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Abstract— In this paper we discuss in detail a recently allowing the algorithm to operate online in time-varying
proposed kernel-based version of the recursive least-sqes  environments.
(RLS) algorithm for fast adaptive nonlinear filtering. Unli ke After describing the proposed sliding-window kernel

other previous approaches, the studied method combines . . h o .
a sliding-window approach (to fix the dimensions of the RLS algorithm, we discuss its application to different non-

kemel matrix) with conventional ridge regression (to im-  linear system identification problems. First, it is applied
prove generalization). The resulting kernel RLS algorithmis  to identify a Wiener system, which is a simple nonlinear

applied to several nonlinear system identification problers.  model that typically appears in satellite communications
Experiments show that the proposed algorithm is able to 171 or digital magnetic recording systems [8]. Then we
operate in a time-varying environment and to adjust to - : .
abrupt changes in either the linear filter or the nonlinearity. apply the kernel RLS_ algor't_hm_to a _non“near _regre;gon

problem. Apart from its applications in system identifica-
tion, the proposed sliding-window kernel RLS algorithm
can also be used as a building block for other, more
complex adaptive algorithms. In particular, it has been
applied to develop a sliding-window kernel canonical
|. INTRODUCTION correlation analysis (CCA) algorithm [9].

An important number of kernel methods have been pro- The rest of this paper organized as follows: in Section
posed in recent years, including support vector machined the least-squares criterion is explained briefly. Kernel
[1], kernel principal component analysis [2], kernel Fishe Methods are introduced in Section Ill and a detailed
discriminant analysis [3] and kernel canonical corretatio description of the sliding-window algorithm is given in
analysis [4], [5], with applications in classification and Section IV. In Section V it is applied to two nonlinear
nonlinear regression problems. In their original forms Systém identification problems and Section VI summa-
most of these algorithms cannot be used to operate onliféZ€s the main conclusions of this work.
since a number of difficulties are introduced by the kernel
methods, such as the time and memory complexities Il. REGULARIZED LEAST-SQUARES
(because of the growing kernel matrix) and the need t@\, Least-Squares Problem

avoid overfitting. _ The least-squares (LS) criterion [10] is a widely used
Recently a kernel RLS algorithm was proposed that,ethod in signal processing. Given a vecjoe RN !

dealt with both difficulties [_6]: py applyi_ng_asparsificatio and a data matrixX € RNYXM of N observations, it
procedure the kernel matrix size was limited and the ordegysists in seeking the optimal vectore RM*! that

of the problem was reduced. This kernel RLS algorithmyq) e

allows for online training but cannot handle time-varying J = min |y — Xh|]2. 1)

data. Other approaches to reduce the order of the kernel h

matrix have been also been proposed, including a recefiVhen the number of observationé is at least equal to

kernel principal component analysis (PCA) algorithm [6]the number of unknownd/, the least-squares problem

which is able to track time-varying data. is overdeterminedand has either one unique solution or
In this paper we discuss a different approach, applyingn infinite number of solutions. XX is a non-singular

conventional ridge regression instead of reducing thenatrix, the unique solution of the least-squares problem

order of the feature space. A sliding-window techniqueis given by

is applied to fix the size of the kernel matrix in advance, h= (xTx)_1 xTy. (2)

Index Terms— kernel methods, kernel RLS, sliding-window,
system identification

This paper is based on “A Sliding-Window Kemel RLS Algonittand I X is rank deficientX”X is a singular matrix corre-
its Application to Nonlinear Channel Identification,” by ¥an Vaeren- sponding toalS problem with infinitely many solutions.
bergh, J. Via, and I. Santamaria, which appeared in theeBdings . . .
of the 2006 IEEE International Conference on Acoustics,eSpeand R For full rank matricesX with N > M, the solution
Signal Processing, ICASSP 2006, Toulouse, France, May.200B006  h can be represented in the basis defined by the rows of

IEEE. o _ X. Hence it can also be written &s= X”'a, making it a
This work was supported by MEC (Ministerio de Educacion y

Ciencia) under grant TEC2004-06451-C05-02 and FPU gramoas-  linear combination of the input patterns (this is sometimes
5366. denoted as the “dual representation”).
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To improve generalization and increase the smoothnesghich implies an infinite-dimensional feature space, or
of the solution, a regularization term is often included inthe polynomial kernel of ordey

the standard least-squares formulation (1):

J = min [lly — Xh||* 4+ ch™h], 3)

KXo, Y;) = (1+x7%;)" .

where ¢ is a regularization constant. This problem isA- Kernel LS
known as regularized least-squares, and its solution is A nonlinear “kernel” version of the linear LS algorithm

given by

h=[X"X 4] " X7y, (4)

wherel is the identity matrix.

