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Abstract— Likelihood ratio tests are used in a range
of detection-estimation problems, but normally cannot be
extended to cases where training data volume T is smaller
than the dimension M of the observations. We propose
a non-degenerate normalized LR test that can be used
for detection-estimation in such under-sampled training
conditions. The LR is formed based on non-degenerate
band extension of the original degenerate sample covariance
matrix. This LR is then applied within a generalized likeli-
hood ratio test framework to an array processing problem
where the presence of closely spaced signal can be robustly
detected, but their individual directions of arrival cannot be
fully resolved by subspace-based DOA techniques such as
MUSIC. In that case, MUSIC produces direction of arrival
estimates for some sources with very large errors (outliers).
We use the under-sampled likelihood ratio to detect the
presence of such MUSIC outliers and provide corrected
DOA estimates.

Index Terms— maximum likelihood estimation, direction
of arrival estimation, array signal processing, parameter
estimation, signal resolution.

I. INTRODUCTION

Adaptive detection-estimation problems frequently oc-
cur when the dimensionality of the observation M is
significantly larger than representative training samples T .
In such cases, additional a priori assumptions are often
imposed to improve detection-estimation performance.

In cases where measured signals are sufficiently struc-
tured to occupy a finite rank within the observation co-
variance matrix, a number of well-known signal subspace
techniques can be utilized. Specifically, when the number
m of the covariance matrix eigenvalues that exceed the
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minimal eigenvalue (equal to ambient white noise power)
is smaller then the matrix dimension M (m < M ), we can
introduce the following form for admissible covariance
matrices:

R = σ2
0IM + RS ; RS = UmΛ0UH

m ; Λ0 = Λm − σ2
0Im,

(1)
where Um ∈ CM×m and Λm ∈ Rm×m

+ are the (M×m)-
variate and (m×m)-variate matrices of signal subspace
eigenvectors and (positive) eigenvalues respectively.

For such low-rank covariance matrices, the minimum
number of independent identically distributed (i.i.d.) train-
ing samples to localize the signal subspace is the dimen-
sion m rather than the larger observation length M .

A. Classic Low-Rank Estimation Methods

Since for many problems of interest, m is significantly
smaller than M , a number of adaptive filtering techniques
exploit the resultant reduced data training volume require-
ment, including the Hung-Turner fast projection adaptive
beamformer [3], [4], and “fast maximum likelihood”
[5]. In addition, the well-known loaded sample matrix
inversion (LSMI) algorithm in [6], [7] uses diagonal
loading in this case to regularize eigenvectors outside the
signal subspace and achieve performance (under some
mild eigenvalue assumptions) comparable to standard
sample matrix inversion techniques, but with considerably
reduced sample support requirements, including the case
where the number of training samples T is less than M .
It has been shown in [6], [8] that average SNR losses
for the LSMI technique compared with the clairvoyant
filter are equal to approximately 3dB for sample support
T & 2m, while for the traditional SMI technique the
required sample support is equal to T & 2M for the
same average loss [9].

In addition to adaptive filtering, a number of adaptive
direction-of-arrival (DOA) estimation techniques exploit
the covariance matrix structure given in (1). It is well
known that for strong enough signal-to-noise ratio, sub-
space techniques such MUSIC, ESPRIT or the Minimum-
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Norm algorithm can provide accurate DOA estimates for
cases where the number of training samples T is equal
or greater than the number of independent sources m.
MLE methods are also available in the under-sampled
case, based on formation and maximization of a likelihood
function.

B. Likelihood Ratio Formulation

For multi-variate complex Gaussian training data
xt, t = 1, . . . , T , xt ∼ CN (0, R0) the likelihood function
w.r.t parametric description of its covariance matrix R is:

L(XT , R) =
[

1
π detR

exp{−Tr[R-1R̂]}
]M

(2)

where

R̂ =
1
T

T∑
j=1

xjx
H
j . (3)

The standard normalization of the likelihood function

LR(R) =
L(XT , R)

maxR L(XT , R)
(4)

leads to a likelihood ratio (after the methodology in [10])

LR(R) =

[
detR-1R̂ expM

exp{TrR-1R̂}

]M

6 1 (5)

since

max
R

L(XT , R) =
[
exp (−M)
π det R̂

]M

, for R = R̂ (6)

While MLE can be executed on the likelihood function
(2) or it’s normalized likelihood ratio version (5) in
the over-sampled (T > M ) regime, only the likelihood
function (2) can be maximized in the under-sampled
(T < M ) regime, since det R̂ = 0 in that case and the
normalization used in (5) is no longer available.

