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Abstract—Divisible loads are those workloads that can be 

partitioned by a scheduler into any arbitrary chunks. The 

problem of scheduling divisible loads has been defined for a 

long time, however, a handful of solutions have been 

proposed. Furthermore, almost all proposed approaches 

attempt to perform scheduling in dedicated environments 

such as LANs, whereas scheduling in non-dedicated 

environments such as Grids remains an open problem. In 

Grids, the incessant variation of a worker's computing 

power is a chief difficulty of splitting and distributing 

workloads to Grid workers efficiently.  In this paper, we 

first introduce a computation model that explains the 

impact of local (internal) tasks and Grid (external) tasks 

that arrive at a given worker. This model helps estimate the 

available computing power of a worker under the 

fluctuation of the number of local and Grid applications. 

Based on this model, we propose the CPU power prediction 

strategy. Additionally, we build a new dynamic scheduling 

algorithm by incorporating the prediction strategy into a 

static scheduling algorithm. Lastly we demonstrate that the 

proposed dynamic algorithm is superior to the existing 

dynamic and static algorithms by a comprehensive set of 

simulations.

Index Terms—CPU power prediction, divisible loads, Grid  

scheduling. 

I. INTRODUCTION

A Divisible Load [1] is the load that can be arbitrarily 

partitioned into any number of fractions. It is typically 

encountered in many domains of science and technology 

such as protein sequence analysis, simulation of cellular 

micro physiology, parallel and distributed image 

processing, video processing, and multimedia [2]. The 

loads of these applications are inherently colossal such 

that more than one worker is needed to handle them. The 

profusion of workers in a distributed computing 

environment such as the Grid [2] makes the latter a 

promising platform for processing divisible loads. As 

usual, this begs the typical scheduling question of how to 

divide a workload that resides at a computer (master) into 

chunks and how to assign these chunks to other Grid 

computers (workers) so that the execution time 

(makespan) is minimal. 

Numerous scheduling approaches and algorithms have 

been proposed, however, the majority of them assume 

that the computational resources at workers are dedicated. 

This assumption renders these algorithms impractical in 

distributed environments such as the Grid where 

computational resources are expected to serve local tasks, 

which have the higher priority, in addition to the Grid 

tasks. The purpose of our research is to develop an 

efficient multi round scheduling algorithm for non-

dedicated dynamic environments such as Grids.  

The contributions of our paper can be summarized as 

follows: 

Building a computation model that explains the 
performance of the worker under the impact of 
processing local applications as well as Grid tasks.  
Developing a new strategy, 2PP (Two Phase 
Prediction), for predicting the computing power of a 
worker, i.e., the fraction of the original CPU power 
that can be donated to the incoming Grid 
applications. 
Proposing a new dynamic scheduling algorithm by 
incorporating the prediction strategy 2PP into the 
MRRS (Multi-round Scheduling with Resource 

Selection) algorithm [3, 4], which is originally a 
static scheduling algorithm. 

The rest of the paper is organized as follows. Section II 

reviews some of the static and dynamic scheduling 

algorithms. In Section III, after defining the scheduling 

problem in non-dedicated environments we present a 

performance model for the computations that take place 

at workers. This model helps estimate the computing 

power of a worker under the fluctuation of local 

applications vs. Grid tasks. Section IV explains how our 

CPU power prediction strategy, 2PP, is built on top of 

this worker computation model. Section V reviews the 
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MRRS static algorithm and explains how to integrate it 

with 2PP in order to build our proposed dynamic 

scheduling algorithm. Section VI describes the 

experiments we have conducted in order to evaluate our 

work. Section VII concludes the paper. 

II. RELATED WORK

Most of the studies that focus on scheduling divisible 

loads are based on the Divisible Load Theory [1]. The 

goal of load scheduling is to minimize the overall 

execution time (hereafter called makespan) by finding an 

optimal strategy of splitting the original load received by 

the master computer into a number of chunks as well as 

distributing these chunks to the workers in the right order.  

