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Abstract— In this paper we discuss in detail a recently
proposed kernel-based version of the recursive least-squares
(RLS) algorithm for fast adaptive nonlinear filtering. Unli ke
other previous approaches, the studied method combines
a sliding-window approach (to fix the dimensions of the
kernel matrix) with conventional ridge regression (to im-
prove generalization). The resulting kernel RLS algorithmis
applied to several nonlinear system identification problems.
Experiments show that the proposed algorithm is able to
operate in a time-varying environment and to adjust to
abrupt changes in either the linear filter or the nonlinearity.

Index Terms— kernel methods, kernel RLS, sliding-window,
system identification

I. I NTRODUCTION

An important number of kernel methods have been pro-
posed in recent years, including support vector machines
[1], kernel principal component analysis [2], kernel Fisher
discriminant analysis [3] and kernel canonical correlation
analysis [4], [5], with applications in classification and
nonlinear regression problems. In their original forms,
most of these algorithms cannot be used to operate online
since a number of difficulties are introduced by the kernel
methods, such as the time and memory complexities
(because of the growing kernel matrix) and the need to
avoid overfitting.

Recently a kernel RLS algorithm was proposed that
dealt with both difficulties [6]: by applying a sparsification
procedure the kernel matrix size was limited and the order
of the problem was reduced. This kernel RLS algorithm
allows for online training but cannot handle time-varying
data. Other approaches to reduce the order of the kernel
matrix have been also been proposed, including a recent
kernel principal component analysis (PCA) algorithm [6]
which is able to track time-varying data.

In this paper we discuss a different approach, applying
conventional ridge regression instead of reducing the
order of the feature space. A sliding-window technique
is applied to fix the size of the kernel matrix in advance,
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allowing the algorithm to operate online in time-varying
environments.

After describing the proposed sliding-window kernel
RLS algorithm, we discuss its application to different non-
linear system identification problems. First, it is applied
to identify a Wiener system, which is a simple nonlinear
model that typically appears in satellite communications
[7] or digital magnetic recording systems [8]. Then we
apply the kernel RLS algorithm to a nonlinear regression
problem. Apart from its applications in system identifica-
tion, the proposed sliding-window kernel RLS algorithm
can also be used as a building block for other, more
complex adaptive algorithms. In particular, it has been
applied to develop a sliding-window kernel canonical
correlation analysis (CCA) algorithm [9].

The rest of this paper organized as follows: in Section
II the least-squares criterion is explained briefly. Kernel
methods are introduced in Section III and a detailed
description of the sliding-window algorithm is given in
Section IV. In Section V it is applied to two nonlinear
system identification problems and Section VI summa-
rizes the main conclusions of this work.

II. REGULARIZED LEAST-SQUARES

A. Least-Squares Problem

The least-squares (LS) criterion [10] is a widely used
method in signal processing. Given a vectory ∈ R

N×1

and a data matrixX ∈ R
N×M of N observations, it

consists in seeking the optimal vectorh ∈ R
M×1 that

solves
J = min

h
‖y − Xh‖2. (1)

When the number of observationsN is at least equal to
the number of unknownsM , the least-squares problem
is overdeterminedand has either one unique solution or
an infinite number of solutions. IfXT X is a non-singular
matrix, the unique solution of the least-squares problem
is given by

ĥ =
(

XT X
)−1

XT y. (2)

If X is rank deficient,XT X is a singular matrix corre-
sponding to a LS problem with infinitely many solutions.

For full rank matricesX with N ≥ M , the solution
ĥ can be represented in the basis defined by the rows of
X. Hence it can also be written ash = XT a, making it a
linear combination of the input patterns (this is sometimes
denoted as the “dual representation”).
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To improve generalization and increase the smoothness
of the solution, a regularization term is often included in
the standard least-squares formulation (1):

J = min
h

[

‖y − Xh‖2 + chT h
]

, (3)

where c is a regularization constant. This problem is
known as regularized least-squares, and its solution is
given by

ĥ =
[

XT X + cI
]−1

XT y, (4)

whereI is the identity matrix.