B. Recursive Least-Squares

can be obtained by transforming the data into feature
space. Using the transformed vectoe RM'*! and the
transformed data matriX € RV*M' the LS problem (1)
can be written in feature space as

J' = min [ly — Xhj*. (6)

In many problems not all data are known in advance L
and the solution has to be re-calculated as new obsef-n€ transformed solutioh can now also be represented

vations become available. In case of linear problemsn the basis defined by the rows of the (transformed) data
the well-known recursive least-squares (RLS) algorithni"atrix X, namely as

[10] can be used, which calculates the solution of the

F=X"a. @)

regularized LS problem (3) in a recursive manner, based
on the Sherman-Morrison-Woodbury formula for matrix Moreover, introducing théernel matrixK = X" the

inversion [11].

The most commonly used form of RLS is teeponen-
tially weightedRLS algorithm, which gives more weight
to recent data and less weight to previous data. Given
positive scalai < 1 (theforgetting factoy, this algorithm
recursively calculates the solution to the problem

N
. N—j . Thl2 T
J:nthm E ATy (4) = x5 h[|" +ch™hy,

=0

®)

Whereij denotes thg-th row of X, for a growing number
of observationsN. For a complete formulation of this
algorithm, we refer to [10].

Ill. KERNELMETHODS

LS problem in feature space (6) can be rewritten as
(8)

f which the solution is an N x 1 vector. The advantage
of writing the nonlinear LS problem in the dual notation is
that thanks to the “kernel trick”, we only need to compute
K, which is done as

I o 2
J' = min|ly - Ka

K(iaj):’%(xiaxj)v )

wherex! andx] are thei-th andj-th rows ofX. As a
consequence, the computational complexity of operating
in this high-dimensional space is not necessarily larger
than that of working in the original low-dimensional
space.

In recent years, the framework of reproducing kernel
Hilbert spaces (RKHS) has led to the family of algorithmsB. Measures Against Overfitting

known askernel methodq12]. These algorithms use

For most useful kernel functions, the dimension of the

Mercer kernels in order to produce nonlinear versions ofeature spacel/’, will be much higher than the number of

conventional linear algorithms.

available data pointd’ (for instance, in case the Gaussian

Kernel methods are based on the implicit nonlineakernel is used, the feature space will have dimension

transformation of the data; from the input space to
a high-dimensionafeature spacex; = ®(x;). The key

M’ = oo). As mentioned in Section II, Eqg. (8) could
have an infinite number of solutions in these cases, due

property of kernel methods is that scalar products in theo the rank deficiency oK. A number of techniques to
feature space can be seen as nonlinear (kernel) functiofgndle this overfitting have been presented.

of the data in the input space. Since this property avoids 1) Kernel RLS with sequential sparsificatiomn [6]
the explicit mapping to the feature space, it allows tog sparsification process was proposed in which an input
perform any conventional scalar product based algorithraample is only admitted into the kernel if its image in
in the feature space by solely replacing the scalar productgature space cannot be sufficiently well approximated by
with the Mercer kernel function in the input space. combining the previously admitted samples. In this way
In this way, any positive definite kernel function satis- the resulting kernel RLS algorithm reduces the order of
fying Mercer’s condition [1]:x(x;, X;) = (®(Xi), ®(X;))  the feature space [4], [5]. A related kernel LS algorithm
has an implicit mapping to some higher-dimensionalygg recently presented in [13].
feature space. This simple and elegant idea is known as 2) Kernel RLS by kernel PCAAnother approach to
the “kernel trick”, and it is commonly applied by using a reduce the order of the feature space is by applying prin-
nonlinear kernel such as the Gaussian kernel cipal component analysis (PCA) [14]. PCA is a technique

202

||Xi—Xj||2)
)

H(Xi,X]’) = exp (
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3) Kernel ridge regressionA third method to regular- xlgxz X XK Ko o XX o
ize the solution of the kernel RLS problem is by applyingx, K,
conventional ridge regression. This type of regularizatio Xs K K.,
was chosen for the proposed algorithm because of its Iov;g K‘K . K R
computational complexity. In (kernel) ridge regression,x, SKﬁ X,
the norm of the solutiof is penalized as in (3) to obtain : X,
the following problem: Ko
J = min {Hyf)N(ﬁHQ +cﬁTﬁ}. (10)