The first scheduling algorithm, named MI (Multi-

Installment) [1], optimizes the makespan by exploiting 

the overlap between computation and communication 

processes. Beaumont [5] proposes another multi-round 

scheduling algorithm that fixes the execution time 

throughout each round. Yang et al. extend the MI 

algorithm by making it more realistic by factoring in the 

computation and communication latencies. Their UMR 

(Uniform Multi Round) algorithm [6] is ultimately based 

on the premise of making the total time of data transfer 

and execution the same in each round for each worker. 

This assumption enables them to analyze the constraints 

and determine the near-optimal number of rounds as well 

as the size of chunks in each round. Based on the 

theoretical analysis as well as simulation results [4], 

UMR exhibits the best performance among its family of 

algorithms. 

The MRRS (Multi-round Scheduling with Resource 

Selection) algorithm [3,4] extends the UMR by 

considering the network bandwidth and latency in 

addition to the computation capacity of workers. 

Furthermore, the MRRS is the first scheduling algorithm 

for divisible loads that is featured with a resource 

selection policy that finds the best subset of available 

computers.  

The above described algorithms are deemed static 

because they assume that the full computational capacity 

of workers is constantly available and can be readily 

tapped into, which makes them impractical for dynamic 

environments such as the Grid. Workers hooked to the 

Grid are supposed to handle locally arriving tasks, first, 

and donate their unused time to the external Grid tasks. 

As a result, any scheduling that assumes guaranteed CPU 

capacity of a worker is deemed implausible in this 

dynamic environment. 

The RUMR [7] algorithm is a step towards dynamicity 

as it shows tolerance towards errors in predicting the 

available CPU power using the Factoring method. 

However, all of the RUMR parameters are determined 

once before the RUMR starts and remain fixed 

afterwards, which makes RUMR a non-adaptive 

scheduling algorithm. Apparently, dynamic algorithms 

are more appropriate for Grids.  

To the best of our knowledge, the algorithm discussed 

in [8] is the first dynamic scheduling algorithm for 

divisible loads in non-dedicated environments. It employs 

the tendency-based prediction strategy described in [9,10] 

in order to be adaptive to the Grid. In this paper, we 

introduce a new dynamic algorithm, named 2PP, for 

which the theortical analysis and the experimental results 

show that it outperforms the previous static and dynamic  

algorithms. 

III. GRID COMPUTATION MODEL

A.  Heterogeneous Configuration 

We adopt the same computation model used in 

[1,5,6,7] where a master computer is connected to n
worker computers in a star-topology network. 

We assume that the master uses its network 

connection in a sequential fashion. i.e., it does not send 

chunks to some workers simultaneously. Workers can 

receive data from network and perform computation 

simultaneously [1]. The following notations will be used 
throughout this paper:

Wi: worker i
Ltotal: the total amount of workload that resides at the 
master. 
m: the number of scheduling rounds. 
chunkji : the fraction of total workload that the master 
delivers to Wi in round j (i = 1,...,n ; j = 1,...,m). 
Si: computation speed of Wi.
cLati: the fixed overhead time needed by Wi to start 

computation 

nLati : the overhead time incurred by the master to 

initiate a data transfer to Wi.

Bi: the data transfer rate of the connection link 
between the master and Wi.
ESi: estimated speed of worker i for Grid tasks on the 
next round. 
roundj: the fraction of workload dispatched during 
round j.
Tcompji: computation time required for Wi to process 

chunkji

Tcommj,i: communication time required for the 

master to send chunkji  to Wi

B.  Problem Statement 

The task scheduling problem in non-dedicated 

environments can be defined as follows. If we have: 

A total amount of divisible load Ltotal that resides at 

the master. 

Worker 1 

Master

Figure 1. Star-topology  

Worker i

Worker NWorker i+1 

... 

