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Abstract— Spectrum scarcity is becoming a major issue
for service providers interested in either deploying new
services or enhancing the capacity for existing applications.
On the other hand, recent measurements suggest that many
portions of the licensed (primary) spectrum remain unused
for significant periods of time. This has led the regula-
tory bodies to consider opening up under-utilized licensed
frequency bands for opportunistic access by unlicensed
(secondary) users. Among different options, sensing-based
access incurs a very low infrastructure cost and is backward-
compatible with the legacy primary systems. In this paper,
we investigate the effect of user collaboration on the perfor-
mance of sensing-based secondary access in fading channels.
In particular, we demonstrate that under independent fading
or shadowing, a low-overhead collaboration scheme with a
very simple detector as its building block, 1) improves the
spectrum utilization significantly, 2) enables the individual
users to employ less sensitive detectors, thereby allowing
a wider range of devices to access the primary bands, 3)
increases the robustness toward noise uncertainty, 4) reduces
the time and bandwidth resources required for satisfactory
sensing which translates into higher agility and efficiency of
the secondary access.

Index Terms— spectrum sensing, opportunistic access,
cognitive radio, collaborative sensing

I. INTRODUCTION

The frequency spectrum is currently managed in a
very inflexible manner where bands are licensed to users
by government agencies and the licensee has the exclu-
sive right to access the allocated band regardless of its
spatiotemporal usage characteristics. While this approach
fully protects the licensee from inter-system interference,
it results in spectrum being greatly under-utilized as
evidenced by the recent measurements [1], [2].

With the increasing demand for the spectrum and
the scarcity of vacant bands, a spectrum policy reform
seems inevitable. The FCC’s initiative to open up the
TV bands for unlicensed access [3] along with several
other projects including the Defense Advanced Research
Projects Agency (DARPA)’s ”Next Generation” (XG)
program [4] and the national science foundation’s ”NeTS-
ProWiN” project [5] signal a paradigm shift in the

This paper is based on ”Impact of User Collaboration on the Per-
formance of Sensing-Based Opportunistic Spectrum Access”, by A.
Ghasemi, and E. S. Sousa which appeared in the Proceedings of the 64th
semi-annual IEEE Vehicular Technology Conference (VTC), Montreal,
QC, Canada, September 2006. c© 2006 IEEE.

spectrum access policy. Meanwhile, IEEE has formed a
working group on wireless regional area networks (IEEE
802.22) whose goal is to develop a standard for unlicensed
access to the TV spectrum on a non-interfering basis [6].
This raises several new technical and regulatory issues
to be addressed by academia as well as policy-makers.
The interested reader is referred to [7]–[9] for a general
overview of the issues associated with the spectrum access
policy reform.

In order to alleviate the spectrum scarcity, secondary
systems may be allowed to opportunistically access the
temporarily unused licensed band of a primary system
(a so-called white space). In the absence of coopera-
tion or signalling between the primary licensee and the
secondary user (e.g., when dealing with legacy primary
systems), spectrum availability for the secondary access
may be determined by direct spectrum sensing [10]. In
this case, the licensed spectrum is deemed accessible if
no primary activity is detected by the secondary user.
Therefore, instead of guarding the licensed spectrum in
a rigid command-and-control fashion, agile secondary
users provide an on-demand interference-protection to the
primary system by detecting and utilizing only the white
spaces.

In this paper, simple energy detection (a.k.a. radiom-
etry) [11] is chosen as the underlying spectrum sensing
scheme since our goal is to characterize the gains achiev-
able through collaboration without obscuring the analy-
sis by employing more sophisticated detection methods.
However, it is well-known that the energy detector’s per-
formance is susceptible to noise power estimation errors
[12]. Indeed, to achieve a desired level of performance
under uncertain noise power, the signal-to-noise ratio
(SNR) has to be above a certain threshold. Moreover, this
constraint can not be avoided by increasing the detection
time, thereby calling for alternate detection schemes when
operating at SNR levels below the threshold. In particular,
when some information about the structure of the primary
signal is available, ad hoc feature-detectors may be em-
ployed to address this issue [13].

In a heavily shadowed or fading environment, spectrum
sensing is hampered by the uncertainty resulting from
channel randomness. In such cases, a low received energy
may be due to a faded primary signal rather than a
white space. As such, a secondary user has to be more
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Figure 1. Block diagram of an energy detector

conservative so as not to confuse a deep fade with a white
space, thereby resulting in poor spectrum utilization.

On the other hand, fading and shadowing effects may
vary significantly depending on the receiver’s location.
Therefore, the uncertainty due to fading may be mitigated
by allowing different users to share their sensing results
and collaboratively decide on the occupancy status of
the licensed band. Building upon this idea, collaborative
spectrum sensing has been recently studied in [14]–[17].
The main focus of the present paper is to extend these
works by analyzing the impact of user collaboration
on the performance of opportunistic spectrum access.
Particularly, we show that having a sufficient number of
collaborating users with independently-fading channels,
it is (theoretically) possible to detect a primary user
at arbitrarily low SNR levels. Moreover, collaboration
lowers the observation time and bandwidth required for
the satisfactory detection of spectrum occupancy state,
which in turn results in the higher agility and efficiency
of the sensing process.

As we shall illustrate later, given a sufficient number
of users, collaborative sensing is capable of delivering
the desired performance under noise uncertainty even
if the individual users do not meet the minimum SNR
requirement. Thus, collaboration potentially obviates the
need to employ more sophisticated detectors in such
cases.