B. Recursive Least-Squares

In many problems not all data are known in advance
and the solution has to be re-calculated as new obser-
vations become available. In case of linear problems,
the well-known recursive least-squares (RLS) algorithm
[10] can be used, which calculates the solution of the
regularized LS problem (3) in a recursive manner, based
on the Sherman-Morrison-Woodbury formula for matrix
inversion [11].

The most commonly used form of RLS is theexponen-
tially weightedRLS algorithm, which gives more weight
to recent data and less weight to previous data. Given a
positive scalarλ < 1 (theforgetting factor), this algorithm
recursively calculates the solution to the problem

J = min
h





N
∑

j=0

λN−j |y(j) − xT
j h‖2 + chT h



 , (5)

wherexT
j denotes thej-th row ofX, for a growing number

of observationsN . For a complete formulation of this
algorithm, we refer to [10].

III. K ERNEL METHODS

In recent years, the framework of reproducing kernel
Hilbert spaces (RKHS) has led to the family of algorithms
known as kernel methods[12]. These algorithms use
Mercer kernels in order to produce nonlinear versions of
conventional linear algorithms.

Kernel methods are based on the implicit nonlinear
transformation of the dataxi from the input space to
a high-dimensionalfeature spacẽxi = Φ(xi). The key
property of kernel methods is that scalar products in the
feature space can be seen as nonlinear (kernel) functions
of the data in the input space. Since this property avoids
the explicit mapping to the feature space, it allows to
perform any conventional scalar product based algorithm
in the feature space by solely replacing the scalar products
with the Mercer kernel function in the input space.

In this way, any positive definite kernel function satis-
fying Mercer’s condition [1]:κ(xi, xj) = 〈Φ(xi), Φ(xj)〉
has an implicit mapping to some higher-dimensional
feature space. This simple and elegant idea is known as
the “kernel trick”, and it is commonly applied by using a
nonlinear kernel such as the Gaussian kernel

κ(xi, xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

,

which implies an infinite-dimensional feature space, or
the polynomial kernel of orderp

κ(xi, yj) =
(

1 + xT
i xj

)p
.

A. Kernel LS

A nonlinear “kernel” version of the linear LS algorithm
can be obtained by transforming the data into feature
space. Using the transformed vectorh̃ ∈ R

M ′
×1 and the

transformed data matrix̃X ∈ R
N×M ′

, the LS problem (1)
can be written in feature space as

J ′ = min
h̃

‖y − X̃h̃‖2. (6)

The transformed solutioñh can now also be represented
in the basis defined by the rows of the (transformed) data
matrix X̃, namely as

h̃ = X̃
T
α. (7)

Moreover, introducing thekernel matrixK = X̃X̃
T

the
LS problem in feature space (6) can be rewritten as

J ′ = min
α

‖y − Kα‖2 (8)

in which the solutionα is anN×1 vector. The advantage
of writing the nonlinear LS problem in the dual notation is
that thanks to the “kernel trick”, we only need to compute
K , which is done as

K(i, j) = κ(xi, xj), (9)

wherexT
i and xT

j are thei-th andj-th rows of X. As a
consequence, the computational complexity of operating
in this high-dimensional space is not necessarily larger
than that of working in the original low-dimensional
space.

B. Measures Against Overfitting

For most useful kernel functions, the dimension of the
feature space,M ′, will be much higher than the number of
available data pointsN (for instance, in case the Gaussian
kernel is used, the feature space will have dimension
M ′ = ∞). As mentioned in Section II, Eq. (8) could
have an infinite number of solutions in these cases, due
to the rank deficiency of̃X. A number of techniques to
handle this overfitting have been presented.

1) Kernel RLS with sequential sparsification:In [6]
a sparsification process was proposed in which an input
sample is only admitted into the kernel if its image in
feature space cannot be sufficiently well approximated by
combining the previously admitted samples. In this way
the resulting kernel RLS algorithm reduces the order of
the feature space [4], [5]. A related kernel LS algorithm
was recently presented in [13].