... 
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A non-dedicated computational platform consists of 

the master and n workers connected with each other 

by a star-topology network (Fig. 1).  

And dynamic availability of CPU capacity, i.e. CPU 

power Si of worker i varies over time ( i = 1,2,...,n), 

which was not the case in previous studies [1,5,6],  

Our ultimate question is: given the above platform 

settings, in what proportion should the workload Wtotal be 

split up among the heterogeneous, dynamic workers so 

that the overall execution time is minimum? 

Formally, we need to minimize the following objective 

function: 

minmax
1 1

,,1
,...2,1

i

k

m

j

ijk
ni

TcompTcomm

where the expression between brackets is the total 

running time, that is, the sum of waiting time, 

communication time and computation time of worker Wi.

C. Non-Dedicated Platform 

We use an M/M/1 queuing system [11] to model the 

activities that take place at the worker machine.  Local 

and Grid tasks arrive at workers in order to be processed 

(Fig. 2). If a Grid task cannot be served upon arrival, it 

joins the service queue whose capacity is assumed to be 

unlimited. This queuing system has the following 

characteristic: 

The input process. The arriving tasks consist of Grid 

tasks and local tasks. Grid tasks are the chunkji

portions of total load Ltotal, which are dispatched by 

the master. The local tasks are tasks that are produced 

by local applications (e.g. desktop applications) at the 

worker. The arrival of the local tasks at Wi is assumed 

to follow a Poisson distribution with an arrival rate i

and their service demands follow an exponential 

distribution with a service rate i . 

The service mechanism. During the execution of a 

Grid task on a certain worker, some local tasks may 

arrive causing to interrupt the execution of the lower 

priority Grid tasks. We consider the execution of the 

local tasks as preemptive, i.e. a local task must be 

executed until completion once it gets started. The 

local tasks are processed on a first-come-first-served 

basis.

The worker's capacity. From the Grid tasks’ point of 

view, the state of a worker alternates between 

unavailable and available depending on whether the 

worker is busy with a local task or not, respectively. 

As stated earlier, Si denotes the maximum computing 

power of worker Wi that can be donated to Grid tasks 

when the worker is absolutely available. 

The execution time Tcompji of chunkji on worker Wi can 

be expressed as: 

Tcompji = X1 + Y1 + X2 + Y2 + … + XNL + YNL 

where 
NL: the number of local tasks that arrive during the 
execution of chunkji

Yk: execution time of the local task k (k = 1,2,...,NL)
Xk: execution time of kth section of chunkji. We have: 

X1 + X2 +...+ XNL = chunkji / Si

From the M/M/1 queuing theory [11] we have: 

ii

k

i

jii
YE

S

chunk
NLE

1
;)(

Since NL and Yk are independent random variables (k = 
1,2,...,NL) we can derive 
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k
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where i = i/ i , which represents the CPU Utilization.  
i , i , i are representative on the long run but cannot be 

used to estimate the imminent execution time that will 
take place on a given worker. Therefore, we introduce the 
adaptive factor i, which represents the credibility of 
performance prediction associated with worker i and it is 
initialized to 1 at the beginning of the scheduling process 
(i.e., in the first round).  At the end of each round, i is 
updated as follows: i = FSi / ESi where FSi denotes the 
factually measured available CPU power. Now the 
expected value of the execution time of chunkji  is 

ii

iji

S

chunk

1

Since the actual power of workers available to the Grid 
tasks varies over time, we have to forecast how i

changes, as explained next.

IV. THE 2-PHASE PREDICTION (2PP) STRATEGY

Our scheduling algorithm consists of two components: 

the 2-Phase Prediction (2PP) strategy and the MRRS-

based scheduling algorithm. Before any scheduling round 

commences, the 2PP strategy is invoked to estimate the 

available CPU power (ESi) at each worker. In light of the 

CPU power estimation the MRRS splits and dispatches 

the appropriate load chunks at each round. 