The remainder of this paper is organized as follows.
Section II highlights the importance of collaboration by
examining the performance degradation of local spectrum
sensing due to channel uncertainty. Different options for
collaboration are then considered and compared through
simulations in Section III. We analyze the asymptotic
performance for a large number of secondary users in
terms of spectrum utilization, required SNR, detection
time, and robustness to noise in Section IV. The impact
of spatially-correlated shadowing on collaboration gain
is characterized through simulation in Section V. Finally,
this paper is concluded by providing some final remarks
and further research directions in Section VI.

II. LOCAL SPECTRUM SENSING IN FADING
CHANNELS

Fig. 1 depicts the block-diagram of an energy detector.
The input band-pass filter removes the out-of-band noise
by selecting the center frequency, fs, and the bandwidth
of interest, W . This filter is followed by a squaring device
to measure the received energy and an integrator which
determines the observation interval, T . The output of
the integrator is then normalized by N0/2, where N0

is the one-sided noise power spectral density. Finally,

the normalized output, Y , is compared to a decision
threshold, λ, to decide whether the signal is present.

The goal of spectrum sensing is to determine if a
licensed band is not currently being used by its primary
owner. This in turn may be formulated as a binary
hypothesis testing problem1,

x(t) =

{

n(t), H0 (white space)
h s(t) + n(t), H1 (occupied)

where x(t) is the signal received by the secondary user,
s(t) is the primary users’s transmitted signal, n(t) is
the additive white Gaussian noise (AWGN) and h is the
amplitude gain of the channel. The SNR is defined as
γ = P

N0W with P being the power of the primary signal
received at the secondary user.

Within the context of opportunistic spectrum access,
the probability of detection determines the level of
interference-protection provided to the primary licensee
while the probability of false-alarm is the percentage of
white spaces falsely declared occupied (i.e. the percentage
of missed opportunities). Therefore, a sensible design
criterion is to minimize Pf while guaranteeing that Pd

remains above a certain threshold set by the regulator.
In order to properly set the stage for the discussion

of collaborative sensing, we start with an analysis of
local (individual) energy detection in fading channels. We
denote the normalized output of the integrator in Fig. 1
by Y which serves as the decision statistic. For simplicity,
we assume that the time-bandwidth product, TW , is
an integer number which we denote by m. Urkowitz
has shown Y to have central and non-central chi-square
distributions under H0 and H1, respectively, each with
2m degrees of freedom and a non-centrality parameter
of PT

N0/2 for the latter distribution [11]. However, note
that PT

N0/2 = 2PTW
N0W = 2mγ. Therefore, the probability

distribution function (pdf) of Y under the two hypotheses
may be written as,

fY |H0
(y) =

ym−1e−y/2

Γ(m)2m
(1)

fY |H1
(y) =

ym−1e−(y+2mγ)/2

Γ(m)2m 0F1

(

m,
mγy

2

)

(2)

where Γ(.) is the gamma function and 0F1(., .) is the
confluent hypergeometric limit function [18].

In a non-fading environment where h is deterministic,
using the cumulative distribution functions of the central
and non-central chi-square distributions, the probabilities
of detection and false-alarm may be written as follows,

Pd = P{Y > λ|H1} = Qm(
√

2mγ,
√

λ) (3)

Pf = P{Y > λ|H0} =
Γ(m, λ/2)

Γ(m)
, Gm(λ) (4)

1It is assumed that during the sensing, all secondary users remain
silent (e.g., through a MAC protocol). Thus, the received energy will
be due to the primary transmission only.
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where Γ(a, b) =
∫ ∞

b
ta−1e−tdt is the incomplete gamma

function [18] and Qm(., .) is the generalized Marcum Q-
function [19] as defined below,

Qm(a, b) =

∫ ∞

b

xm

am−1
e−

x2+a2

2 Im−1(ax) dx

where Im−1(.) is the (m − 1)th order modified Bessel
function of the first kind.

Combining (3) and (4), the probability of detection is
related to the probability of false-alarm through,

Pd = Qm

(

√

2mγ,

√

G−1
m (Pf )

)

(5)

The fundamental tradeoff between Pm = 1 − Pd (the
probability of missed detection) and Pf has different
implications in the context of opportunistic spectrum
access. A high Pm results in missing the presence of
primary user with high probability, which in turn increases
the interference inflicted on the primary licensee. On the
other hand, a high Pf inevitably results in low spectrum
utilization since the false-alarms increase the number of
missed opportunities (white spaces).

As expected, Pf is independent of γ since under
H0 there is no primary signal present. On the other
hand, when h is varying due to shadowing or fading,
(3) gives the probability of detection conditioned on the
instantaneous SNR, γ. In this case, the average probability
of detection (which, with an abuse of notation, is also
denoted by Pd) may be derived by averaging (3) over
fading statistics,

Pd =

∫

γ

Qm(
√

2mx,
√

λ)fγ(x)dx

=

∫

γ

Qm

(√
2mx,

√

G−1
m (Pf )

)

fγ(x)dx (6)

where fγ(x) is the pdf of SNR under fading.
Performance of energy detector for different values of

the average SNR and m may be characterized through the
complementary receiver operating characteristics (ROC)
curves (the plot of Pm vs. Pf ). In what follows, we study
the performance under Rayleigh fading and log-normal
shadowing.