The lack of a classically normalized likelihood ratio
in the under-sampled regime means that a wide body
of likelihood ratio hypothesis testing approaches used
in both detection and estimation are not available or
require modification in this circumstance. In particular,
a variant of generalized likelihood ratio testing (GLRT)
demonstrated by one of the authors in [11] is reliant on
the invariance property of LR(R) (5):

f [LR(R0)] = f

[
det Ĉ expM

exp{Tr Ĉ}

]
(7)

where Ĉ ∼ CW(T > M,M, IM ), i.e. Ĉ is a random
matrix with scenario-free complex Wishart p.d.f., fully
specified by T and M [12]. In addition, since the estimate
with a maximal likelihood by definition has an LR value
greater than the true solution (otherwise MLE would be
error-free), we can terminate any LR search process once
we exceed a threshold based on the scenario-free LR p.d.f.
These properties allows one to address many complicated
detection-estimation problems that would not be prop-
erly addressed by conventional detection-estimation tech-
niques [13], [14]. The key element of these approaches

is the ability to compare specific likelihood ratios to
bounds based on the underlying scenario-free likelihood-
ratio p.d.f., rather than relying on global (and therefore
potentially difficult or even impossible) maximization.

C. Likelihood Ratio Tests in the Under-Sampled Case

Obviously, for under-sampled training conditions we
would like to have a similar instrument, but the standard
approach cannot be used, since the sample covariance
matrix is degenerate when T < M . For the case with
under-sampled training data that belong to the family (1)
we would like a likelihood ratio LRu(R) that satisfies the
following conditions.

a) Normalization condition:

0 < LRu(R) 6 constant (8)

b) Transition behavior: LRu(R) should be an “ana-
lytic extension” of the LR(R) (5), ie

LRu(R) = LR(R) for T > M (9)

c) Invariance property:

f [LRu(R0)] = f(M,T ) (10)

Derivation of a LRu(R) that meets these requirements
is introduced in Section II. In section III, we utilize the
undersampled LR for a “prediction and cure” methodol-
ogy in the presence of MUSIC performance breakdown.
And in section IV, we provide simulation results for a
particular MUSIC performance breakdown example.

II. LIKELIHOOD RATIO FOR UNDER-SAMPLED
GAUSSIAN SCENARIO

The covariance matrix R̂ in (3) is rank-deficient when
T < M and therefore is described by the anti-Wishart
distribution [15]. We wish to form a full rank-extension
of R̂ for use in the under-sampled likelihood ratio.

A. Formulation of the Under-Sampled LR

In addition to the original sample matrix, the trans-
formed (whitened) sample matrix

Ĉ = R
− 1

2
0

T∑
j=1

xjx
H
j R

− 1
2

0 ; xj ∼ CN (0, R0) (11)

is described by the anti-Wishart p.d.f. (denoted
ACW(T < M, M, IM )):

KT,M

(
det Ĉ[T ]

)T−M

e− Tr Ĉ
M∏

l=T+1

M∏
p=T+1

δ

(
det Ĉ[T ]lp

det Ĉ[T ]

)
(12)

Here KT,M is a normalization constant and Ĉ[T ] is the
upper left hand T × T sub-matrix of the original matrix
Ĉ:

Ĉ =

 Ĉ[T ] ∗

∗ ∗

 . (13)
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Furthermore, for each l, p > T the (T + 1)× (T + 1)
matrix Ĉ[T ]lp in (12) is generated by adjoining the l-th
row and the p-th column of Ĉ to Ĉ[T ]:

Ĉ[T ]lm =


Ĉ1p

Ĉ[T ]

...

ĈTp

Ĉl1 · · · ĈlT Ĉlp

 . (14)

The number of independent delta-functions in (12) is
(M − T )2 and therefore, for T < M , there are only
(2MT−T 2) real-valued independent entries within matrix
Ĉ, namely the first T rows or columns of this matrix (or
any set of entries with the same number of real-valued
degrees of freedom) which uniquely specifies the entire
matrix Ĉ with rank T .

Strictly speaking, any under-sampled likelihood ratio
should involve all independent entries within Ĉ that
uniquely specify this matrix, and therefore any test that
considers a subset ΩĈ of the covariance matrix Ĉ entries
with a smaller number of (real-valued) degrees of freedom
(DOF):

DOF (ΩĈ) < DOF (Ĉ) = 2MT − T 2, (15)

should be treated as an “information-missing” one.
On the other hand, the “low rank” covariance matrix

R0 in (1) which defines our admissible set of covariance
matrices is also described by the limited number of
degrees of freedom

DOF (R̂0) = 1 + 2Mm−m2 (16)

where (2Mm−m2) is the number of DOF that uniquely
describe the rank m signal counterpart RS of the matrix
R0. Therefore, if the number of independent elements
in the subset ΩR̂ of R̂ considered for hypothesis testing
regarding RS in (1) exceeds DOF (RS), then one can ex-
pect that consistent (with SNR →∞) testing is possible,
even if some degrees of freedom available in Ĉ are not
utilized. In fact, this statement is just another version of
the well-known requirement on a sample support (T > m)
for “low-rank” covariance matrix R0.