For the sake of readability, we drop the use of the 

subscript i that refers to worker i in this section. In order 

to estimate the next  for a particular worker, we consider 

the historically measured time series c1, c2,...,cn. Data 

point ct is the value of  at time t. This time series of  is 

sampled at some frequency (e.g., 0.1 Hz) during the 

execution of a round. However, we are interested in 

estimating  for the upcoming round, not for the 

upcoming time tick. Therefore, we need to compress the 

original time series into interval time series by 

aggregating the former as follows: If we denote D as the 

aggregation degree, where  Input P( t)

Worker 

Output

Figure 2.   M/M/1 queue 

Queue 
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D = execution time of a round × frequency of original 
time series 

Then the interval time series V1, V2, …,Vk (k = n/D
can be calculated as follows: 

D
V

D

j

jDrkn

r

1

)1(

Each value Vr is the average value of the adaptive factor 
over a round. The 2PP strategy operates on this Vr time 
series in order to predict Vk+1 of the next round. Since 
plays the role of a smoothing factor that progressively 
adjusts the estimated CPU power available, we should 
expect that its interval average, Vr , will oscillate between 
some periods of stability and others of conversion as 
shown in Fig. 3. During the stability stage, the available 
CPU power exhibit less variation as it approaches some

constant. The time intervals (T1, T2) and (T3, T4) are 

examples of the stable stages. During the conversion 

stage, the available CPU power tends to experience major 

changes due to an increase or decrease in the arrival rate 

of local tasks. The time intervals (T2, T3) and (T4, T5) are 

instances of conversion stages. Toggling between 

different stages can be detected by comparing the current 

absolute deviation VT - Mean  with a threshold value 

threshold. Algorithm 1 outlines the 2PP strategy where: 
VT : the value of current data point.  
VT-1: the value of last data point. 
VT+1: the estimated value of the next data point.  
Mean: the mean value of data points in current stage. 
T: current time point  
H: the starting point of current stage 

The procedure UpdateMean() simply adjusts the mean 

as follows: 

1

...1

HT

VVV
Mean THH

The procedure UpdateThreshold() updates the 

threshold as follows: if L denotes the number of historical 

thresholds, and VT - Mean  denotes the current 

threshold value, then the updated threshold is: 

The predicted value of VT+1 is used as an estimate for the 

adaptive factor, , for the upcoming round. Subsequently, 

we can compute the average speed, ESi, of workeri on the 

next round as follows: ESi=Si(1- i)/ i

Algorithm 1: 2PP Strategy 
Begin 

CurrentStage = “stable”; threshold = 2(V2 – V1);
Repeat 

if CurrentStage == “stable”
if VT - Mean >threshold

begin // Conversion stage is starting 
UpdateThreshold(); 
CurrentStage = “conversion”;
VT+1 = 2.VT – VT-1;

end
else // Stable state, continue 

begin 
UpdateMean(); VT+1 = 2.Mean –VT ; 

end
else  // CurrentStage == “Conversion”

if  (VT – VT-1 ) (VT-1-VT-2) <0 
begin // Stable state is starting

CurrentStage = “stable”; H = T-1; 
UpdateMean(); VT+1 = 2.VT – VT-1;

end
else  // Conversion, continue

VT+1 = 2.VT – VT-1;
Until all of Wtotal is processed; 

End

V. MRRS SCHEDULING

We sketch here the static scheduling algorithm MRRS 

and refer the reader to [3,4] for more information and the 

detailed derivations.  