This problem can be written in dual notation as follows: (a) (b)

J" = min [ly — Ke||* + ca”Kal (11)

. . Figure 1. (a) Kernel matriceK; of growing size. (b) Kernel matrices
whose solution is given by K; of fixed size, obtained by only considering the data in winsia
o — K- y (12) fixed size.
reg

with Kreg = (K + ) andc is a regularization constant. B. Updating the Inverse of the Kernel Matrix

IV. THE ONLINE ALGORITHM The calculation of the updated solutiam, requires
the calculation of theN x N inverse matrixK,* for
feach window. This is costly both computatlonally (re-
quiring O(N?3) operations) and memory-wise. Therefore
an update algorithm is developed that can compuie
soIer from knowledge of the data of the current window
é =Y, } and the previouk,',. The updated solution
&, can then be calculated in a stralghtforward way using
‘Eq. (12).
o Given the regularized kernel matti, 1, the new reg-
A. A Sliding-Window Approach ularized kernel matrix,, can be constructed in two steps.
In [15] we presented a regularized kernel version ofFirst, the first row and column d€,,_; are removed. This
the RLS algorithm, using a sliding-window approach. Anstep is referred to adownsizingthe kernel matrix, and
online setup assumes we are given a stream of inputhe resulting matrix is denoted a6,_;. In the second
output pairs{ (X1, 1), (X2, y2), ... }. The sliding-window step, kernels of the new data are added as the last row
approach considers only a window consisting of the lasand column to this matrix:

In a number of situations it is preferred to have a
online, i.e. recursive, algorithm. In particular, if thetaa
points y are the result of a time-varying process, an
online algorithm can be designed, able to track these
time variations. The key feature of an online algorithm is
that the number of computations required per new sampl
must not increase as the number of samples increases.

N pairs of this stream (see Fig. 1). For theh window, 7

. Kn 1 kn 1(X )
the observation vectoy,, = [Yn,Yn_1,---sUn-~N+1]" Kn =11 L) Fn (13)
and observation matriX, = [Xn,Xn—1,. .., Xn-N41]" n nn
are formed, and the corresponding regularized kerneNherek,_i(X,) = [K(Xn—N41,Xn), .-\ £(Xn—1,%p)]"
matrix K,, = X, X, + ¢l can be calculated. andk,, = £(Xn, Xn). This step is referred to aspsizing

Note that it is necessary to limit the number of datathe kernel matrix.
vectorsx,,, N, from which the kernel matrix is calculated. ~ Calculating the inverse kernel matrig, ' is also done
Unlike standard linear RLS, for which the correlationin two steps, using the two inversion formulas derived
matrix has fixed size depending on the (fixelithension in appendices A and B. First, given the previous kernel
of the input vectors\Z, the size of the kernel matrix in Matrix K,,_; and its inverseK!,, the inverse of the
an online scenario depends on thember of observations downsizedN — 1 x N — 1 matrix K,,_; is calculated
N. according to Eq. (15). Then, the mati,_; is upsized

In [6], a kernel RLS algorithm is designed that limits to ?btaln Kn, and based on the knowledge Kf, and
the matrix sizes by means of a sparsification procedurel, , the inversion formula from Eq. 16 is applied to
which maps the samples to a (limited) dictionary. ItobtainK .
allows both to reduce the order of the feature space Note that these formulas do not calculate the in-
(which prevents overfitting) and to keep the complexityverse matrices explicitly, but rather derive them from
of the algorithm bounded. In our approach these twdnown matrices maintaining an overall time complexity of
measures are obtained by two different mechanisms. Of?(N?) of the algorithm, whereV is the window length.
one hand, the regularization against overfitting is done by To initialize the algorithm, zero-padding of the data was
penalizing the solutions, as in (12). On the other handapplied to fill the sliding window. The initial observation
the complexity of the algorithm is reduced by consideringmatrix X, consists entirely of zeros. The regularized ker-
only the observations in a window with fixed length. Thenel matrixK, corresponding to these data is obtained and
advantage of the latter approach is that it is able to tracks inverse is calculated. For the Gaussian and polynomial
time variations without extra computational burden. kernel function, this matrix iy = 1 + ¢l, wherel is
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Algorithm 1 Summary of the proposed adaptive algo- L5
rithm. 1t _r
Initialize Ko and calculate< ;! s :
forn=1,2,...do -
Downsizing: Obtairk,,_; out of K,,_;. > 0 ’
Calculatekil according to Eq. (15). 05 .
Upsizing: ObtainK,, according to Eq. (13). SAp e e
CalculateK ;* according to Eq. (16). 15 ‘ ‘ ‘
Obtain the updated solution,, = Kty . 4 -2 O 2 4
end for n
Figure 3. Signal in the middle of the Wiener system vs. ougigial
n, for binary input symbols and different indices
u, v,
X, — H(z) o 1) —»é)—» Y, 10
Figure 2. A nonlinear Wiener system. 0
—_
m
T -10
an N x N matrix filled by ones and is the unit matrix. |}
The complete algorithm is summarized in Alg. (1). N -20
V. EXPERIMENTS -30r
In this section we investigate the performance of the
sliding-window kernel RLS algorithm to identify two —40 560 10‘00 150(
nonlinear systems. In both cases the results are compar iterations