A. Rayleigh Fading

Under Rayleigh fading, γ has an exponential distribu-
tion. In this case, a closed-form expression for Pd may be
obtained (after some manipulation) by substituting fγ(x)
in (6) [20],

Pd =
Γ(m − 1, λ

2 )

Γ(m − 1)
+ e−

λ
2(1+mγ)

(

1 +
1

mγ

)m−1

×



1 −
Γ
(

m − 1, λmγ
2(1+mγ)

)

Γ(m − 1)



 (7)

where γ is the average SNR. Fig. 2 (a) provides plots
of the complementary ROC curve under AWGN and
Rayleigh fading scenarios. γ and m are assumed to be 5
dB and 5, respectively. We observe that Rayleigh fading

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

P
f

AWGN
Rayleigh

P
m

 

(a)

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

P
f

σ
dB

 = 2dB
σ

dB
 = 6dB

σ
dB

 = 12dB

AWGN

P
m

 

(b)

Figure 2. The complementary ROC (Pm vs. Pf ) under i.i.d. (a)
Rayleigh fading (b) log-normal shadowing with different dB-spreads.
(γ = 5 dB, m = 5). The AWGN curve is provided for comparison.

degrades the performance of energy detector significantly.
Particularly, achieving Pm < 10−2 entails a probability
of false-alarm greater than 0.9, which in turn results in
poor spectrum utilization.

B. Log-normal Shadowing

Empirical measurements suggest that the medium-scale
variations of the received power, when represented in dB
units, follow a normal distribution (see e.g., [21]). In other
words, the linear (as opposed to dB) channel gain may be
modeled by a log-normal random variable, eX , where X
is a zero-mean Gaussian random variable with variance
σ2. Log-normal shadowing is usually characterized in
terms of its dB-spread, σdB , which is related to σ by
σ = 0.1 loge(10)σdB .

When γ is log-normally distributed due to shadowing,
(6) may be evaluated numerically. Fig. 2 (b) shows
the complementary ROC curves for three different dB-
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spreads. The average SNR, γ, and m are assumed to be
5 dB and 5, respectively. A plot for the non-fading (pure
AWGN) case is also provided for comparison.

Comparing the AWGN curve with those obtained under
shadowing, we observe that for the regions of practical
interest, spectrum sensing is more difficult in shadowed
environments. Moreover, as the shadowing becomes more
intense (higher dB-spread), the energy detector’s perfor-
mance degrades further.

As indicated by the results in Fig. 2, the energy
detector suffers a significant performance loss in fading
environments. While in theory it is possible to improve
the detection performance by increasing the observation
period, T , it turns out that this is not a viable solution in
practice. In particular, Fig. 3 shows a plot of the average
SNR, γ, required to ensure Pd = 0.99 and Pf = 0.01 for
different time-bandwidth products. It is evident that with
the same average SNR and bandwidth, meeting the de-
sired performance level in fading environments demands
much higher integration times, thereby resulting in longer
access delays. Moreover, in presence of noise uncertainty,
even with an infinitely long observation period it may not
be possible to reliably detect the primary signal [12].

III. COLLABORATIVE SPECTRUM SENSING IN FADING
CHANNELS

Thus far, we have quantified the degrading effect of
fading on the performance of opportunistic spectrum
access in terms of increased Pf (hence reduced oppor-
tunities) given a certain Pd (i.e. a fixed interference-
protection level for the primary user). In order to improve
the spectrum sensing in presence of fading, we allow
different secondary users to collaborate by sharing their
information. This is achieved by having each user com-
municate either its measured energy, Y , or a function of it,
to a central user or band manager. Based on the collected
measurements, the band manager makes the final decision

on the status of the band which is then broadcasted to all
users.

Let n denote the number of collaborating users. For
simplicity, we assume that the information is received at
the band manager without any errors. We also assume that
all n users experience independent and identically dis-
tributed (i.i.d.) fading or shadowing with the same average
SNR. Spatially-correlated shadowing will be considered
in Section V.

A fundamental result in distributed binary hypothesis
testing states that when the observations of different
sensors are conditionally independent (as in our case),
the optimal decision rule for individual sensors is the
likelihood ratio test (LRT) [22]. Moreover, the optimum
individual thresholds are not necessarily equal and it
is generally hard to derive them. However, performing
LRT in a fading environment requires channel estimation,
thereby giving rise to a more complex design. Thus, we
assume that all users employ energy detection rather than
LRT and use the same decision threshold, λ. While these
assumptions render our scheme sub-optimum, they facil-
itate the analysis as well as the practical implementation.

In what follows, the two extremes of the information-
sharing are considered. First we assume that the central
user has full knowledge of all the individual measure-
ments (soft decisions). However, the measured energy,
Y , takes on a continuous range of values and has to be
quantized using a sufficient number of bits before being
transmitted to the central user. Therefore, having precise
replicas of the measurements at the band manager is not
appealing from the implementation point of view due to
the communication overhead. A more favorable choice,
in this respect, is for the individual users to communicate
only their final 1-bit (hard) decisions (i.e. H0 or H1) to
the band manager.

A. Linear Soft-Decision Combining

It is well-known that among different linear diver-
sity combining schemes, the Maximal-Ratio Combining
(MRC) provides a better performance [23]. However, it
requires the fading-channel gain at different branches
(users in our case) to be estimated. On the other hand, the
Equal-Gain Combining (EGC) is known to perform only
slightly inferior to MRC while the channel estimation is
no longer required.