Therefore, for m < T < M , rather than the first T
rows or columns, let we consider a (2T − 1) wide band
of the matrix R̂:

ΩR̂ : [r̂ij ] |i− j| 6 T − 1; R̂ = [r̂ij ] i, j = 1, . . . M.(17)

Note that the number of real-valued degrees of freedom
for this band is equal to

DOF (R̂B(T )) = 2MT − T 2 − (M − T ) (18)

and is only (M −T ) degrees short from DOF(R̂) in (15).
Since ΩR̂ does not uniquely specify the rank T matrix R̂,
the band matrix [rij ] |i− j| 6 T − 1 may be completed
in different ways. Thus by giving up a small number
of degrees of freedom and no longer fully specifying
R̂, we open up a series of possible extensions to the
band matrix, including the original degenerate matrix R̂,

but also a number of non-degenerate completions. The
band extension we wish to consider is the one with the
maximal determinant, which is specified by the Dym-
Gohberg band-extension method [16], [17].

Theorem 1: Given an M -variate Hermitian matrix
R̂ ≡ {r̂ij} i, j = 1, . . . ,M , suppose that r̂i,i . . . r̂i,i+p

...
...

r̂i+p,i . . . r̂i+p,i+p

 > 0, for i = 1, . . . ,M − p

(19)
for q = 1, . . . ,M let Ŷq,q

...

ŶL(q),q

 =

 r̂q,q . . . r̂q,L(q)

...
...

r̂L(q),q . . . r̂L(q),L(q)


-1  1

0
...
0


(20)

 ẐΓ(q),q

...

Ẑqq

 =

 r̂Γ(q),Γ(q) . . . r̂Γ(q),q

...
...

r̂q,Γ(q) . . . r̂q,q


-1  0

...
0
1


(21)

where L(q) = min{M, q+p} and Γ(q) = max{1, q−p}.
Furthermore, let the M -variate triangular matrices U and
V be defined as

V̂ij ≡

{
ŶijŶ

− 1
2

jj for j 6 i 6 L(j)
0 otherwise

(22)

Ûij ≡

{
ẐijẐ

− 1
2

jj for Γ(j) 6 i 6 j

0 otherwise
(23)

then the M -variate matrix given by

R̂(p) = (ÛH)-1Û -1 = (V̂ H)-1V̂ -1 (24)

is the unique p.d. Hermitian matrix extension that satisfies
the following condition:{

{R̂(p)}ij = r̂ij for |i− j| 6 p,

{(R̂(p))-1}ij = 0 for |i− j| > p.
(25)

A MATLAB code snippet is provided in the Appendix
which executes this band extension.

In [17], [18] it was proven that of all band extensions,
extension (25) has the maximal determinant, and therefore
represents a maximum entropy extension. This extension
also uniquely has the property

det[R̂(p)]-1 =
M∏

q=1

Ŷqq =
M∏

q=1

eT
q R̂-1

q eq (26)

where R̂q is the (L(q)−q+1)×(L(q)−q+1) Hermitian
central block matrix in R̂, specified in (20). One can see
that the Dym-Gohberg band extension method, applied
to rank-deficient under-sampled versions of the sample
matrix R̂ (3), transforms this matrix into a positive definite
Hermitian matrix R̂(p) which within the (2p + 1)-wide
band has exactly the same elements as the sample matrix
R̂. Moreover, this p.d. matrix R̂(p) is uniquely specified
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by all different (p+1)-variate central block matrices R̂q,
and the only necessary and sufficient condition for such
transformations to exist, is the positive definiteness of all
(p + 1)-variate submatrices R̂q in (19).

