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Abstract— This paper examines transfer-function based
techniques for performing direction finding on a source of
electromagnetic energy using a passive vector sensor array
whose manifold is only nominally known. This problem is
studied in the context of a situation in which the source can
be observed from multiple look angles, as would be the case
for an airborne array. The calibration algorithms examined
in this paper address the case of both polarization and
non-polarization diverse arrays. Computational studies are
presented to assess the efficacy of the calibration algorithms.

Index Terms— array calibration, direction finding, angle
of arrival estimation

I. I NTRODUCTION

This paper investigates direction finding (DF) on a
source of electromagnetic energy using a passive sensor
array. The response of a sensor array varies as a function
of the direction of the incoming signal. Knowledge of the
form of this function, termed thearray manifoldor array
steering vector, is what enables a sensor array to be used
for DF applications.

The specific type of sensor array studied in this paper
is the electromagnetic vector sensor, whose usage for
direction finding was first proposed in [1]. A conventional
(non polarization diverse) sensor array consists of identi-
cal sensor element types. A vector sensor is a polarization
diverse array whose output is a measurement of multiple
components of electromagnetic information. A typical full
vector sensor consists of two orthogonal triads of dipole
and loop antennas with the same phase center, as shown
in Figure 1. The dipoles for measuring the electric field
components and the loops measure the magnetic field
components.

The utility of a vector sensor can be appreciated
by recalling that the angular resolution of an array is
inversely related to the size of its aperture. Thus, fine
angular resolution will require a larger physical aperture.
However, many airborne reconnaissance missions employ
small unmanned aerial vehicles on which the physical
space available on the airframe is very limited, thus
constraining the size of the array aperture. However,
because a vector sensor uses multiple components of
electromagnetic information, it can offer accurate source
location estimates with a smaller aperture. In theory, if
a full vector sensor with a point aperture can provide
enough sensitivity to measure the complete electric and
magnetic fields, the source location can be estimated by
simply calculating the Poynting vector.

In practice, the actual (measured) array manifold will
differ, often times significantly, from the theoretical (mod-
eled) array manifold. This difference is due various ar-
ray anomalies such as sensor pattern differences, sensor
coupling, and sensor to receiver electrical cable length
differences. In order to obtain reliable source direction
estimates, DF systems require that a precise characteri-
zation of the actual array manifold be available.Array
calibration is the technique used to relate the actual
and theoretical array manifolds.This paper presents an
overview of the array calibration techniques proposed
in [2]-[4]. While most of the available techniques for
array calibration are designed for a conventional sensor
array [4]-[8], this paper also presents a discussion of the
array calibration technique proposed in [2] that explic-
itly accounts for the polarization diverse nature of the
vector sensor (see [3] for an in-depth discussion). The
calibration techniques discussed in this paper utilize a
transfer-function based framework to relate the modeled
and measured steering vectors.

Fig. 1. A full electromagnetic vector sensor.

II. ORGANIZATION

This paper is organized as follows- Section III develops
the steering vector model for a polarization diverse array.
Section IV formulates the calibration algorithms. Section
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V presents the simulation results and discussion of apply-
ing the calibration algorithms developed in Section IV.

III. STEERING VECTORMODEL FORMULATION

Studies such as those in [10] have shown that when
the vector sensor in Figure 1 is mounted on a typi-
cal small aircraft, some elements of the vector sensor
experience significant airframe interaction, resulting in
unreliable measurements. To overcome this problem, one
solution is to use a “trimmed” vector sensor, whereby only
sensor elements with insignificant airframe interaction are
retained. By situating multiple trimmed vector sensors
at various sites on the airframe, the aperture can be
increased. Note that because of aerodynamic issues and/or
varying sensor interaction at different locations on the
airframe, the trimmed vector sensors will in general not be
identical. This concept of distributed and trimmed vector
sensors has previously been studied in [11]-[14].