Under EGC, the band manager decides between H0

and H1 by comparing the sum of measured energies to a
threshold. The decision statistic is thus,

Y0 ,
n

∑

i=1

Yi (8)

The sum of n independent chi-square random variables is
another chi-square variate with its degree of freedom and
non-centrality parameter equal to the sum of n individual
degrees of freedom and n non-centrality parameters, re-
spectively [24]. Therefore, the pdf of the combiner output
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under each hypothesis is given by,

fY0|H0
(y) =

ynm−1e−y/2

Γ(nm)2nm
(9)

fY0|H1
(y) =

ym−1e−(y+2m
∑n

i=1 γi)/2

Γ(nm)2nm

× 0F1

(

nm,
my

∑n
i=1 γi

2

)

(10)

Thus, the probability of detection (conditioned on the
SNR of fading channels) and the probability of false-
alarm are given by,

Qd = P{Y0 > λ|H1, γ1 = l1, . . . , γn = ln}

= Qnm

(

√

2m
∑n

i=1 li,
√

λ

)

(11)

Qf = P{Y0 > λ|H0}

=
Γ(nm, λ/2)

Γ(nm)
(12)

where we have used Qd and Qf to distinguish the
corresponding quantities from their single-user non-
collaborative counterparts and they should not be con-
fused with the Marcum Q-function, Qm(., .). The average
probability of detection is obtained by un-conditioning
(11) with respect to γi’s. We note, however, that the
conditional Qd is only a function of γ0 ,

∑n
i=1 γi and

we may write,

Qd =

∫

γ0

Qnm

(√
2mx,

√
λ
)

fγ0(x)dx (13)

where, with an abuse of notation, Qd denotes the average
probability of detection as well.

Under Rayleigh fading, γ0 is the sum of n i.i.d.
exponential random variables and may be readily shown
to follow a Gamma distribution [25],

fγ0(x) =
xn−1e−x/γ

(n − 1)!γn (14)

Substituting fγ0(x) from (14) into (13) and after some
manipulation one may arrive at a closed-form expression
for Qd [20] which will be used to obtain the complemen-
tary ROC curve.

Under i.i.d. log-normal shadowing, the complementary
ROC curve is obtained numerically. Fig. 4 (a) and Fig.
4 (b) show the complementary ROC curves under i.i.d.
Rayleigh fading and i.i.d. log-normal shadowing (σdB =
6dB), respectively. It is observed that given a required
probability of non-interference, Qd, collaboration results
in a significantly higher probability of detecting the white
spaces (i.e. a lower Qf ).

B. Hard-Decision Combining

In quantifying the performance of collaborative sensing
above, it was assumed that all the measured energies are
known exactly at the band manager. While rendering the
final decision optimum, providing the band manager with
perfect information demands a relatively high volume
of communication among users. In order to minimize
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Figure 4. The complementary ROC (Qm vs. Qf ) of the EGC under
i.i.d. (a) Rayleigh fading (b) log-normal shadowing (σdB = 6dB). (γ =
5 dB, m = 5).

the communication overhead, let us consider the other
extreme where users only share their final 1-bit (hard)
decisions (H0 or H1) rather than their decision statistics.
Let ui denote the 1-bit decision of the ith user, defined
as,

ui =

{

0, Decide H0 if yi < λi

1, Decide H1 if yi > λi
i = 1, . . . , n

When the individual measurements, conditioned on each
hypothesis, are mutually independent, it may be shown
that the Neyman-Pearson criterion results in the following
combining rule [22],

n
∑

i=1

ui loge

[

Pdi
(1 − Pfi

)

(1 − Pdi
)Pfi

]

H1

≷
H0

Λ (15)

where Pdi
and Pfi

denote the individual probabilities
of detection and false-alarm. That is, the band manager
makes its decision by comparing a weighted sum of
the individual hard decisions to a threshold, assigning
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Figure 5. The complementary ROC for different k-out-of-n rules in i.i.d. Rayleigh fading with m = 5 and (a) n = 4, γ = 0dB (b) n = 4, γ = 5dB
(c) n = 10, γ = 0dB (d) n = 10, γ = 5dB

a larger weight to more reliable measurements. In order
to simplify the implementation, we assume that all users
employ the same decision threshold λ. As before, let us
also assume that all collaborating users experience the
same path-loss effect (i.e. γi = γ, i = 1, . . . , n). Under
these conditions, different users have equal probabilities
of detection and false-alarm (i.e. Pdi

= Pd, Pfi
=

Pf , i = 1, . . . , n), which in turn results in the equal
weighting of the individual decisions in (15) by the band
manager. Thus, based on the chosen threshold Λ, the band
manager implements a k-out-of-n rule2 where it decides
H1 if k or more local decisions are equal to 1 [22].

The average probabilities of detection and false-alarm
for the k-out-of-n rule are related to their single-user
counterparts through,

Qd =

n
∑

i=k

(

n
i

)

P i
d(1 − Pd)

n−i (16)

2For example, 0 < Λ < loge[Pd(1−Pf )/(1−Pd)Pf ] results in the
1-out-of-n (OR) rule while (n − 1) loge[Pd(1 −Pf )/(1 −Pd)Pf ] <

Λ < n loge[Pd(1 − Pf )/(1 − Pd)Pf ] gives rise to the n-out-of-n
(AND) rule.

Qf =

n
∑

i=k

(

n
i

)

P i
f (1 − Pf )n−i (17)

where Pd and Pf are the individual probabilities of
detection and false-alarm as defined by (6) and (4),
respectively.

