the lower bound Lower() corresponding to the

current solution is computed and compared with the value

of the best solution so far, a, in order to check whether a

further forward move would lead to a better one. If that is

the case, a new forward move is performed, otherwise a

backtracking move follows. When the last worker Wn has

been considered, the best solution is updated. The

algorithm terminates when no further backtracking can be

performed.

D. The 2PP-based Dynamic Scheduling Algorithm

By integrating the prediction strategy (2PP) with the

static scheduling algorithm MRRS we can have the 2PP-

based dynamic scheduling algorithm as outlined next:

Algorithm 2: Proposed Scheduling Algorithm 2PP
Begin

Use OSS to select the set of workers V*;
j:=0;
Use MRRS to compute {chunk0i}
Deliver {chunk0i} to {Wi : Wi V*}
Repeat //Processing on round j

j:=j+1;
Use OSS to select the set of workers V*;
Use 2PP to estimate {ESi : Wi V*}
Use MRRS to compute {chunk0i}
Deliver {chunk0i} to {Wi : Wi V*}

Until Ltotal is finished

End

Algorithm 2 shows that we initially use OSS strategy

to find out the best subset V*. Subsequently, round0 and

chunk0i are computed using the MRRS’s initialization

procedure, then the chunks of the first round get

delivered. The algorithm keeps running until no workload

is remaining. The first step of each iteration is to examine

the optimality of the workers subset using the OSS

method. Next, the 2PP prediction is used to estimate the

ESi for each worker before the start of each round. At

last, we use the MRRS scheduling method to compute

roundj and chunkji in light of ESi.

VI. EVALUATION

A. The 2PP-based Scheduling Algorithm vs. the Static

Algorithms

As discussed in Section II, the UMR is deemed to be one

of the best static scheduling algorithms. Therefore, we

choose to compare the performance of the UMR with the

performance of our algorithm. To begin with, and using

theoretical proofs, we show in [3,4] that 2PP outperforms

UMR in all cases.

Here, we show that 2PP is better than UMR

experimentally. For this purpose, we developed a

simulator using the SIMGRID [14] toolkit, which has

been used for building simulations for various scheduling

algorithms, such as UMR and LP, in parallel and

distributed environments. We compare the performance

of 2PP with UMR using two experimental configurations.

Configuration I has the following setup:

Number of workers: 10
The average power of a worker: 40 Mflop/s
Total load (Ltotal): 1 Gflops.
The average service demand of a local task: 20s.

62 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

One of the chief differences between 2PP and UMR is

the ability of the latter to scheduling load chunks in light

of the estimated CPU power for each worker. Hence, and

in order to stress test the performance of the two

algorithms, we intensified the arrival rate of local tasks

on the strongest worker, iRMX, by ten times more than

any other worker. As a result, this worker becomes

practically the weakest worker with respect to the

available CPU power that can be granted to the foreign

Grid tasks. Unlike 2PP, UMR does not recognize this fact

as it assumes that iRMX continually offers all of its

capacity to the Grid tasks. Therefore, the UMR

mistakenly keeps sending the bigger chunks of workload

to iRMX, which leads to performance deterioration. Fig.

5 shows the performance of the UMR vs. our 2PP-based

algorithm under different arrival rate of local tasks. The

2PP algorithm keeps outperforming the UMR with

respect to the task makespan. Similarly, we experiment
with configuration II that has the following setup:

Number of workers: 90.
The average power of a worker: 60 Mflop/s.
Total load (Ltotal): 2 Gflop.
The average service demand of a local task: 40s.

Similar to what we did in configuration I, we exposed

the top 10% of the workers in configuration II to a higher

arrival rate of local tasks. Again, as shown in Fig. 6, 2PP

outperforms UMR as the latter is not aware of the run-

time availability of the actual CPU power of workers.

B. The 2PP-based Scheduling Algorithm vs. the Dynamic
Algorithms

As discussed earlier, the DSA algorithm [8] seems to

be the only dynamic scheduling algorithm for divisible

loads that we are aware of its existence. Therefore, we

compare the performance of our 2PP-based algorithm

with the DSA algorithm under the following experimental

configuration:

Number of workers: 50.
The average power of a worker: 20 to 60 Mflops/s.
Task Ratio: Grid task's size/Local task's size (see
Table 1).

Fig. 7 contrasts the makespans of the 2PP algorithm

vs. the DSA. From these results we can make the

following remarks:

With a low arrival rate of local tasks, DSA is faster
than 2PP. However, when the arrival rate exceeds a
certain threshold (about 0.5 tasks/s in our
experiments), 2PP outperforms DSA.
The makespan deviation between 2PP and DSA
increases proportionally to the increase in the arrival
rate of local tasks.

Consequently, we may conjecture that 2PP performs
better than other Grid schedulers especially when the
local applications at a worker machine compete with the
incoming Grid tasks.

VII. CONCLUSION

In this paper, we presented a dynamic scheduling

algorithm that is built on top of the static MRRS

algorithm after augmenting it with our 2PP strategy for

CPU power. We discussed the task execution model that

takes into account processing local as well as Grid tasks

at workers. We used this model to perform short term

forecasting of the available CPU power at each worker

Figure 5. Performance of 2PP vs. UMR under configuration I

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Arrival rate of the local tasks (tasks/second)

M
ak

es
p

an
 (

1
0

0
s)

2PP UMR

Figure 6. Performance of 2PP vs. UMR under configuration II

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

Arrival rate of the local tasks (tasks per second)

M
ak

es
p

an
 (

1
0
0
s)

2PP UMR

0

10

20

30

40

50

60

70

0.29 0.63 1.11 3.33

Arrival rate of the local tasks (task/s)

M
a
k
e
s
p

a
n

 (
1
0
0
s
)

DSA 2PP

Figure 7. Performance of 2PP vs. DSA

TABLE I.