to online identification by a multi-layer perceptron (MLP),

which is a standard approach for identifying nonlinearrigure 4. MSE of the identification of the nonlinear Wienesteyn of
systems. Since kernel methods provide a natural nonline&ig. 2, for the standard method using an MLP and for the winblesed
extension of linear regression methods [12], the propOseﬁrnel RLS algorithm with window lengttv = 150. A change in filter

. efficients of the nonlinear Wiener system was introdudtst aending
system is supposed to perform well compared to the MLP5oo data points.

A. Ildentification of a Wiener System with an abrupt

input and output are known. To fill the initial sliding-
channel change

windows, zero-padding of the signals was applied. The
The Wiener system is a well-known and simple non-MLP was trained in an online manner, i.e. in every
linear system which consists of a series connection oifteration one new data point was used for updating the
a linear filter and a memoryless nonlinearity (see Fignet weights.
2). Such a nonlinear channel can be encountered in 1) Comparison to MLPSystem identification was first
digital satellite communications and in digital magneticperformed by an MLP witt8 neurons in its hidden layer
recording. Traditionally, the problem of blind nonlinear and learning rate).1, and then by using the sliding-
equalization or identification has been tackled by considwindow kernel RLS with window siz&/ = 150 and using
ering nonlinear structures such as MLPs [16], recurren& polynomial kernel of ordey = 3. For both methods we
neural networks [17], or piecewise linear networks [18]. applied time-embedding techniques in which the lenfgth
We consider a supervised identification problem, inof the linear channel was known. More specifically, the
which moreover at a given time instant the linear channelised MLP was a time-delay MLP with inputs, and the
coefficients are changed abruptly to compare the trackinmput vectors for the kernel RLS algorithm were time-

capabilities of both algorithms: During the first part of the delayed vectors of lengtih, X, = [z, r11,...,2,]".
simulation, the linear channel i, (z) = 1-0.3668z~'—  The length of the used linear channéls and H> was
0.4764~2 + 0.8070~3 and after receiving00 symbols it L = 4.

is changed intaH(z) = 1 — 0.832621 + 0.66562 2 + In iterationn the input-output paifx,, y,) is fed into

0.715373. A binary signal ¢, € {-1,+1}) is sent the identification algorithm. The performance is evaluated
through this channel after which the signal is transformedy estimating the next output samglg, 1, given the next
nonlinearly according to the nonlinear functian =  input vectorz, 1, and comparing it to the actual output
tanh(u), wherew is the linear channel output. A scatter v, ;. For both methods, the mean square error (MSE)
plot of w,, versusy,, can be found in Fig. 3. Finallg0dB  was averaged out ov@h0 Monte-Carlo simulations.

of additive white Gaussian noise (AWGN) is added. The The MSE for both approaches is shown in Fig. 4. In
Wiener system is treated as a black box of which onlyiteration500 to 650 it can be seen that the algorithm needs
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Figure 5. Comparison of the identification results of thenkérRLS ~ Figure 7. lIdentification results when the correct channegtie L =
algorithm for different window lengths for Wiener systeneification. ~ 4 is not known. The curvel.s; = 3 shows that underestimation of
Larger windows obtain a better MSE. In general, the numbéeditions  the channel leads to a worse performance than overestimatibich

needed for convergence is of the order of the window length. corresponds tduest > 4.
10 ‘ ‘ 10
0
~~
m
S -10
L'J’ SNR = 10dB
g 20 SNR = 20dB
-30 SNR = 30dB
_4 L L
0 o0 200 150¢ % 500 1000 150(
iterations ; ;
iterations

Figure 6. Comparison of the identification results of thenkérRLS ) o . .
algorithm for different Wiener system channel lengths.c8ithe same  Figure 8. Identification results of the kernel RLS algoritfon different
sliding-window length was used in the three situations besults are ~ System SNR values in Wiener system identification.

obtained for the shortest channel. Note that the channgtiewas

known while performing identification.

the MSE variance. This also explains why the algorithm

N iterations to adjust completely to the channel Changec_:onverges to a higher MSE for larger windows.