Let p 6 T − 1. Then for all m in (1) such that
m < p 6 T −1, the number of degrees of freedom within
the signal subspace RS is less than the degrees of freedom
within the transformed sample matrix. In addition, the
minimal eigenvalue in all (p + 1)-variate matrices Rq

is equal to the white noise power σ2
0 in (1), ensuring

positive definiteness. For this reason, we can introduce the
following likelihood ratio Λ(p)

0 (R) for our under-sampled
scenario:

Λ(p)
0 (R) =

[
det(R̂(p)[R(p)]-1) expM

exp{Tr R̂rR-1}

] 1
M

(27)

where the LR is raised to the power /frac1M rather than
M merely to place the LR for typical circumstances into a
reasonable range. Here R(p) is the order p Dym-Gohberg
band transformation of the tested positive definite covari-
ance matrix model R, which has the properties

R(p) = DGp(R); (R(p)
ij ) = rij for |i− j| 6 p

[(R(p))-1]ij = 0 for |i− j| > p
(28)

R̂r = lim
α→0

1
T

(αI + XT XH
T ); XT = {x1, . . . , xT }.

(29)
The loading factor α is sufficiently small, such that

DG(R̂) = DG(R̂r) (30)

which means that α should be negligible:

α � min
q

λmin(R̂q) (31)

An alternative approach to the infinitesimal loading (not
explored here further) would be to use the trace of the
whitened matrix Ĉ as a normalization in the denominator
instead. Also note that Λ(p)

0 (R) is dependent on the
determinant of R̂(p) which in (26) is given as a function
of R̂q block submatrices. Therefore, we do not need to
explicitly fully construct the Dym-Gohberg extensions for
Λ(p)

0 (R) calculation.

B. Properties of the Under-Sampled LR

Let us now demonstrate that the LR given in (27) meets
the requirement (a)− (c) in (8)-(10).

Proper LR Normalisation (requirement a)).

max Λ(p)
0 < exp 1; Λ(p)

0 = Λ(p)
0 (R̂r) = 1 (32)

Indeed, for R̂r that satisfies (29)-(31), we have

lim
α→0

Tr R̂r[R̂r + αI]-1 = T
[
1− αTr {(XH

T XT )-1}
]

> 0
(33)

lim
α→0

det[R̂(p)
r DGp[R̂r + αI]-1] = 1. (34)

Transition to the Conventional LR (requirement b)).

Obviously, for p = M − 1, T > M , DG{R̂} = R̂,
while Tr R̂rR = Tr R̂R for α that satisfies (31).

Scenario Independence (requirement c)).

We have to demonstrate that for the actual covariance
matrix R = R0, the p.d.f. for

Λ(p)
0 (R0) =

[
det(R̂(p)(R(p)

0 )-1) expM

exp{Tr R̂r(R0)-1}

] 1
M

(35)

does not depend on R0, and is fully specified by
parameters M , T , and p.

Theorem 2: (see Theorem 2 in [19])
Let R0 be the true covariance matrix of the training

data XT ∼ CWT (0, R0). Then the p.d.f. of Λ(p)
0 (R0) does

not depend on the scenario, and can be expressed as the
p.d.f. of a product of 2M independent random numbers
αq and Ωq:

Λ(p)
0 (R0) = exp 1.

[
M∏

q=1

Ωqαq

] 1
M

(36)

where

αq ∼
α

(T−ν−1)
q (1− αq)

(ν−1)

B[ν, T − ν]
1 6 ν ≡ L(q)− q 6 p

(37)

Ωq =
Cqq

T
exp

[
−Cqq

T

]
, Cqq ∼

CT−1
qq

Γ(T )
exp(−Cqq)

(38)
The l-th moment of Λ(p)

0 (R0) is

ε
{[

Λ(p)
0 (R0)

]l}
=

=
TTM exp(l)[

T + l
M

](TM+l)

M∏
q=1

Γ
(
T + l

M − ν(q)
)

Γ(T − ν(q))
(39)

Note that loading factor α → 0 is introduced in R̂r to
secure proper transition to conventional LR(R), so that

lim Tr R̂rR̂
-1
r = M (40)

but it needs to remain small enough for

det R̂(p)
-1

det DGp(αI0 + R̂) → 1. (41)

At α = 0

Tr R̂[I −XT (XH
T XT )−1XH

T ] = 0, (42)

so the term exp(M) in (35) is not required.
The above LR extends LR-based hypothesis test-

ing techniques, including the GLRT-based detection-
estimation framework outlined in Section I, into the
important under-sampled domain. It should be noted that
this under-sampled likelihood ratio is not the only possible
formulation. We have introduced a different LR based on
a projection technique in [20], and a number of other test
statistics are available in the under-sampled domain (see
for example [21]). In the latter example, these non-LR
ad-hoc tests usually do not satisfy all three requirements
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given in (8)-(10) without perturbation, and their justifica-
tion is asymptotic in nature (either in the classic sense as
T → ∞ or as both T and M proceed to ∞ at the same
rate). The contribution of this under-sampled likelihood
ratio is most significant in applications which leverage off
the properties defined in (8)-(10), particular the invariance
property which permits the evaluation of the “quality” of
any estimate relative to the underlying solution without
any a priori knowledge of that solution. To illustrate
this, in what follows we explore its efficiency in an
important under-sampled detection-estimation example,
namely prediction of MUSIC ”performance breakdown”
in the threshold region.