2) Kernel RLS by kernel PCA:Another approach to
reduce the order of the feature space is by applying prin-
cipal component analysis (PCA) [14]. PCA is a technique
based on singular value decomposition (SVD) to extract
the dominant eigenvectors of a matrix.
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3) Kernel ridge regression:A third method to regular-
ize the solution of the kernel RLS problem is by applying
conventional ridge regression. This type of regularization
was chosen for the proposed algorithm because of its low
computational complexity. In (kernel) ridge regression,
the norm of the solutioñh is penalized as in (3) to obtain
the following problem:

J ′′ = min
h̃

[

‖y − X̃h̃‖2 + ch̃
T

h̃
]

. (10)

This problem can be written in dual notation as follows:

J ′′ = min
α

[

‖y − Kα‖2 + cαT Kα

]

(11)

whose solution is given by

α = K−1
regy (12)

with Kreg = (K + cI) andc is a regularization constant.

IV. T HE ONLINE ALGORITHM

In a number of situations it is preferred to have an
online, i.e. recursive, algorithm. In particular, if the data
points y are the result of a time-varying process, an
online algorithm can be designed, able to track these
time variations. The key feature of an online algorithm is
that the number of computations required per new sample
must not increase as the number of samples increases.

A. A Sliding-Window Approach

In [15] we presented a regularized kernel version of
the RLS algorithm, using a sliding-window approach. An
online setup assumes we are given a stream of input-
output pairs{(x1, y1), (x2, y2), . . . }. The sliding-window
approach considers only a window consisting of the last
N pairs of this stream (see Fig. 1). For then-th window,
the observation vectoryn = [yn, yn−1, . . . , yn−N+1]

T

and observation matrixXn = [xn, xn−1, . . . , xn−N+1]
T

are formed, and the corresponding regularized kernel
matrix Kn = X̃nX̃

T

n + cI can be calculated.
Note that it is necessary to limit the number of data

vectorsxn, N , from which the kernel matrix is calculated.
Unlike standard linear RLS, for which the correlation
matrix has fixed size depending on the (fixed)dimension
of the input vectorsM , the size of the kernel matrix in
an online scenario depends on thenumber of observations
N .

In [6], a kernel RLS algorithm is designed that limits
the matrix sizes by means of a sparsification procedure,
which maps the samples to a (limited) dictionary. It
allows both to reduce the order of the feature space
(which prevents overfitting) and to keep the complexity
of the algorithm bounded. In our approach these two
measures are obtained by two different mechanisms. On
one hand, the regularization against overfitting is done by
penalizing the solutions, as in (12). On the other hand,
the complexity of the algorithm is reduced by considering
only the observations in a window with fixed length. The
advantage of the latter approach is that it is able to track
time variations without extra computational burden.
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Figure 1. (a) Kernel matricesK i of growing size. (b) Kernel matrices
K i of fixed size, obtained by only considering the data in windows of
fixed size.

B. Updating the Inverse of the Kernel Matrix

The calculation of the updated solutionαn requires
the calculation of theN × N inverse matrixK−1

n for
each window. This is costly both computationally (re-
quiring O(N3) operations) and memory-wise. Therefore
an update algorithm is developed that can computeK−1

n

solely from knowledge of the data of the current window
{Xn, yn} and the previousK−1

n−1. The updated solution
αn can then be calculated in a straightforward way using
Eq. (12).

Given the regularized kernel matrixKn−1, the new reg-
ularized kernel matrixKn can be constructed in two steps.
First, the first row and column ofKn−1 are removed. This
step is referred to asdownsizingthe kernel matrix, and
the resulting matrix is denoted aŝKn−1. In the second
step, kernels of the new data are added as the last row
and column to this matrix:

Kn =

[

K̂n−1 kn−1(xn)
kn−1(xn)T knn + c

]

, (13)

where kn−1(xn) = [κ(xn−N+1, xn), . . . , κ(xn−1, xn)]T

andknn = κ(xn, xn). This step is referred to asupsizing
the kernel matrix.