For the chosen learning rate, the MSE of the MLP initially ~ b) Channel length:If a longer channel is used in
drops fast but it converges to a higher error. a Wiener system, more information needs to be repre-
In the following, the influence of some parameters isSented by the identification algorithm. If the same sliding-

Commented, Compared to the basic Setup \mth: 150, WindOW IengthN = 150 iS Used in identification Of
L = 4 and20dB SNR. Wiener systems with different channel lengths, perfor-
2) Influence of parameters: mance drops for longer channels, as can be_ seen in Fig.
a) Window length: Fig. 5 shows the performance 6.In gene.ral, the.performance can be maintained for such
of the kernel RLS algorithm for different sliding-window channels if the window length is increased adequately.
lengths N. First, it is observed that a larger window If the correct channel length is not known, an esti-
corresponds to slower convergence of the algorithm afteMateL.s; can be made. The simulations of Fig. 7 showed
the channel change. This occurs becadésiterations that the algorithm is very sensitive to underestimations of
are needed to replace the data in the kernel matrix witth€ channel length/(.;; < L). In any case it is preferred
data corresponding to the new channel. Second, for smdff overestimate the channel length slightly.{ > ).
windows, peaks appear in the MSE. The kernel metho@ote that computation time is hardly affected by an
generally combines the images of the data points withinncrease of the estimated channel length, since only the
one window to represent the output of the nonlineaernel function takes into account the channel length.
system. For small windows (such & = 75) the data ¢) Noise level: Fig. 8 shows the MSE curves for
points within one window are often insufficient to model different SNR values for the white Gaussian input noise,
the complexity of the nonlinear system, thus increasingeflecting clearly the variance of the input noise.
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linearly changing channel constant channel

0 50 100 150 200 250  30C 0 500 1000 1500 200(
Iterations iterations

Figure 9. Influence of the regularization constant on theritlyn’'s Figure 10. MSE for time-tracking of a Wiener system in whitte t
performance. Foe < 20 the obtained performance is very similar. For channel varies linearly.

larger values, such as= 50, regularization has a dominating effect on

the performance. 05

d) Regularization constantThe influence of the
regularization constant on the algorithm performance is
small, as can be seen in Fig. 9. For very large values _
(¢ > 20) the “smoothing” effect of the regularization > o
constant on the solution can be noticed.

e) Kernel function:Given the polynomial shape of
the observed nonlinearity, all previous tests were per-
formed using a polynomial kernel function. The obtained
MSE values are better than if for instance the Gaussiar —Of3
kernel function is used.

Finally, note that the nonlinear system has been treatec
as a black-box model. If the structure of the system_ .
. .. . . Figure 11. Inputz,, versus outpuly, of the system to identify, for
is known, this information can be expl0|ted to perform different indicesn. This system consists of a single nonlinearity to which
identification. For this purpose, the presented slidingnoise is added at the output.
window kernel RLS algorithm can be extended and used
as the basis of a more complex algorithm.

In [9] we proposed an online kernel canonical corre-
lation analysis (CCA) algorithm by merging the sliding-
window kernel RLS algorithm and a robust adaptive CCA
algorithm. By applying a linear kernel on the input data
and a nonlinear kernel on the output data, the CCA frameC. Nonlinear regression
work allows to treat the Wiener filter identification as two  |n this section we perform system identification on a
coupled LS problems, resulting in efficient identification system consisting of a single nonlinearity. This system
and equalization. For details on this method we refer tgs equivalent to a Wiener system with a linear channel
[9]. of length L = 1. For the experiment a nonlinear system

corresponding to the equation

sliding-window kernel RLS algorithm obtains a slightly
higher MSE than for the static channel.