III. GLRT-BASED DETECTION-ESTIMATION
APPLICATION TO MUSIC BREAKDOWN

All subspace-based parameter estimation techniques are
known to suffer a rapid degradation in performance as
the SNR and/or the number of snapshots T drop below
certain threshold values [22]–[25]. Because order estima-
tion (using, for example, information theoretic criteria) is
still robust in these threshold conditions, the performance
breakdown manifests as highly erroneous DOA estimates
for one or more of the sources, resulting in ”outliers” [26].
The introduction of these outliers (typical of all subspace-
based methods) is induced by the interchange of eigen-
vectors between the estimated signal and noise subspaces
(”subspace swap”) [25]. Attempts to predict from the data
whether or not a subspace swap has actually occurred is
given in [25], which also proposes a method of ”curing”
performance breakdown by comparing the deterministic
(“concentrated”) likelihood over various partitioning of
the signal and noise-subspace eigenvectors.

We adopt a similar “prediction and cure” approach
using Λ(p)

0 (R) in the under-sampled (T < M ) regime,
based on a GLRT-based technique suggested in [27], [28]
for conventional (T > M ) training conditions.

According to this methodology, prediction of the pres-
ence of a subspace swap is provided by comparison
of Λ(p)

0 (R) for a covariance matrix model constructed
from the estimated source parameters with the scenario-
free Λ(p)

0 (R0) p.d.f. (39). Scenarios which do not result
in a likelihood ratio consistent with the LR distribution
predicted by scenario-free parameters T , M , and p are
considered to have outliers. This comparison is usually
implemented via a pre-computed threshold based on some
statistical bound (e.g. the p.d.f median or the 10−3 lower
extreme).

Specifically, for µ = 0, 1, . . . ,mmax we have to gen-
erate an under-sampled maximum likelihood model R̂µ:

R̂µ = σ̂2
0I + Sµ(θ̂µ)BµSµ(θ̂µ) (43)

based on a separately estimated source order m̂ (formed,
for example, via information theoretic criteria). Here
Sµ(θµ) is the [M×µ]-variate antenna “manifold” matrix,
uniquely specified by a set of µ parameters (DOA’s) θµ =

[θ1, . . . ,θµ], Bµ is the (µ × µ)-variate Hermitian non-
negative definite (n.n.d.) inter-source covariance matrix,
and σ2

0 is the additive white noise power.
Since

max
µ>m

Λ(p)
0 (Rµ) > Λ(p)

0 (R0) (44)

(i.e. the maximum of the LR exceeds the LR of the
(unknown) true solution), the scenario-free p.d.f. for
Λ(p)

0 (R0) can be used to calculate a threshold ϑFA for
the lower bound of the given probability of false alarm
PFA. ∫ 1

ϑF A

f
[
Λ(p)

0 (R0)
]
dΛ(p)

0 = PFA (45)

An analytic expression for this p.d.f can be given, but it
is cumbersome to calculate and as an alternative, direct
Monte-Carlo simulations of (27) may be employed for a
given M , T and p to pre-calculate the threshold ϑFA. It
is then used for hypothesis testing of proposed solutions:

Λ(p)
0 (R̂µ) > ϑFA. (46)

After outlier prediction via the thresholding event given
in (46), the outlier can be re-estimated by alternative tech-
niques less susceptible to subspace swap (but presumably
more computationally intensive). The method employed
in [27], [28] utilizes sequential 1-D maximization of the
likelihood ratio, but any of a wide range of MLE-based
techniques can be used, as they are much less suscepti-
ble than MUSIC to generating estimates with subspace
swap. Because sequential 1-D LR can be implemented
efficiently and the approach leverages off the capability
to evaluate Λ(p)

0 (R) and truncate the search once the
threshold is exceeded, we will continue to employ that
technique in this example. The full procedure consists of
the following five steps.

Step 1 “Breakdown Prediction”.
The covariance matrix model R̂µ is tested by
the inequality (46). If the threshold in (46) is
exceeded, then the solution R̂µ is accepted in
terms of the LR being statistically as good as
the true parameters that specify the covariance
matrix R0. Otherwise, the presence of MUSIC-
specific outliers is indicated.