The complementary ROC curves under different k-out-
of-n rules in i.i.d. Rayleigh fading are plotted in Fig. 5.
These along with other simulation results, not reported
here, indicate that for many cases of practical interest, the
1-out-of-n (a.k.a. OR) rule delivers a better performance.
Therefore, the band manager should declare the band
occupied if any secondary user detects the primary signal.
We point out, however, that the OR rule is not necessarily
optimum in general and the optimum k-out-of-n rule has
to be determined numerically.

Fig. 6 (a) and Fig. 6 (b) show the complementary ROC
for the OR rule with different number of collaborating
users under i.i.d. Rayleigh fading and i.i.d. log-normal
shadowing (σdB = 6 dB), respectively. As before, γ = 5
dB and m = 5. In both cases, the non-fading AWGN
curve is shown for comparison.
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Figure 6. The complementary ROC (Qm vs. Qf ) of the OR rule
with γ = 5 dB and m = 5 under i.i.d. (a) Rayleigh fading (b) log-
normal shadowing (σdB = 6dB). The AWGN curve is provided for
comparison.

As seen in these figures, fusing the decisions of dif-
ferent secondary users cancels the deleterious impact of
shadowing/fading effectively. Moreover, with increasing
n, the collaborative scheme is even capable of outper-
forming the AWGN (non-fading) local sensing (n = 1).
Informally speaking, this stems from the fact that with
more secondary users there is a higher chance of having
a user with its SNR well above the average. Thus, we
conclude that channel fading, if properly exploited, is
advantageous to the sensing-based opportunistic spectrum
access.

Comparing figures 4 and 6 for the same number of
collaborating users, as expected, there is a loss of per-
formance when employing the hard-decision combining
(HDC) with OR rule instead of the EGC. However, in
practice, HDC may still be the better choice due to its sig-
nificantly lower communication overhead. This becomes
more important when dealing with autonomous users (i.e.

when collaboration is voluntary rather than enforced). In
this case, more users will be willing to cooperate if they
do not have to consume a lot of their own resources for
the collaboration. Therefore, in the remainder of the paper
we limit our analysis to HDC with the OR rule.

IV. ASYMPTOTIC PERFORMANCE UNDER I.I.D.
FADING

In this section we characterize the asymptotic perfor-
mance of the collaboration protocol proposed in Section
III in terms of the spectrum utilization, sensitivity, detec-
tion time/bandwidth and robustness to noise uncertainty.

A. Spectrum Utilization

As stated before, the percentage of the correctly iden-
tified white spaces is determined by 1−Pf (1−Qf in the
collaborative case). While in practice such white spaces
may not be fully utilized due to the various overheads,
their percentage provides a reasonable measure of the
spectrum utilization. In what follows, we show that under
i.i.d. fading, while maintaining the required interference-
protection level, Qf can be made arbitrarily small by
having more collaborating users.

The asymptotic behavior of k-out-of-n fusion rules
under i.i.d. observations has been studied in [26]. It was
shown that while maintaining Qd at a constant level for
any k-out-of-n rule with finite k (or finite n − k), the
probability of false-alarm will go to zero asymptotically
if and only if the following condition is satisfied [26],











∂Pd

∂Pf

∣

∣

∣

Pf =0
= ∞, finite k

∂Pd

∂Pf

∣

∣

∣

Pf =1
= 0, finite n − k

(18)

From (6) and applying the chain rule we obtain (19)
(shown on the next page) where,

R ,
√

2mxG−1
m (Pf )

Therefore, we may write,

∂Pd

∂Pf

∣

∣

∣

∣

Pf =0

a
=

∫
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2m−2 Γ(m)e−mx Im−1(R)
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R=∞
fγ(x)dx
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Γ(m)e−mx

2

∞
∑

i=0

(R2/4)i

i!Γ(m + i)

∣

∣

∣

∣

R=∞
fγ(x)dx

= ∞ (20)

where the equality in (a) is due to the fact that R|Pf=0 =
limPf→0 Gm(Pf ) = ∞ and (b) results from the series
expansion of the modified Bessel function of the first kind.

Thus, employing any k-out-of-n rule with finite k (e.g.,
the OR rule), the first condition in (18) is met by our
system under i.i.d. fading or shadowing. Therefore, while
keeping Qd fixed, Qf goes to zero asymptotically by
increasing the number of collaborating users.

The impact of collaboration on Qf , under i.i.d.
Rayleigh fading and log-normal shadowing, has been
depicted in Fig. 7. We observe that with these parameters,
requiring Qd = 0.9 for a single user in Rayleigh fading
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Figure 7. Qf vs. the number of collaborating users under i.i.d. Rayleigh
fading and log-normal shadowing with σdB = 6dB (γ = 0dB, m = 5).

(γ = 0dB) results in Qf > 0.75, thereby defeating the
idea of opportunistic spectrum access. On the other hand,
having 10 users, more than 99% of the white spaces can
be correctly detected.

B. Required SNR

A fundamental parameter determining the quality of
detection is the average SNR, γ, which mainly depends
on the primary user’s transmitted power as well as its dis-
tance to the secondary users. A viable spectrum-sensing
scheme should be able to operate at low SNR levels (e.g.,
due to a low-power primary transmission or large path-
loss) without compromising the primary system. This
requirement may be fulfilled through collaboration as we
shall illustrate shortly.