Calculating the inverse kernel matrixK−1
n is also done

in two steps, using the two inversion formulas derived
in appendices A and B. First, given the previous kernel
matrix Kn−1 and its inverseK−1

n−1, the inverse of the
downsizedN − 1 × N − 1 matrix K̂n−1 is calculated
according to Eq. (15). Then, the matrix̂Kn−1 is upsized
to obtain Kn, and based on the knowledge ofKn and
K̂

−1

n−1 the inversion formula from Eq. 16 is applied to
obtainK−1

n .
Note that these formulas do not calculate the in-

verse matrices explicitly, but rather derive them from
known matrices maintaining an overall time complexity of
O(N2) of the algorithm, whereN is the window length.

To initialize the algorithm, zero-padding of the data was
applied to fill the sliding window. The initial observation
matrix X0 consists entirely of zeros. The regularized ker-
nel matrixK0 corresponding to these data is obtained and
its inverse is calculated. For the Gaussian and polynomial
kernel function, this matrix isK0 = 1 + cI , where1 is
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Algorithm 1 Summary of the proposed adaptive algo-
rithm.

Initialize K0 and calculateK−1

0 .
for n = 1, 2, . . . do

Downsizing: ObtainK̂n−1 out of Kn−1.
CalculateK̂

−1

n−1 according to Eq. (15).
Upsizing: ObtainKn according to Eq. (13).
CalculateK−1

n according to Eq. (16).
Obtain the updated solutionαn = K−1

n yn.
end for

H(z) f(.)xn
yn

nn

vn
un

Figure 2. A nonlinear Wiener system.

an N × N matrix filled by ones andI is the unit matrix.
The complete algorithm is summarized in Alg. (1).

V. EXPERIMENTS

In this section we investigate the performance of the
sliding-window kernel RLS algorithm to identify two
nonlinear systems. In both cases the results are compared
to online identification by a multi-layer perceptron (MLP),
which is a standard approach for identifying nonlinear
systems. Since kernel methods provide a natural nonlinear
extension of linear regression methods [12], the proposed
system is supposed to perform well compared to the MLP.

A. Identification of a Wiener System with an abrupt
channel change

The Wiener system is a well-known and simple non-
linear system which consists of a series connection of
a linear filter and a memoryless nonlinearity (see Fig.
2). Such a nonlinear channel can be encountered in
digital satellite communications and in digital magnetic
recording. Traditionally, the problem of blind nonlinear
equalization or identification has been tackled by consid-
ering nonlinear structures such as MLPs [16], recurrent
neural networks [17], or piecewise linear networks [18].

We consider a supervised identification problem, in
which moreover at a given time instant the linear channel
coefficients are changed abruptly to compare the tracking
capabilities of both algorithms: During the first part of the
simulation, the linear channel isH1(z) = 1−0.3668z−1−
0.4764−2 + 0.8070−3 and after receiving500 symbols it
is changed intoH2(z) = 1 − 0.8326z−1 + 0.6656z−2 +
0.7153−3. A binary signal (xn ∈ {−1, +1}) is sent
through this channel after which the signal is transformed
nonlinearly according to the nonlinear functionv =
tanh(u), wherev is the linear channel output. A scatter
plot of un versusvn can be found in Fig. 3. Finally,20dB
of additive white Gaussian noise (AWGN) is added. The
Wiener system is treated as a black box of which only

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5

u
n

v n

Figure 3. Signal in the middle of the Wiener system vs. outputsignal
for binary input symbols and different indicesn.
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Figure 4. MSE of the identification of the nonlinear Wiener system of
Fig. 2, for the standard method using an MLP and for the window-based
kernel RLS algorithm with window lengthN = 150. A change in filter
coefficients of the nonlinear Wiener system was introduced after sending
500 data points.

input and output are known. To fill the initial sliding-
windows, zero-padding of the signals was applied. The
MLP was trained in an online manner, i.e. in every
iteration one new data point was used for updating the
net weights.

1) Comparison to MLP:System identification was first
performed by an MLP with8 neurons in its hidden layer
and learning rate0.1, and then by using the sliding-
window kernel RLS with window sizeN = 150 and using
a polynomial kernel of orderp = 3. For both methods we
applied time-embedding techniques in which the lengthL
of the linear channel was known. More specifically, the
used MLP was a time-delay MLP withL inputs, and the
input vectors for the kernel RLS algorithm were time-
delayed vectors of lengthL, xn = [xn−L+1, . . . , xn]T .
The length of the used linear channelsH1 and H2 was
L = 4.