Step 2 “Local refinement”.
Local optimization by Gauss-Newton or Neder-
Mead (for example) algorithms is performed
to handle the case when estimates are within
convex proximity to the “proper” solution.

Step 3 “Outlier identification”.
When dealing with identifiable scenarios, we
have to assume that the LR threshold is not
achieved due to some missing DOA estimate(s).
Therefore, the source in the model (43) which
can be deleted from the model with the minimal
degradation in LR, is treated as an outlier.

Step 4 “Outlier replacement”.
Instead of the “outlier” excluded at step 3, we
now search for the source with DOA estimate
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that maximally contributes to the LR. In this
case, an exhaustive 1-D search is used.

Step 5 “Final refinement”.
Local optimization, as per step 2, is executed in
the vicinity of the new set of DOA’s.

If the original set includes more than a single outlier,
and as a result the threshold is not exceeded, the procedure
can be repeated until the threshold is exceeded or a
maximum number of iterations is reached.

In [14], [27], [29] this technique was illustrated for
uniform linear and circular antenna arrays under “con-
ventional” training conditions with independent Gaussian
sources. In Section IV, we provide simulation results that
illustrate efficiency of this approach for under-sampled
training conditions and both independent and coherent
(correlated) Gaussian sources.

IV. SIMULATION RESULTS
Consider measurements from a uniform line array with

data sampling at each of M=10 omnidirectional antenna
elements, spaced at λ/2 to ensure independence of each
spatial measurement. Fig. 1 shows the mean results of
likelihood ratio formation for various levels of training
data support. The three key properties of the suggested
under-sampled likelihood ratio (27) can be seen in Fig. 1.
The LR is normalized between 0 and 1, it transitions prop-
erly from the under-sampled likelihood ratio to a standard
likelihood ratio at T = M , and the analytically derived
LR mean (see (39)), which is by definition scenario-free,
agrees with both the clairvoyant solution and averaged
MUSIC-derived (non-outlier) solutions.

Fig. 1. Theoretical and Observed LRs in the Under and Over-Sampled
Training Data Regimes

A. Independent Sources

We consider a three source scenarios with independent
Gaussian sources with an input (per antenna element)
SNR of 20dB per source:

sin(θS) = {−.40, 0.0, 0.06} (47)

The level of training support in our example is set to
T = 6, which is clearly undersampled, but still provides

Fig. 2. Observed Angle Errors of MUSIC DOAs for the 3 Independent
Source Scenario

Fig. 3. Pre-Calculable LR PDF Matches Clairvoyant R0, demonstrating
the scenario invariant property of the Under-Sampled LR

a distinct signal and noise subspace in the sample covari-
ance matrix R̂.

To generate a “difficult” circumstance, we have selected
the third source separation to reside within the MUSIC
performance breakdown region mentioned in Section III.
Specifically, for the selected scenario, over 40% of MU-
SIC derived DOA estimates from random draws of this
scenario contain severely erroneous estimates (“outliers”).
Clairvoyant knowledge of the underlying scenario can be
used to show the distribution of the MUSIC generated
outliers (Fig. 2). Based on this angular distribution, a
value of ±2.0o was used as an association window size
with the true signal DOAs while determining whether
each trial containing an outlier. Note that this clairvoyant
knowledge was used only in evaluating the performance
of the LR in outlier detection, not in the outlier detection
itself.

The detection step to determine the number of sources
is based on information theoretic criteria. This scenario,
while problematic for MUSIC, is not pathological, as
demonstrated by the fact that the number of sources
estimated in each trial using the maximum a posteriori
probability (MAP) information theoretic criteria agreed
with the actual number of independent sources (3 in this
case) for all trials.

Results of our GLRT-based scheme that adopts the

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 3, MAY 2007 69

© 2007 ACADEMY PUBLISHER



Fig. 4. LR PDFs of Uncorrelated Signals Scenario with and without
MUSIC Generated “Outliers”

Fig. 5. LR PDFs of Correlated Signals Scenario with and without
MUSIC Generated “Outliers”

under-sampled LR (27), are shown in Fig. 3 and 4 and
are summarized by Tables I-III. Fig. 3 show that the
pre-calculated p.d.f for Λ(p)

0 (R0) (which is scenario-free)
agrees well with the clairvoyant R0 LR results seen during
the Monte-Carlo trials. Fig. 4 show that the p.d.f’s of the
“outlier” and “non-outlier” p.d.f.s are well separated and
can be properly classified with a thresholding step.