Since our goal is to quantify the collaboration gain, let
us assume the time-bandwidth product to be unity (i.e.
removing the non-coherent integration gain). Setting m
in (4) and (7) equal to 1 and combining the results gives
rise to the following simple characterization of the ROC,

Pd = e
loge Pf

1+γ (21)

Therefore, the average SNR required to maintain a given
Qd and Qf under i.i.d. Rayleigh fading is given by,

γ =
loge

(

1 − n
√

1 − Qf

)

loge

(

1 − n
√

1 − Qd

) − 1 (22)

Differentiating γ in (22) with respect to n, we arrive
at (23) where g(x) = x loge(x)

(1−x) loge(1−x) is a monotonically
decreasing function for x ∈ [0, 1] and,

A =
loge(1 − n

√

1 − Qf )

n loge(1 − n
√
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> 0

Therefore, ∂γ
∂n < 0 if and only if n

√

1 − Qf > n
√

1 − Qd

or equivalently Qf < Qd. Since the latter condition holds
for any system of practical interest, γ is a monotonically
decreasing function of n.

Now we proceed to show that for a given set of
parameters Qd, Qf and m, the limit of γ as n goes
to infinity is zero. Applying L’Hopital’s rule to (22)
repeatedly,
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= 0 (24)

Therefore, it is possible to deliver the desired performance
at arbitrarily low SNR levels as long as there are sufficient
number of users with i.i.d. fading channels.

Fig. 8 provides plots of γ versus the number of
collaborating users in i.i.d. Rayleigh fading and log-
normal shadowing where the latter plot has been obtained
numerically. For each curve, the decision threshold, λ, is
chosen such that3 Qf = 0.01.

Results indicate a significant improvement in terms of
the average SNR required for detection. In particular, to
achieve Qd = 0.99 and Qf = 0.01 with m = 100, local
spectrum sensing requires γ ' 14dB while collaborative
sensing with n = 10 only needs an average SNR of −5dB
for the individual users.

C. Required Observation Time and Bandwidth

After detecting a white space, the secondary users must
continue to monitor the spectrum to be able to vacate
the band as soon as the primary user starts to transmit.
This may be done by either constantly monitoring a
small portion of the primary spectrum, set aside for this

3For a fixed Qf , λ is an increasing function of n given by λ(n) =
G

−1
m (1 − n

√

1 − Qf ) ' G
−1
m (Qf /n), with Gm(.) as defined in (4).
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Figure 8. The required average SNR vs. the number of collaborating
users under i.i.d. Rayleigh fading and log-normal shadowing with
σdB = 6dB (Qd = 0.99, Qf = 0.01).

purpose, or having periodic sensing intervals. In either
case, the time or bandwidth allocated for sensing is
wasted in the sense that it may not be used for the
secondary transmission. Moreover, the time required to
identify a reappearing primary transmission determines
the delay experienced by the primary system in accessing
its spectrum. As a result, depending on the type of primary
application (e.g., its delay sensitivity), there may be a
very stringent constraint on this time period. In what
follows, we show that collaboration may be used to lower
the required observation time and bandwidth, thereby
increasing both agility and efficiency of the sensing-based
access.

Under i.i.d. Rayleigh fading and relatively small4 γ, we
have the following approximation for the required time-
bandwidth product (see [27] for the derivation),

m ' 2





Erfc−1
(

2Qf

n

)

γ loge

(

1 − n
√

1− Qd − Qf

n

)





2

, m̂ (25)

where Erfc−1(.) is the inverse of the complementary error
function defined as Erfc(x) = 2√

π

∫ ∞
x e−t2dt.

The formula in Eq. (25) suggests that m should be
increased whenever a higher Qd is desired. Moreover, m
is proportional to 1/γ2. Therefore, at low SNR levels,
the detection will be significantly delayed in order to

4Low average SNR levels increase the required time-bandwidth
product significantly. Therefore, it makes sense to study the impact of
collaboration in such cases.

10
0

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of users, n

Q
d
 = 0.999, Q

f
 = 0.001 (approximation)

Q
d
 = 0.99, Q

f
 = 0.01 (approximation)

Q
d
 = 0.999, Q

f
 = 0.001 (exact)

Q
d
 = 0.99, Q

f
 = 0.01 (exact)

m 

Figure 9. The required time-bandwidth product vs. the number of
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collect sufficient energy. On the other hand, it may be
easily shown that m̂ is a decreasing function of n hence,
collaboration can maintain the required time-bandwidth
product at a reasonable level.

Fig. 9 shows plots of m̂ versus the number of collab-
orating users in i.i.d. Rayleigh fading. For comparison,
we have also plotted the exact values of m, obtained
by numerically solving (4) and (7) for m and λ. It is
observed that m̂ closely approximates m for n ≥ 2 even
at a moderate SNR level. Results suggest a significant
gain in terms of time and bandwidth, even with only two
collaborating users.

We conclude that, maintaining the global probabilities
of detection and false-alarm at a desired level, collab-
oration enables users to employ less sensitive detectors
by lowering the required time-bandwidth product for the
individual energy detectors. Therefore, from a policy-
making perspective, dynamic spectrum access for a net-
work of collaborating secondary users should be regulated
based on their capabilities as a group rather than separate
individuals. In that sense, a group of secondary users
may be able to collaboratively access a licensed band,
restricted to any one of them individually. Furthermore,
a less stringent sensitivity requirement is particularly
appealing from the implementation point of view due to
the reduced hardware cost and complexity.