B. Identification of a time-varying Wiener System

In linear systems that are varying in time, the RLS
algorithm with forgetting factor (5) can be applied to iden-was chosen where the input signal was zero-mean
tify the system and track the system changes. Although white gaussian noise of unit variance, amgl represents
similar exponentially weighted version of the kernel RLS20dB AWGN. A scatter plot ofu,, versusv, is shown in
algorithm for nonlinear system identification is considere Fig. 11.

a future research line, by using a sliding-window the 1) Comparison to MLP:As in the previous examples,
presented algorithm is also capable of tracking timethe sliding-window kernel RLS method was used to
variations. identify the nonlinear system. The results are compared

Fig. 10 shows the MSE curve for a Wiener systemto the MSE for identification by an MLP, as shown in Fig.
in which the channel varies linearly over the fil€i00  12. After comparing results for a wide range of parameter
iterations fromH; (z) to Hx(z) and is static over the next values, a length ofV = 50 was chosen for the sliding-
1000 iterations. When the channel is varying in time, thewindow, and for the MLP5 neurons in the hidden layer

Yn = Tp €XP (f:vi) + ng, (14)
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20

1000 1500
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0 500 200(

Figure 12. The performance of the kernel RLS algorithm and/aP
for nonlinear regression.

0 20 40 60 80
Iiterations

10C

Figure 13. Comparison of the MSE results of the kernel RLSrélgm
for nonlinearity identification with different window letigs.

[1]
(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

and the learning raté.1 were used. These values were[12]
chosen. The Gaussian kernel was applied in the sliding-

window algorithm.

In general a small window length is sufficient to

(13]

identify the nonlinearity system, as can be seen in Fig.
13. The lowest MSE level was already obtained with 314

window of lengthN = 50.

V1. CONCLUSIONS

A detailed study of a recently proposed sliding-[15]
window-based RLS algorithm was presented. The main

features of this algorithm are the introduction of regu-
larization against overfitting (by penalizing the solupn

and the combination of a sliding-window approach and16]

efficient matrix inversion formulas to keep the complexity

of the problem bounded. Thanks to the use of a sliding-

window the algorithm is able to provide tracking in a

time-varying environment.

(17]

The results of this algorithm suggest it can be extended
to deal with the nonlinear extensions of most problems
that are classically solved by linear RLS. Future research
lines also include an exponentially weighted version ofl18]
this kernel RLS algorithm and a comparison to other new

kernel methods.
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APPENDIX
MATRIX INVERSION FORMULAS

University, Belgium in 2003. Since 2003 he has been pursuing . . .
the Ph. D. degree at the Communications Engineering Deparf- 1he inverse of a downsized matrix

ment, University of Cantabria, Spain, under the supermisio By downsizinga matrix K, we denote the operation

of |. Santamaria. His current research interests inclueteel ¢ 1o 6ving its first row and column. In the formulas

methods and their applications to identification, equélireand bel d . Its in th 5D, The i

separation of signals. elow, 0\1NnS|zmg<_ results in the m?.tl‘l . The inverse
matrix D™ " can easily be expressed in terms of the known
elements oK ~! as follows:

_la bT -1 _ |€ fT
<=l b <=l gl

“

=D !'=G-ffT/e.

Javier Via received the degree of Telecommunication Engineer
from the University of Cantabria, Spain in 2002. Since 2082 h
has been pursuing the Ph. D. degree at the Communications
Engineering Department, University of Cantabria, undez th
supervision of I. Santamaria. His current research istsre
include neural networks, kernel methods, and their apidica

to digital communication problems.

be + Df
bfT + DG

0
= |

(15)

Ignacio Santamaria received his Telecommunication Engi- B. The inverse of an upsized matrix
neer Degree and his Ph.D. in Electrical Engineering from the s . .
Polytechnic University of Madrid, Spain in 1991 and 1995, By upsizinga matrix we refer to f’idd'ng one row E_’md
respectively. In 1992 he joined the Department of Communica®n€ column at the end. The matrk shown below s
tions Engineering, University of Cantabria, Spain, wheeeihr  upsized to the matriX. Given the inverse matriA™

currently Professor. In 2000 and 2004, he spent visitingpdsr  and upsized matriX, the inverse matrixKk ~! can be
at the Computational NeuroEngineering Laboratory (CNEL),qptained as follows:
University of Florida.
Dr. Santamaria has more than 90 publications in referaed jo K — A b K-1— E f
nals and international conference papers. His currenarelsen- T 4| T g
terests include nonlinear modeling techniques, machiamieg
theory and their application to digital communication syss, AE +bff = |
in particular to inverse problems (deconvolution, equsion - Af + b —
and identification problems). T 9 B
b'f+dg = 1
-1 Tpa—1H -1
K= [A (1+Dbb A7 Hg) —A bg} (16)
—(A7'b)"y

with g = (d — b"A~'b)~".
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