A.  Induction Relation for Chunk Sizes 

Fig. 4 depicts how the MRRS algorithm distributes work 

chunks to workers. At time T1, the master starts sending 

roundj+1 amount of load to all workers and the last 

worker Wn starts working on chunk j concurrently. To 

fully utilize the network bandwidth, the dispatching of the 

master and the computation of Wn should finish at the 

same time T2:

n

n

nj
n

i i

ij

i cLat
S

chunk

B

chunk
nLat

,

1

,1

If we replace chunkj+1,i and chunkj,n by their expression 

we derive: 

roundj+1 = roundj ×   + 

where 
n

i ii

i
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S
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From the induction equation (1) we can compute: 

roundj =   j(round0 - ) + 

V

Mean

Mean 

VT-2

VT-1

VT

Time

Stable StableT1 T2 T3 T4 T5

Figure 3.   2-Phase Prediction (2PP) Strategy

r =1,2,…,k

(1)

(2)

1L

MeanVthresholdL
threshold
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where    

n

n
n

i i

i
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B.  Determining the Parameters of the Initial Round 

In this section we compute the optimal number of rounds, 

m, and the size of the initial load fragment that should be 

distributed to workers in the first round, round0. Let 

F(m,round0) denote the makespan: 

),( 0roundmF

n
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i

i

j

n

m
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i nLat
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round
11

0
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nn
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Our objective is to minimize the makespan F(m,round0) , 

subject to:  

0
1

1
, 00 total

m

LroundmroundmG

This constrained optimization problem can be solved by 

the Lagrangian method [12]. After solving this equation 

system we obtain m. Using (3) one can then compute 

round0. At last, using (2) and (1) we will obtain the value 

of roundj and chunkj,i respectively (i=1..n, j=1..m). 

C.  Worker Selection Policy  

Let V denote the original set of N available workers 

(|V|=N). In this subsection we explain our resource 

selection policy that aims at finding the best subset V*

(V* V, |V*|=n) that minimizes the makespan.  

Policy I (  >1) 

When >1 we get 

C
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SB
SB

BL
Vmakespan

Vi ii

ii
nn

ntotal
MRRS

*

)(

*)(

where C is a constant n

Vi

i cLatmnLatC .
*

we can see that under this policy, V* is the subset that 

maximizes the objective function 

*

*)(
Vi ii

ii
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SB
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subject to  >1 or 

*Vi nn

n
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i
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S

One can observe that this is a Binary Knapsack [13] 

problem that can be solved using the Horowitz-Sahni 

algorithm [13].  

Policy II ( 1)

When <1, we have to find out the subset V* such that 

minimizes the objective function ()  

**

*
Vi ii
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Vi ii
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S
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Similarly, when =1 we have to find out the subset V* 

such that minimizes the objective function ()

subject to =1 or

nn

n

Vi ii
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B

SB

S

*

It can be seen that, this is an Integer Nonlinear 

Optimization [13] problem. In [3,4] we have designed a 

Branch and Bound algorithm, called OSS, to solve it. 

Next, we shed light on some details germane to the 

worker selection algorithm OSS. 

To begin with, let us denote by V the set of subset of V:

V = {X: X V}.

LEMMA 1.  Consider the following function: 

}:max{:
1

XWBB
B

X

R

iik

k

V

Lower() is a lower bound of function (), i.e.

Lower(X) (X)   ( X V)

Proof. Assume that X = {W1, W2, ... Wr}. We have: 
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Let us denote: 

(3)

W1

Transfer

Compute

W2

Transfer

Compute

Transfer

Compute
Wn

T1 T2

nLatn

chunkj+1,1/B1
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chunkjn/Sn

roundj roundj+1 roundj+2

Figure 4.  Scheduling process using the MRRS algorithm 
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û = (û1, û2, ... ûn) : the current solution, ûi  {0,1}. ûi

=1 if worker i is selected (Wi belongs to V*), otherwise 

ûi =0. 

u = (u1, u2, ... un) : the best solution so far, ui  {0,1} 

â : the value of the current solution, i.e., the value of 

() associated with the subset û

a : the value of the best solution so far, i.e., the value of 

() associated with the subset u

Function Numerator (û) /* return () at the subset of V 

that correspond with û  */ 

Begin 

y:=0;  

for i:=1 to n do  if (ûi =1) then y:=y + Si/ (Bi+Si); 

return (y);