TABLE I
“PRACTICAL THRESHOLD” - INDEPENDENT SIGNALS

GLRT Step Outlier “Truth” Mean PFA 10−3

Detected LR α = 0.065
1. Breakdown No 56.3% 0.2451 56.3%
Prediction Yes 43.7% 0.0015 43.7%
2. Local No 68.2% 0.2382 72.4%
Refinement Yes 31.8% 0.0218 27.6%
3/4. Outlier No 95.5% 0.2295 99.0%
Predict/Cure Yes 4.5% 0.1175 1.0%
4. Final No 95.5% 0.2297 99.2%
Refinement Yes 4.5% 0.1175 0.8%

In Table I, we adopted a threshold calculated for
a PFA = 10−3, to assess “practical” non-clairvoyant
performance of our routine. Let us emphasize that p =
T−1 means that only 5-element antenna covariance array
subsets are involved in model R̂(p) reconstruction, yet
quite efficient performance is demonstrated here without
any diagonal loading or use of other a-priori information.

As previously suggested by the well separated p.d.f.s

in Fig. 4, Step 1 of Table I shows that around very few
non-outlier trials were misclassified (as expected based on
the use of a PFA = 10−3 threshold). Subsequent steps in
the GLRT “prediction and cure” methodology show that
virtually all MUSIC-specific “outliers” can be rectified.

B. Correlated Sources

The introduced outlier rectification scheme may also
be applied for scenarios with fully correlated sources.
There are no modifications to the p.d.f pre-calculation,
since it is scenario-free. For uniform linear antenna arrays,
“forward-backward” spatial smoothing for each training
sample is typically used to provide an Mα-variate sample
covariance matrix (Mα < (M−mmax/2)) that is used for
conventional detection-estimation [30]. Here, dependence
on T is less critical and in many cases, under-sampled
training conditions (T < M or even T < mmax) are all
that is available.

For “forward-backward” averaging, the maximum num-
ber of resolvable sources mmax is specified as [30]

mmax <
2
3
(M + 1) (48)

with the “sliding window” subarray dimension M1 =
mmax + 1 that allows for MUSIC application to the M1-
variate sample matrix R̂M1 :

R̂M1 =
T∑

t=1

M−M1∑
j=1

x
(j)
t x

(j)H

t + J x
(j)
t x

(j)T

t J (49)

where
x

(j)
t = [xjt, x(j+1)t, . . . , x(M+j)t] (50)

is the M1-variate sub-vector of the snapshot xt, J is the

permutation matrix
[ 0 1

. .
.

1 0

]
, and x indicates conjugation.

In the case we consider here, where the signal-subspace
dimension m̂ and DOA estimation are performed by ITC
and MUSIC techniques correspondingly, matrix R̂M1 is
no longer described by a complex Wishart distribution.
Since “Wishart” training conditions T > M or even
the less stringent condition m < T < M are no
longer realized, in most practical cases that involve large
antenna arrays, we have to consider dramatically under-
sampled training conditions. Spatial smoothing is clearly
a non-asymptotic technique in terms of the training data
provided, and therefore the “gap” between performance
breakdown threshold conditions of spatially averaged
MUSIC and ML estimation are even more profound than
in the above analyzed example with independent sources.

Let T > 1 and θ̂m̂ be the set of m̂ DOA estimates
provided by the traditional spatial smoothing technique.
Then the “spatial smoothing generated” model of the
covariance matrix R̂sp is

R̂sp = σ̂2
0IM + Sm̂(θ̂)m̂â1â

H
1S

H
m̂(θ̂)m̂ (51)

where

â1 = [SH
m̂(θ̂)m̂Sm̂(θ̂)m̂]-1SH

m̂(θ̂)m̂Û1 (52)
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and Û1 is the first eigenvector of the traditional under-
sampled covariance matrix R̂.

We now repeat our simulation scenario with a 10
element antenna (d/λ = 0.5) and three Gaussian sources
with an input (per-element) SNR of 20 dB per source
and the same DOA set, but with all three sources fully
correlated with a randomly selected scalar for the scaling
of each source. Furthermore, we limit the training data
set to T = 2 array snapshots, to demonstrate the perfor-
mance of the methodology in this highly under-sampled
case. Computationally, the GLRT routines were modified
slightly to provide optimization across a complex-valued
(rank 1) inter-source correlation matrix rather than a real,
positive valued diagonal inter-source covariance matrix.
Otherwise, the processing remained as before in the
uncorrelated signal scenario. Results for a fully coherent
3 source scenario with the same locations given in (47)
are summarized by Fig. 5 and Tables II-III.