A particular 8-channel trimmed vector sensor config-
uration that will be studied as an example in this paper
is shown in Figure 2. The two loop antennas measure
the x andy components of the magnetic field(Hx,Hy),
while the vertical dipole measures thez component of the
electric fieldEz.

Fig. 2. Trimmed vector sensors and an 8-channel aircraft configuration.

A. Signal Model
Let θ andφ represent the azimuth and elevation angle

of arrival (AOA), respectively, of the signal on the array
with respect to the source location. It is assumed that the
vector sensor array is in the far-field of a narrowband
signal. Following [15], define the components of the
electric and magnetic field received on the array as2
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where Θ (θ, φ) and p (γ, η) have obvious definitions,
and 0◦ ≤ γ ≤ 180◦ and −180◦ ≤ η ≤ 180◦ are

the polarization angle and phase difference, respectively.
Note that while knowledge ofγ and η are required to
completely characterize the array manifold, only the AOA
parametersθ andφ are of interest.

Suppose there areNm sensors of a particular type,
and let Rm ∈ R3×Nm be the corresponding sensor
location matrix. LetΘm (θ, φ) be the appropriate row of
Θ (θ, φ) corresponding to the particular field component
that the sensors measure. Define a unit vector in the source
direction

u (θ, φ) =
[

cos (θ) sin (φ) sin (θ) sin (φ) cos (φ)
]T

(1)
The plane wave (far-field) response is defined as

vm (θ, φ) = e+j 2π
λ RT

mu(θ,φ) (2)

whereλ is the signal wavelength. The response/steering
vector of the vector sensor array is generated by concate-
nating the response of identical sensor types

vvs (θ, φ, γ, η) =

 vvs,1 (θ, φ, γ, η)
...

vvs,M (θ, φ, γ, η)

 (3)

where

vvs,m (θ, φ, γ, η) = vm (θ, φ) [Θm (θ, φ)p (γ, η)] (4)

andM is the number of distinct field components being
measured, or equivalently, the number of different sensor
types. The size of the vectorvvs (θ, φ, γ, η) corresponds
to the total number of sensor elements (channels), and
will be denoted byN .

As an example, consider the 8-channel trimmed vector
sensor configuration shown in Figure 2, which measures
the three componentsHx, Hy, andEz. Thus, the value of
M equals 3. Lettingvlw, vrw, andvt represent the plane
wave response for the sensors on the left wing, right wing,
and tip of the aircraft, respectively, the trimmed vector
sensor response becomes

vvs (θ, φ, γ, η) =



(
vlw

vrw

)
Ez vlw

vrw

vt

 Hx vlw

vrw

vt

 Hy


for which indeedN = 8.

Alternative response representations for a polarization
diverse array are possible. For example, in certain sensor
configurations, it is possible to represent the response as
a hypercomplex number (quaternion). This representation
is descrbied in more detail in [16],[17].

IV. A RRAY CALIBRATION

Suppose anN element sensor array observes a station-
ary, far-field, narrowband source atK known and distinct
look angles. Letv (θk, φk) and z (θk, φk) represent the
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N × 1 modeled and measured array steering vector,
respectively, for the source azimuth AOAθk and elevation
AOA φk, wherek = 1 . . .K. The modeled steering vector
is constructed based on knowledge of various parameters
such as the nominal array geometry and source AOA.

Define

V (θ,φ)
∆=

[
v (θ1, φ1) . . . v (θK , φK)

]
and

Z (θ,φ)
∆=

[
z (θ1, φ1) . . . z (θK , φK)

]
where θ and φ are vectors whosekth elements areθk

andφk, respectively.
In order to perform array calibration, a transfer-function

operatorT{} is sought such that when it operates on the
modeled steering vector, the result is a “good” approxi-
mation of the measured steering vector. That is,

z(θk, φk) ≈ T{v(θk, φk)} (5)

To quantify the notion of a “good” fit, the Euclidean
distance between the left and right hand side of (5) will
be minimized, resulting in the cost function

J =
K∑

k=1

‖z (θk, φk)−T{v (θk, φk)}‖2 (6)