End;

Function pi (û)   /* return () at the subset of V that 
correspond with û  */ 

Begin 

y:=0;  

for i:=1 to n do  if (ûi =1) then y:=y + BiSi/ (Bi+Si); 

return (Numerator(û) /y); 

End;

Procedure OSS (V)     /* Input:V; Output: u, a, V* */

Begin 

a:=  ; â := 0; j:=1;  

While (true) Do

Begin 

1.    /* estimate the lower bound */ 

find };,...,,max{ 21max njj BBBB

Lower:=1/Bmax;

if a â + Lower then go to 2; 

/* forward */ 

ûj:=1; â:= pi(û) ; j:=j+1;

if j n then go to 1. 

if Numerator (û) > Z then

/* update the best solution */ 

begin u:= û ; a:= â; end;

/* remove worker j from the current solution */ 

ûn :=0;  â:=pi(û); 

2.    /* back track  */ 

find i=max{k | k<j and ûk =1} 

if no such i then return;

ûi :=0;  j:=i+1; go to 2 ; 

End

End

In the OSS algorithm, a forward move consists of 

inserting the next worker Wj into the current solution û. A 

backtracking move consists of removing the last inserted 

worker from the current solution. After a backtracking 

move, the lower bound Lower() corresponding to the 

current solution is computed and compared with the value 

of the best solution so far, a,  in order to check whether a 

further forward move would lead to a better one. If that is 

the case, a new forward move is performed, otherwise a 

backtracking move follows. When the last worker Wn has 

been considered, the best solution is updated. The 

algorithm terminates when no further backtracking can be 

performed.  

D.  The 2PP-based Dynamic Scheduling Algorithm  

By integrating the prediction strategy (2PP) with the 

static scheduling algorithm MRRS we can have the 2PP-

based dynamic scheduling algorithm as outlined next: 

Algorithm 2: Proposed Scheduling Algorithm 2PP 
Begin 

Use OSS to select the set of workers V*;
j:=0; 
Use MRRS to compute {chunk0i}
Deliver {chunk0i} to {Wi : Wi V*} 
Repeat   //Processing on round  j

j:=j+1; 
Use OSS to select the set of workers V*; 
Use 2PP to estimate {ESi : Wi V*}  
Use MRRS to compute {chunk0i}
Deliver {chunk0i} to {Wi : Wi V*} 

Until Ltotal is finished

End

Algorithm 2 shows that we initially use OSS strategy 

to find out the best subset V*. Subsequently, round0 and 

chunk0i are computed using the MRRS’s initialization 

procedure, then the chunks of the first round get 

delivered. The algorithm keeps running until no workload 

is remaining. The first step of each iteration is to examine 

the optimality of the workers subset using the OSS 

method. Next, the 2PP prediction is used to estimate the 

ESi for each worker before the start of each round. At 

last, we use the MRRS scheduling method to compute 

roundj and chunkji in light of ESi.

VI. EVALUATION

A.  The 2PP-based Scheduling Algorithm vs. the Static 

Algorithms 

As discussed in Section II, the UMR is deemed to be one 

of the best static scheduling algorithms. Therefore, we 

choose to compare the performance of the UMR with the 

performance of our algorithm. To begin with, and using 

theoretical proofs, we show in [3,4] that 2PP outperforms 

UMR in all cases.  

Here, we show that 2PP is better than UMR 

experimentally. For this purpose, we developed a 

simulator using the SIMGRID [14] toolkit, which has 

been used for building simulations for various scheduling 

algorithms, such as UMR and LP, in parallel and 

distributed environments. We compare the performance 

of 2PP with UMR using two experimental configurations. 