PERFORMANCE OF 2PP VS. DSA

Arrival
rate of
local task

Makespan
of DSA
(100s)

Makespan
of 2PP
(100s)

Grid task's
size/local
task's size

3.33 57.62 39.13 1.6
1.11 47.13 29.1 1.94
0.63 21.34 18.76 2.38

0.29 6.37 8.21 3.33

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 63

© 2007 ACADEMY PUBLISHER

machine. Based on the estimated run-time computational

power available, we decide on how to distribute workload

chunks. The superior results that our algorithm exhibits

suggest that the 2PP-based algorithm is adaptive and

more suitable for dynamic, non-dedicated environments

such as the Grid.

ACKNOWLEDGEMENT

Our research is supported by the "Fostering Talent in

Emergent Research Fields'' program sponsored by the

Ministry of Education, Culture, Sports, Science and

Technology, Japan. This work has been also funded by

research grant #02-06-9-11/06 from the Scientific

Research Council of the UAE University (UAE), and

partially by project #2-002-06 from the Ministry of

Science and Technology of Vietnam.

REFERENCES

[1] V. Bharadwaj, D.Ghose, V.Mani, and T. G. Robertazzi,

Scheduling Divisible Loads in Parallel and Distributed

Systems, IEEE Computer Society Press, 1996.

[2] I. Foster and C. Kesselman, Grid2: Blueprint for a New

Computing Infrastructure, second ed. San Francisco,

Morgan Kaufmann Publisher, 2003.

[3] T.L. Nguyen, S. Elnaffar, T. Katayama, and T.B. Ho,

"MRRS: A More Efficient Algorithm for Scheduling

Divisible Loads of Grid Applications", IEEE/ACM

International Conference on Signal-Image Technology and

Internet-based Systems (SITIS'06), Dec. 2006, Tuynidia.

[4] T.L. Nguyen, S. Elnaffar, T. Katayama, and T.B. Ho,"

UMR2: A Better and More Realistic Scheduling Algorithm

for the Grid, International Conference on Parallel and

Distributed Computing and Systems (PDCS'06), Texas,

USA, pp. 432-437, ISBN: 0-88986-638-4, 2006.

[5] O. Beaumont, A. Legrand, and Y. Robert, “Scheduling

Divisible Workloads on Heterogeneous Platforms”,

Parallel Computing, Sep. 2003, Vol. 9.

[6] Y. Yang, K.V. Raart, and H. Casanova, “Multiround

Algorithms for Scheduling Divisible Loads”, IEEE

Transaction on Parallel and Distributed Systems, Nov.

2005, Vol. 16.

[7] Y. Yang and H. Casanova, “RUMR: Robust Scheduling

for Divisible Workloads”, HPDC'03 Seattle, USA, 2003.

[8] T.L. Nguyen, S. Elnaffar, T. Katayama, and H.T. Bao, “A

Scheduling Method for Divisible Workload Problem in

Grid Environments”, PDCAT'05, Dec. 2005, Dalian,

China.

[9] L. Yang, J. Schopf and I. Foster, “Homeostatic and

Tendency-based CPU Load Predictions”, IPDPS'03, Nice,

France, Apr. 2003.

[10] L. Yang, J. Schopf, and I. Foster, "Conservative

Scheduling: Using Predicted Variance to Improve

Scheduling Decision in Dynamic Environments",

SuperComputing, Nov. 2003.

[11] A. Papoulis and S. U. Pillai, Probability, Random

Variables and Stochastic Processes, McGraw-Hill 2002.

[12] D. P. Bertsekas, Constrained Optimization and Lagrange

Multiplier Methods, Belmont, Mass.: Athena Scientific,

1996.

[13] S. Martello and P. Toth, Knapsack problems : algorithms

and computer implementations, Chichester, West Sussex,

England : Wiley, 1990.

[14] A. Legrand, L. Marchal, and H. Casanova, “Scheduling

Distributed Applications: the SimGrid Simulation

Framework”, CCGrid'03, Japan, 12-15 May 2003.

Dr. Nguyen The Loc received his Ph.D. in 2007 from

the Graduate School of Information Science, Japan

Advanced Institute of Science and Technology (JAIST).

He got his B.S. and M.S. degrees from the Faculty of

Information Technology, Ha Noi University of

Technology (Ha Noi, Viet Nam) in 1998 and 2001,

respectively. Presently, he is an Assistant Professor at the

Faculty of Information Technology, Hanoi National

University of Education (HNUE) where his research

interests focus on Grid Scheduling Problems, Parallel and

Distributed Computing.

Dr. Said Elnaffar received his Ph.D. in Computer

Science from Queen’s University (ON, Canada) in

October, 2004. He got his M.Sc. in computer science

from Queen’s University in 1999. He worked as an

Adjunct Assistant Professor in the School of Computing

at Queen’s University (September-December 2004).

Presently, he is an Assistant Professor at the College of

Information Technology, UAE University (UAE). His

research interests include self-managing systems, Grid

systems, and web services. He had several research

collaborations with leading industrial corporations such

as IBM. He received several awards from different

industrial and governmental research agencies.

64 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