(6) can be recast as

J = ‖Z (θ,φ)−T{V (θ,φ)}‖2

F
(7)

In [4],[5], the following form of T{} was considered:

T{v(θk, φk)} = Av(θk, φk) (8)

whereA ∈ CN×N is a calibration matrix. Substituting
(8) into (7) and differentiating yields the optimal solution
for A:

A = Z (θ,φ)V# (θ,φ) (9)

where# denotes the matrix pseudo-inverse. Because the
calibration matrix minimizes the distance between the
measured and modeled steering vectors, it is useful in DF
applications where the modeled steering vector is used to
determine the source AOA. Note that (9) was developed
for a conventional array and does not assume polarization
diversity. In [4], it was shown that (9) yields significant
performance improvement when used with a conventional
array. It is reasonable to expect that some performance
gain will also be achieved when (9) is used on a po-
larization diverse array. However, further performance
improvement when using a polarization diverse array may
be possible if the transfer-function in (8) is extended to
explicitly account for the polarization diversity. Towards
this end, the following observation due to [9] is made:
Let two distinct signal polarization vectors be denoted by

p1 = p(γ1, η1) (10)

p2 = p(γ2, η2) (11)

Denote their respective vector sensor steering vectors as
vvs(θ, φ,p1) andvvs(θ, φ,p2). The steering vector for an

arbitrary polarizationp at look anglek may be expressed
as

vvs(θk, φk,p) = c1kvvs(θk, φk,p1) + c2kvvs(θk, φk,p2)
(12)

where c1k, c2k ∈ C. Thus, the polarization state is
parameterized by a 2-dimensional subspace, andc1k and
c2k represent the linear combination coefficients needed
to achieve a particular polarization state.

(12) can be expanded in terms ofv(θk, φk) as

vvs(θk, φk,p) = c1kΓ1 (θk, φk,p1)v(θk, φk)
+c2kΓ2 (θk, φk,p2)v(θk, φk) (13)

where Γ1 (θk, φk,p1) ∈ CN×N and Γ2 (θk, φk,p2) ∈
CN×N are diagonal matrices consisting of terms of the
form Θm (θk, φk)p (γ, η). When the array manifold is
perturbed from the modeled array manifold, as is the
case in realistic scenarios, (13) can be extended so
that the angle-dependent terms inΓ1 (θk, φk,p1) and
Γ2 (θk, φk,p2) as well as the remaining manifold pertur-
bations, are captured in the corresponding full matrices
A1 ∈ CN×N andA2 ∈ CN×N , so that

T{v} = c1kA1v (θk, φk) + c2kA2v (θk, φk) (14)

where {c1k, c2k,A1,A2} are the unknown calibration
parameters.

The corresponding cost function in the form of (7) is

JPD
∆=

∥∥∥Z (θ,φ)−AD

[
P�

(
~12 ⊗V (θ,φ)

)]∥∥∥2

F
(15)

where⊗ denotes the Kronecker tensor product,� denotes
the element-by-element Hadamard product [20] and

AD
∆=

[
A1 A2

]
(16)

P =
[

~1N ⊗
[

c11 . . . c1K

]
~1N ⊗

[
c21 . . . c2K

] ]
(17)

Differentiating (15) yields the optimal solution for the
calibration matrices

AD = Z (θ,φ)
[
P�

(
~12 ⊗V (θ,φ)

)]#

(18)

Note that (18) assumes knowledge of the coefficientsc1k

and c2k, which have not yet been computed. To solve
for these coefficients, observe that since it is desired that
T{v(θk, φk)} = z(θk, φk), (14) can be rewritten as[

A1v (θk, φk) A2v (θk, φk)
] [

c1k

c2k

]
= z (θk, φk) (19)

The least squares solution forc1k andc2k as such is

ck
∆
=

�
c1k

c2k

�
=
�

A1v (θk, φk) A2v (θk, φk)
�#

z (θk, φk) (20)