Configuration I has the following setup: 

Number of workers: 10 
The average power of a worker: 40 Mflop/s 
Total load (Ltotal): 1 Gflops. 
The average service demand of a local task: 20s. 
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One of the chief differences between 2PP and UMR is 

the ability of the latter to scheduling load chunks in light 

of the estimated CPU power for each worker. Hence, and 

in order to stress test the performance of the two 

algorithms, we intensified the arrival rate of local tasks 

on the strongest worker, iRMX, by ten times more than 

any other worker. As a result, this worker becomes 

practically the weakest worker with respect to the 

available CPU power that can be granted to the foreign 

Grid tasks. Unlike 2PP, UMR does not recognize this fact 

as it assumes that iRMX continually offers all of its 

capacity to the Grid tasks. Therefore, the UMR 

mistakenly keeps sending the bigger chunks of workload 

to iRMX, which leads to performance deterioration. Fig. 

5 shows the performance of the UMR vs. our 2PP-based 

algorithm under different arrival rate of local tasks. The 

2PP algorithm keeps outperforming the UMR with 

respect to the task makespan. Similarly, we experiment 
with configuration II that has the following setup: 

Number of workers: 90. 
The average power of a worker: 60 Mflop/s. 
Total load (Ltotal): 2 Gflop.  
The average service demand of a local task: 40s. 

Similar to what we did in configuration I, we exposed 

the top 10% of the workers in configuration II to a higher 

arrival rate of local tasks. Again, as shown in Fig. 6, 2PP 

outperforms UMR as the latter is not aware of the run-

time availability of the actual CPU power of workers. 

B.  The 2PP-based Scheduling Algorithm vs. the Dynamic 
Algorithms 

As discussed earlier, the DSA algorithm [8] seems to 

be the only dynamic scheduling algorithm for divisible 

loads that we are aware of its existence. Therefore, we 

compare the performance of our 2PP-based algorithm 

with the DSA algorithm under the following experimental 

configuration: 

Number of workers: 50. 
The average power of a worker: 20 to 60 Mflops/s. 
Task Ratio: Grid task's size/Local task's size (see 
Table 1).  

Fig. 7 contrasts the makespans of the 2PP algorithm 

vs. the DSA. From these results we can make the 

following remarks: 

With a low arrival rate of local tasks, DSA is faster 
than 2PP. However, when the arrival rate exceeds a 
certain threshold (about 0.5 tasks/s in our 
experiments), 2PP outperforms DSA. 
The makespan deviation between 2PP and DSA 
increases proportionally to the increase in the arrival 
rate of local tasks.  

Consequently, we may conjecture that 2PP performs 
better than other Grid schedulers especially when the 
local applications at a worker machine compete with the 
incoming Grid tasks. 

VII. CONCLUSION

In this paper, we presented a dynamic scheduling 

algorithm that is built on top of the static MRRS 

algorithm after augmenting it with our 2PP strategy for 

CPU power. We discussed the task execution model that 

takes into account processing local as well as Grid tasks 

at workers. We used this model to perform short term 

forecasting of the available CPU power at each worker 

Figure 5.   Performance of 2PP vs. UMR under configuration I
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Figure 6.  Performance of 2PP vs. UMR under configuration II
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Figure 7.   Performance of 2PP vs. DSA  

TABLE I. 

PERFORMANCE OF 2PP VS. DSA 

Arrival 
rate of 
local task 

Makespan 
of DSA 
(100s) 

Makespan 
of 2PP 
(100s) 

Grid task's 
size/local
task's size 

3.33 57.62 39.13 1.6 
1.11 47.13 29.1 1.94 
0.63 21.34 18.76 2.38 

0.29 6.37 8.21 3.33 
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machine. Based on the estimated run-time computational 

power available, we decide on how to distribute workload 

chunks. The superior results that our algorithm exhibits 

suggest that the 2PP-based algorithm is adaptive and 

more suitable for dynamic, non-dedicated environments 

such as the Grid. 
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