In iterationn the input-output pair(xn, yn) is fed into
the identification algorithm. The performance is evaluated
by estimating the next output samplev̂n+1, given the next
input vectorxn+1, and comparing it to the actual output
vn+1. For both methods, the mean square error (MSE)
was averaged out over250 Monte-Carlo simulations.

The MSE for both approaches is shown in Fig. 4. In
iteration500 to 650 it can be seen that the algorithm needs
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Figure 5. Comparison of the identification results of the kernel RLS
algorithm for different window lengths for Wiener system identification.
Larger windows obtain a better MSE. In general, the number ofiterations
needed for convergence is of the order of the window length.
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Figure 6. Comparison of the identification results of the kernel RLS
algorithm for different Wiener system channel lengths. Since the same
sliding-window length was used in the three situations, best results are
obtained for the shortest channel. Note that the channel length was
known while performing identification.

N iterations to adjust completely to the channel change.
For the chosen learning rate, the MSE of the MLP initially
drops fast but it converges to a higher error.

In the following, the influence of some parameters is
commented, compared to the basic setup withN = 150,
L = 4 and20dB SNR.

2) Influence of parameters:
a) Window length:Fig. 5 shows the performance

of the kernel RLS algorithm for different sliding-window
lengths N . First, it is observed that a larger window
corresponds to slower convergence of the algorithm after
the channel change. This occurs becauseN iterations
are needed to replace the data in the kernel matrix with
data corresponding to the new channel. Second, for small
windows, peaks appear in the MSE. The kernel method
generally combines the images of the data points within
one window to represent the output of the nonlinear
system. For small windows (such asN = 75) the data
points within one window are often insufficient to model
the complexity of the nonlinear system, thus increasing
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Figure 7. Identification results when the correct channel length L =

4 is not known. The curveLest = 3 shows that underestimation of
the channel leads to a worse performance than overestimation, which
corresponds toLest > 4.
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Figure 8. Identification results of the kernel RLS algorithmfor different
system SNR values in Wiener system identification.

the MSE variance. This also explains why the algorithm
converges to a higher MSE for larger windows.

b) Channel length:If a longer channel is used in
a Wiener system, more information needs to be repre-
sented by the identification algorithm. If the same sliding-
window length N = 150 is used in identification of
Wiener systems with different channel lengths, perfor-
mance drops for longer channels, as can be seen in Fig.
6. In general, the performance can be maintained for such
channels if the window length is increased adequately.

If the correct channel lengthL is not known, an esti-
mateLest can be made. The simulations of Fig. 7 showed
that the algorithm is very sensitive to underestimations of
the channel length (Lest < L). In any case it is preferred
to overestimate the channel length slightly (Lest > L).
Note that computation time is hardly affected by an
increase of the estimated channel length, since only the
kernel function takes into account the channel length.

c) Noise level: Fig. 8 shows the MSE curves for
different SNR values for the white Gaussian input noise,
reflecting clearly the variance of the input noise.
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Figure 9. Influence of the regularization constant on the algorithm’s
performance. Forc ≤ 20 the obtained performance is very similar. For
larger values, such asc = 50, regularization has a dominating effect on
the performance.

d) Regularization constant:The influence of the
regularization constant on the algorithm performance is
small, as can be seen in Fig. 9. For very large values
(c > 20) the “smoothing” effect of the regularization
constant on the solution can be noticed.

e) Kernel function:Given the polynomial shape of
the observed nonlinearity, all previous tests were per-
formed using a polynomial kernel function. The obtained
MSE values are better than if for instance the Gaussian
kernel function is used.

Finally, note that the nonlinear system has been treated
as a black-box model. If the structure of the system
is known, this information can be exploited to perform
identification. For this purpose, the presented sliding-
window kernel RLS algorithm can be extended and used
as the basis of a more complex algorithm.

In [9] we proposed an online kernel canonical corre-
lation analysis (CCA) algorithm by merging the sliding-
window kernel RLS algorithm and a robust adaptive CCA
algorithm. By applying a linear kernel on the input data
and a nonlinear kernel on the output data, the CCA frame-
work allows to treat the Wiener filter identification as two
coupled LS problems, resulting in efficient identification
and equalization. For details on this method we refer to
[9].