The optimization of the calibration parameters can now
be performed by iterating between (18) and (20). The
optimization may be initialized by selectingA(0)

D =
[Z (θ,φ)V# (θ,φ) IN ], where the superscript repre-
sents the iteration number. Convergence is achieved for
a tolerance levelδ when

∥∥∥A(i)
D −A(i−1)

D

∥∥∥
F

/N2 < δ,

where‖(·)‖F denotes the Frobenius norm [20].
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A. Usage in Direction Finding Algorithms
The form of (14) suggests that its usage in a direction

finding algorithm would require a search overc1k andc2k
as well asθk andφk, thereby doubling the dimensionality
of the search space. However, consider a direction finding
estimator of the form

F (θk, φk, c1k, c2k) =MH (c1kA1v (θk, φk) + c2kA2v (θk, φk))
2

‖c1kA1v (θk, φk) + c2kA2v (θk, φk)‖2 (21)

Then arg minθk,φk,c1k,c2k
F (θk, φk, c1k, c2k) when M is

the matrix of eigenvectors corresponding to the noise
subspace of the received signal is the MuSIC estimator
[21]. When (21) is rewritten with the aid of (19) as

F (θk, φk, c1k, c2k) =MH
��

A1v (θk, φk) A2v (θk, φk)
�
ck

�2

� A1v (θk, φk) A2v (θk, φk)
�
ck

2 (22)

it is recognized as a Rayleigh quotient, and the solution
for ck is thus the extremal eigenvector of the matrix

QQH

where

Q =
[

A1v (θk, φk) A2v (θk, φk)
]H

M (23)

Hence, the existence of an analytical solution forck leaves
the dimensionality of the search space unchanged.

B. Synthetic Elements

Recall that because of airframe interaction, some ele-
ments of the full vector sensor were removed, resulting
in a “trimmed” vector sensor. The elements that were
removed can be viewed as lost degrees of freedom. The
introduction of synthetic or “virtual” sensor elements may
help recapture some of the source localization perfor-
mance that is lost due to element trimming. Consider
an N element sensor array and the correspondingN
element modeled steering vector. Now suppose that an
additionalNsyn sensor elements are included in the mod-
eled steering vector, even if they do not exist physically.
The modeled steering vector now consists of the original
N element steering vector concatenated with anNsyn

element vector whose elements are the modeled sensor
response at the locations of the synthetic elements. The
calibration cost function may now be posed as

J =
K∑

k=1

∥∥∥∥z (θk, φk)−T{
[

V (θ,φ)
Vsyn (θ,φ)

]
}
∥∥∥∥2

(24)

Note that the optimization for the calibration matrices is
now overCN×(N+Nsyn).

The specific placement of synthetic elements is gen-
erally performed in an ad-hoc manner. For example, for
arrays with a regular geometry, synthetic elements can
be placed via concentric extension. For arrays in which
certain elements are “missing” (as is the case with the
trimmed vector sensor), a natural choice is to position
the synthetic elements at the locations of the missing
elements.

Synthetic elements provide additional fitting coeffi-
cients (Nsyn additional coefficients per array element) for
the calibration process, resulting in superior calibration
performance, though at the cost of added computational
complexity.

V. SIMULATION RESULTS

A. Simulation Setup

The trimmed vector sensor configuration in Figure 2 is
used for simulation studies. The aircraft geometry at 90
MHz is shown in Figure 3.

1.1λλλλ

0.5λλλλ

Fig. 3. Small aircraft geometry at 90 MHz with 3 trimmed vector
sensor sites (c.f. Figure 2).