Fig. 5 show that the p.d.f’s of the “outlier” and “non-
outlier” p.d.f.s overlap more than in the uncorrelated
signal case and therefore are not as well classified with
a thresholding step. The results for the fully coherent
signal scenario show that improvement can be ultimately
achieved via the GLRT-based outlier rectification scheme,
but some trials with outliers result in a model LR which
exceeds the threshold significantly and becoming indis-
tinguishable in an LR sense from trials without outliers.
This is an example of the so-called “maximum-likelihood
performance breakdown phenomenon” [14]. Obviously,
if a particular model Rµ is close enough to such a ML
breakdown condition, local refinement at Step 2 can drive
it above the threshold, despite an “outlier” being present
in Rµ. It is then excluded from further rectification since
it is classified (incorrectly) as outlier-free. Therefore,
only the “gap” between MUSIC-specific and maximum
likelihood performance breakdown conditions may be
rectified by the suggested GLRT-based technique. While
in this particular scenario, significantly better performance
in this case can be achieved by avoiding the local LR
optimization step (Step 2) prior to “outlier prediction and
cure” (see Table III), the ML breakdown condition still
prevents complete rectification.

TABLE II
“PRACTICAL THRESHOLD” - COHERENT SIGNALS SCENARIO

GLRT Step Outlier “Truth” Mean PFA 10−3

Detected LR α = 0.065
1. Breakdown No 55.5% 0.2294 61.8%
Prediction Yes 44.5% 0.0346 38.2%
2. Local No 60.9% 0.2302 86.6%
Refinement Yes 39.1% 0.1132 13.4%
3/4. Outlier No 62.7% 0.2280 98.6%
Predict/Cure Yes 37.3% 0.1321 1.4%
4. Final No 63.7% 0.2265 99.7%
Refinement Yes 36.3% 0.1347 0.3%

V. SUMMARY AND CONCLUSION
In this paper we proposed the likelihood ratio test

to be used within the GLRT-based adaptive detection-

TABLE III
NO LOCAL REFINEMENT - COHERENT SIGNAL SCENARIO

GLRT Step Outlier “Truth” Mean PFA 10−3

Detected LR α = 0.065
1. Breakdown No 55.5% 0.2294 61.8%
Prediction Yes 45.5% 0.0346 38.2%
3/4. Outlier No 93.6% 0.2268 100%
Predict/Cure Yes 6.4% 0.1464 0%
4. Final No 93.6% 0.2268 100%
Refinement Yes 6.4% 0.1464 0%

estimation framework for under-sampled (T < M ) train-
ing conditions. This LR involves sample covariance lags
within the (2T − 1)-wide band of the rank T sample
covariance matrix R̂, and the maximum entropy (de-
terminant) Dym-Gohberg extension of this band matrix.
The introduced LR is normalized, coincides with the
conventional LR test on covariance matrices for con-
ventional (Wishart) training conditions (T > M ), and
most importantly, is described by a scenario-free p.d.f.
for the actual covariance matrix. This invariance property,
together with the observation that the properly maximized
LR value should always exceed the LR value produced by
the true covariance matrix, is essential for efficient imple-
mentation of GLRT-based adaptive detection-estimation.

We have shown that this LR test for under-sampled
conditions can be used to demonstrate significant im-
provement in detection-estimation performance within a
MUSIC-specific breakdown threshold area. Specifically,
for scenarios with either independent or fully coherent
Gaussian sources, we demonstrated capabilities of our
GLRT-based detection-estimation rectification scheme to
recover the majority of severely erroneous solutions (out-
liers) produced by conventional MUSIC (at a level of
over 40% of trials in particular scenarios, both correlated
and uncorrelated). The previously introduced GLRT-based
detection-estimation methodology is now extended to
embrace the practically important class of under-sampled
training conditions.
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APPENDIX

MATLAB Listing for Dym-Gohberg Band Extension
function [DGRhat V] = DGtrans(Rhat,p)
%
% provide Dym-Gohberg extension - note that
% computation of either V or U is necessary,
% but not both. Only the lower triangular
% matrix V is computed here. The determinant
% can be computed directly from V.
%
M = size(Rhat,1); V = zeros(M); Y = zeros(M);
for q = 1:M

Lq = min(M, q+p);
onetop = zeros(Lq-q+1,1);
onetop(1,1) = 1;
subY = inv(Rhat(q:Lq,q:Lq))*onetop;
Y(q:Lq,q:q) = subY;

end %for
for ii = 1:M

for jj = 1:M
if (jj <= ii) && (ii <= min(M,jj+p))

V(ii,jj) = Y(ii,jj)/sqrtm(Y(jj,jj));
else

V(ii,jj) = 0;
end %if

end % for
end %for
DGRhat = inv(V’)*inv(V);
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