B. Identification of a time-varying Wiener System

In linear systems that are varying in time, the RLS
algorithm with forgetting factor (5) can be applied to iden-
tify the system and track the system changes. Although a
similar exponentially weighted version of the kernel RLS
algorithm for nonlinear system identification is considered
a future research line, by using a sliding-window the
presented algorithm is also capable of tracking time
variations.

Fig. 10 shows the MSE curve for a Wiener system
in which the channel varies linearly over the first1000
iterations fromH1(z) to H2(z) and is static over the next
1000 iterations. When the channel is varying in time, the
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linearly changing channel constant channel

Figure 10. MSE for time-tracking of a Wiener system in which the
channel varies linearly.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

x
n

y n

Figure 11. Inputxn versus outputyn of the system to identify, for
different indicesn. This system consists of a single nonlinearity to which
noise is added at the output.

sliding-window kernel RLS algorithm obtains a slightly
higher MSE than for the static channel.

C. Nonlinear regression

In this section we perform system identification on a
system consisting of a single nonlinearity. This system
is equivalent to a Wiener system with a linear channel
of lengthL = 1. For the experiment a nonlinear system
corresponding to the equation

yn = xn exp
(

−x2
n

)

+ nn (14)

was chosen where the input signalxn was zero-mean
white gaussian noise of unit variance, andnn represents
20dB AWGN. A scatter plot ofun versusvn is shown in
Fig. 11.

1) Comparison to MLP:As in the previous examples,
the sliding-window kernel RLS method was used to
identify the nonlinear system. The results are compared
to the MSE for identification by an MLP, as shown in Fig.
12. After comparing results for a wide range of parameter
values, a length ofN = 50 was chosen for the sliding-
window, and for the MLP5 neurons in the hidden layer
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Figure 12. The performance of the kernel RLS algorithm and anMLP
for nonlinear regression.
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Figure 13. Comparison of the MSE results of the kernel RLS algorithm
for nonlinearity identification with different window lengths.

and the learning rate0.1 were used. These values were
chosen. The Gaussian kernel was applied in the sliding-
window algorithm.

In general a small window length is sufficient to
identify the nonlinearity system, as can be seen in Fig.
13. The lowest MSE level was already obtained with a
window of lengthN = 50.

VI. CONCLUSIONS

A detailed study of a recently proposed sliding-
window-based RLS algorithm was presented. The main
features of this algorithm are the introduction of regu-
larization against overfitting (by penalizing the solutions)
and the combination of a sliding-window approach and
efficient matrix inversion formulas to keep the complexity
of the problem bounded. Thanks to the use of a sliding-
window the algorithm is able to provide tracking in a
time-varying environment.

The results of this algorithm suggest it can be extended
to deal with the nonlinear extensions of most problems
that are classically solved by linear RLS. Future research
lines also include an exponentially weighted version of
this kernel RLS algorithm and a comparison to other new
kernel methods.
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APPENDIX

MATRIX INVERSION FORMULAS

A. The inverse of a downsized matrix

By downsizinga matrix K , we denote the operation
of removing its first row and column. In the formulas
below, downsizingK results in the matrixD. The inverse
matrixD−1 can easily be expressed in terms of the known
elements ofK−1 as follows:

K =

[

a bT

b D

]

, K−1 =

[

e fT

f G

]

⇒

{

be + Df = 0
bfT + DG = I

⇒ D−1 = G − ffT /e. (15)

B. The inverse of an upsized matrix

By upsizinga matrix we refer to adding one row and
one column at the end. The matrixA shown below is
upsized to the matrixK . Given the inverse matrixA−1

and upsized matrixK , the inverse matrixK−1 can be
obtained as follows:

K =

[

A b
bT d

]

, K−1 =

[

E f
fT g

]

⇒







AE + bfT = I
Af + bg = 0
bT f + dg = 1

⇒ K−1 =

[

A−1(I + bbT A−1Hg) −A−1bg

−(A−1b)T g g

]

(16)

with g = (d − bT A−1b)−1.
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