D. Robustness to Noise Power Uncertainty

The derivation of the energy detector’s decision statis-
tic, Y , involves normalization by N0/2. In our analysis

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007 79

© 2007 ACADEMY PUBLISHER



thus far, we have assumed perfect knowledge of the noise
power at each secondary user. However, such a priori
knowledge is not usually available in practice and noise
power has to be estimated by the receiver.

The authors in [12] investigated the worst-case im-
pact of imperfect noise power estimation on the energy
detection of spread-spectrum signals. In particular, they
established that, when the noise power is only known
to be contained within a bounded interval (but unknown
otherwise) and the decision threshold is set to guarantee
an upper-bound on Pf , achieving a desired Pd requires the
SNR to be higher than a minimum level. Moreover, this
minimum SNR is only a function of the noise uncertainty
and does not depend on either Pf , Pd or the time-
bandwidth product, m.

Adopting the uncertainty model of [12], we analyze
the impact of noise power uncertainty on the spectrum
utilization. However, we take a slightly different approach
from that of [12] by guaranteeing a lower-bound on Qd

rather than upper-bounding Qf . As argued before, this
is a more sensible choice in a spectrum-sharing context.
Moreover, instead of deriving a minimum average SNR
to satisfy a desired Qf , we will assume a constant γ and
will study the degradation of Qf . That is, we analyze the
worst-case effect of noise uncertainty on the spectrum-
utilization, subject to a guaranteed interference-protection
level (i.e. a lower-bound on Qd).

Let us assume the noise power estimate, N̂0, is at most
U /2 dB away from the actual N0 (i.e. a peak-to-peak
uncertainty of U dB). Then,

1

α
≤ N̂0

N0
≤ α (26)

where α = 10U/20 ≥ 1.
An overestimate of the noise power results in the

normalized decision statistic, Y , becoming smaller, which
in turn reduces the probability of detection and its average
(with respect to the fading statistics) in (3) and (6),
respectively. Since the global probability of detection, Qd,
is an increasing function of Pd, the worst-case scenario
(minimum Qd) happens when all the collaborating users
overestimate the noise power by a factor of α. Therefore,
in order to guarantee the same level of interference-
protection as when the noise power is exactly known, the
decision threshold should be modified as,

λ̂ =
λ

α
(27)

We note, however, that maintaining a lower-bound on
Qd by reducing the decision-threshold gives rise to a
higher probability of false-alarm in (4). This in turn results
in lower spectrum utilization since Qf is an increasing
function of Pf . Denoting the output of the integrator
in Fig. 1 by Z, the individual probability of false-alarm
under λ̂ is given by,

Pf = P{Y > λ̂|H0} = P

{

Z

N̂0/2
>

λ

α
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(28)
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Figure 10. Qf,worst-case vs. the peak-to-peak noise uncertainty in
i.i.d. log-normal shadowing (σdB = 6dB) for different number of
collaborating spectrum sensors (Qd,worst-case = 0.9, γ = 5dB, m = 5).

The spectrum utilization is minimized when all the collab-
orating users operate at their maximum Pf . This happens
when all users underestimate the noise power by a factor
of α. Therefore, the worst-case Qf is given by,

Qf,worst-case = 1 − (1 − Pf,worst-case)
n (29)

where,

Pf,worst-case = P
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∣
H0

}

= P

{

Z
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α2

∣

∣

∣
H0

}

(30)

Fig. 10 depicts Qf,worst-case as a function of the noise
uncertainty, U , in i.i.d. log-normal shadowing (σdB =
6dB) for different number of collaborating users. In
each case, the decision threshold is modified such that
Qd,worst-case = 0.9. Results indicate that noise uncertainty
has a significant negative impact on the efficiency of
the local spectrum sensing. However, we also observe
that sensing becomes more robust toward uncertain noise
power with increasing n. In what follows, this observation
is made rigorous by proving that limn→∞ Qf,worst-case = 0
subject to Qd,worst-case = β (β < 1).

Let there be a finite peak-to-peak noise power uncer-
tainty, U = 20 log10 α where 1 ≤ α < ∞. Recall that in
this case, λ should be replaced by λ/α to compensate for
the maximum overestimate of the noise power, αN0/2.
From (30),

Pf,worst-case = P

{

Z

N0/2
>

λ

α2

∣
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∣
H0

}

= Gm

(

λ

α2

)

(31)

or equivalently, λ = α2G−1
m (Pf,worst-case) where Gm(.) is
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defined as in (4).
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From (29), the necessary and sufficient condition for
limn→∞ Qf,worst-case = 0 is,

lim
n→∞

n log(1 − Pf,worst-case) = 0 (33)

which may be rewritten as,

lim
Pd,worst-case→0

log(1 − β)

log(1 − Pd,worst-case)
log(1 − Pf,worst-case) = 0

(34)
Applying L’Hopital’s rule to (34), we arrive at the same
condition defined in (18) for the finite k. However,
inspecting (32) shows that ∂Pd,worst-case

∂Pf,worst-case
has a form similar

to that derived in (19) if R is replaced by R′ = αR.
Therefore, the first condition in (18) is satisfied for any
finite α > 1 and limn→∞ Qf,worst-case = 0. That is, under
i.i.d. fading or shadowing, the degradation due to noise
uncertainty may be completely overcome by having an
asymptotically large number of collaborating users.