Sensor manifold perturbations are assumed to be caused
by near-field scatterers local to the airframe. For every
look anglek, the measured steering vectorz(θk, φk) is
modeled as follows:

z (θk, φk) = vvs (θk, φk)

+ ε

NscatX
s=1

2
64

v1 (θs, φs) [Θ1 (θs, φs)Γsp (γ, η)] e+jds

...
vM (θs, φs) [ΘM (θs, φs)Γsp (γ, η)] e+jds

3
75

(25)

The model (25) consists of the direct path steering vector
vvs(θk, φk), and the multipath component which is mod-
eled by the summation terms. The relative strength of the
multipath component is controlled by the parameterε, and
Nscat denotes the number of scatterers. For simulation
purposes,ε = 10 dB and Nscat = 20. Observe that
the termvm (θs, φs) [Θm (θs, φs)Γsp (γ, η)] in (25) is
identical to (4), except that the polarization state vector
p(γ, η) is premultiplied byΓs. The 2 × 2 matrix Γs is
a random scattering matrix which models the scatterer-
induced transformation of polarization state.ds is the path
length difference which causes a phase offset modeled by
the terme+jds .
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TABLE I

PERFORMANCE OF CALIBRATION ALGORITHMS.

Algorithm ε̄θ (Deg) ε̄φ (Deg)
Initial Estimate 3.01 2.98
No Calibration 12.05 16.27
Conventional Calibration 0.77 0.40
Conventional Calibration w/Synth Elem 0.04 0.03
Pol Div Calibration 0.13 0.05
Pol Div Calibration w/Synth Elem 0.005 0.007
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Fig. 4. Example DF spectra for various calibration algorithms.

For the study presented in this paper, simulations were
performed using 200 calibration points randomly sampled
over the set of data taken in90◦ azimuth and30◦ elevation
sectors. The presented results are the average of 10 trials.

For comparison purposes, direction finding perfor-
mance is evaluated without the usage calibration, and
with usage of conventional array calibration (9) and
polarization diverse array calibration (18). The perfor-
mance improvement using synthetic elements is also
presented. In this paper, synthetic elements are chosen
as the full vector sensor elements (Figure 1) missing
from the trimmed vector sensors. As such, because a
full vector sensor consists of 6 elements, the 8-channel
configuration of Figure 2, which consists of 3 distinct sub-
arrays, would have a modeled steering vector of length 18
when synthetic elements are used.

The root mean square error (RMSE) of the AOA
estimation error is the metric used for performance as-
sessment, and is defined as the RMSE of the difference
between the elements in the estimated and actual AOAs,
so that

ε̄θ =

√√√√ 1
K

K∑
k=1

(
θ̂k − θk

)2

(26)

and

ε̄φ =

√√√√ 1
K

K∑
k=1

(
φ̂k − φk

)2

(27)

for azimuth and elevation errors, respectively.

B. Discussion

Figure 4 makes apparent that the use of calibration
significantly helps in reducing the width of the DF spec-
tral peak, as compared to the no calibration scenario in
which the peak is very spread out. It is evident that use of
polarization diverse calibration offers a significant perfor-
mance advantage over the use of conventional calibration.
Table I offers a quantitative algorithm performance com-
parison. From an initial guess error of a few degrees, not
performing calibration will significantly worsen perfor-
mance. This is because uncalibrated array perturbations
can cause a measured steering vector from a particular
look angle to closely match a modeled steering vector that
originates from a very different look angle. However after
performing calibration, the AOA RMSE is reduced to a
fraction of a degree. While the results presented in this
paper use simulated, rather than experimental data, and
may thus be somewhat optimistic, the simulation results
do nonetheless show that a significant performance gain
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over conventional array calibration algorithms is possible
when a polarization diverse array is calibrated using an
algorithm that explicitly accounts for the polarization
diversity.

VI. CONCLUSION

A review of transfer-function based approaches to array
calibration was presented. Two approaches- one for a
conventional (non-polarization diverse) array and one
for a polarization diverse array, were examined. Both
are based on a least squares metric and as such lend
themselves to efficient solutions. Simulation studies for
a trimmed and distributed polarization diverse array were
carried out. While the benefits of calibration are evident
with usage of the conventional array calibration approach,
a marked performance improvement was seen with usage
of the polarization diverse calibration approach. Perfor-
mance enhancement was also seen for both calibration
approaches when synthetic elements were used.
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