V. EFFECT OF SPATIALLY-CORRELATED SHADOWING

Up to this point, we have dealt with the case where
the secondary users experience independent shadowing or
fading. While such assumption is reasonable for the multi-
path fading effects, there is usually a degree of spatial
correlation associated with the log-normal shadowing
[28]. Intuitively, correlated shadowing will degrade the
performance of collaborative sensing when the collabo-
rating users are located close to each other. This is due
to the fact that such users are likely to experience similar
shadowing effects, thereby countering the collaboration
gain. In this section, further simulation results for the
above scenario are provided.

The empirical data suggests an exponential correlation
function for the shadowing effects at different locations
[28],

R(d) = e−ad (35)

where R(d) is the correlation function, d is the distance
between the two locations and a is a constant depending
on the environment. Based on the measurements reported
in [28], a ≈ 0.12 in urban environments and a ≈ 0.002
in suburban environments.

In order to quantify the impact of spatially-correlated
shadowing on the collaboration gain, we consider a one-
dimensional uniform distribution of n secondary users

10
0

10
1

10
2

−5

0

5

10

15

20

25

Number of users, n

R
eq

ui
re

d 
A

ve
ra

ge
 S

N
R

 (
dB

)

D = 50 m
D = 200 m
D = 500 m
i.i.d.

Figure 11. The required average SNR vs. the number of collaborating
users under exponentially-correlated log-normal shadowing (σdB =
6dB) in urban environment (Qd = 0.99, Qf = 0.01, m = 1).

within a fixed distance D. Then, the exponential corre-
lation model of (35) is used to generate the log-normal
shadowing effects. For each n, the average SNR required
to achieve Qd = 0.99 and Qf = 0.01 with m = 1, is
found via Monte Carlo simulation with 10000 trials. Note
that since the measurements are still i.i.d. under H0, the
decision threshold guaranteeing Qf = 0.01, for each n,
will be the same as the corresponding one used to obtain
the log-normal curve in Fig. 8.

The average SNR required for the detection has been
plotted in Fig. 11 as a function of the number of collabo-
rating users. As expected, correlated shadowing degrades
the performance of collaborative detection in all cases.
This effect becomes more significant when users are
dispersed over a smaller distance. We observe that for
a given average SNR, a larger number of users will be
needed to deliver the same performance as the size of the
sensing network shrinks. The results shown in Fig. 11
suggest that having a few number of users dispersed over
a large distance is more effective than a dense sensing
network confined to a small area.

VI. CONCLUDING REMARKS

In this paper we studied collaborative sensing as a
means to improve the performance of sensing-based op-
portunistic spectrum access under fading. As indicated by
the presented results, even with very simple local detec-
tors along with a low-overhead communication protocol,
user collaboration may result in significant performance
enhancements. In particular, by increasing the number of
collaborating users under i.i.d. fading, the probability of
missing the white spaces may be made arbitrarily small
while providing the primary user with its desired level
of interference-protection. Moreover, the degradation due
to noise uncertainty may be compensated for by having
more users.

Alternatively, maintaining the global probabilities of
detection and false-alarm at a desired level, collaboration
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enables users to employ less sensitive detectors, thereby
reducing the hardware cost and complexity. Collaboration
may also be used to enhance the agility of the secondary
network by reducing the time required for the detection of
the primary signal. This is particularly important during
the ongoing secondary transmissions where fast detection
of the reappearing primary users is very critical.

While we studied the negative impact of spatially-
correlated shadowing through simulation, more research
needs to be done to develop efficient collaborative sensing
schemes in such setting. It is of particular interest to char-
acterize the performance based on the spatial distribution
of the users and the correlation structure of the shadowing.

REFERENCES

[1] Federal Communications Commission, “Spectrum policy
task force report (ET Docket No. 02-135),” available
online: http://hraunfoss.fcc.gov/edocs public/attachmatch/DOC-
228542A1.pdf, November 2002.

[2] Shared Spectrum Company, “Spectrum Occupancy Report
for New York City during the Republican Convention
August 30 - September 1, 2004,” available online at:
http://www.sharedspectrum.com/?section=measurements, January
2005.

[3] Federal Communications Commission, “Notice of Proposed Rule-
making, in the matter of unlicensed operation in the TV broadcast
bands (ET Docket No. 04-186) and additional spectrum for unli-
censed devices below 900 MHz and in the 3 GHz band (ET Docket
No. 02-380), FCC 04-113,” May 2004.

[4] DARPA XG Working Group, “The XG Vision, Request for Com-
ments,” prepared by BBN Technologies, July 2003.

[5] National Science Foundation, “Networking Technology and
Systems (NeTS) Program Solicitation,” available online at:
http://www.nsf.gov/pubs/2005/nsf05505/nsf05505.htm.

[6] IEEE 802.22, Working Group on Wireless Regional Area Net-
works (WRAN), http://grouper.ieee.org/groups/802/22/.

[7] J. M. Peha, “Approaches to spectrum sharing,” IEEE Communica-
tions Magazine, pp. 10–11, February 2005.

[8] W. D. Horne, “Adaptive spectrum access: using the full spectrum
space,” 31st Annual Telecommunications Policy Research Confer-
ence (TPRC’03), October 2003.

[9] I. F. Akyildiz et al., “NeXt generation/dynamic spectrum ac-
cess/cognitive radio wireless networks: a survey,” Computer Net-
works, vol. 50, no. 13, pp. 2127–2159, September 2006.
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