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Abstract— Wavelength is one of the most important re-
sources in Wavelength Division Multiplexing(WDM) net-
works. In optical routing, we are given a set of communica-
tion paths (or ligthpaths) in a WDM network and we must
assign a wavelength to each path so that paths sharing a link
must be assigned with different wavelengths. By properly
choosing a set of nodes that are equipped with wavelength
converters, the number of wavelengths which is required
to support all lights paths can be reduced. In this paper,
we study the problem of placing the minimum number
of wavelength converters in a network to ensure that the
number of wavelengths needed will not exceed a given bound
αL, where L is the maximum link load in the network and α
is a parameter defined by the network designer to reflect the
overall availability of wavelength resources. This problem,
however, is proved to be NP-hard. Hence we develop an
efficient heuristic algorithm for the problem and extensive
theoretical analysis and experimental studies are carried out
to verify the effectiveness and performance of the algorithm.

Index Terms— wavelength converter, optical network, place-
ment, optimization, wavelength

I. INTRODUCTION

Wavelength division multiplexing (WDM) [1] [2] di-
vides the bandwidth of an optical fibre into multiple wave-
length channels so that multiple users can transmit data at
distinct wavelengths through the same fibre concurrently.
Since all-optical WDM networks can provide commu-
nication service with huge bandwidth and low latency,
such networks are considered as candidates for the next
generation wide-area networks which are required to meet
the increasing traffic demand in the foreseeable future.

A lightpath is an optical communication path between
a pair of source and destination nodes which may span
multiple hops. In WDM networks, any pair of light-
paths(traffic demand) must be assigned with different
wavelengths if they share the same link in any hops.
Hence it is easy to see that the number of wavelengths
required in a network is at least equal to the natural
congestion bound or maximum link load, defined to be
the maximum number of paths passing through any one
link in the network.

Wavelength converter is an essential device in multi-
hop WDM networks that enhances the scalability of
the network. In WDM networks without any wavelength
conversion, the same wavelength must be assigned to
all links in a lightpath (this is often referred to as the
wavelength continuity constraint). If a node is equipped
with a wavelength converter, any lightpath that passes

through this node may change its wavelength. Clearly
wavelength assignments in networks with wavelength
converters can be more efficient (uses less wavelengths)
than wavelength assignments for the same set of paths
where no wavelength converter is available. However,
wavelength converters are expensive devices and it has
been anticipated that they will continue to be so in
the foreseeable future [3]. In addition, densely placed
converters may cause the signal distortion [4]. Hence, it
is not practical to equip every node with a wavelength
converter.

Several wavelength converter placement schemes [5]
[6] [7] have been proposed in the literature to reduce the
overall wavelength requirements of a given network by
employing a minimal set of converters nodes. However,
we note that existing converter placement schemes do not
take into account the availability of resources, such as the
number of wavelengths and converters that are available
for utilization, in a given network; hence they are not
able to adapt to the availability of resources of different
networks.

In this paper, we aim to take above-mentioned issues
into consideration in the design of efficient wavelength
converter placement schemes for WDM networks. Fur-
thermore, we aim to design a scheme that is able to
provide a flexible trade-off between the number of wave-
length converter nodes and the number of wavelengths
required to support the communications of all lightpaths
in a given network. In particular, the problem that we
interested in is as follows: given the traffic demand (a
set of lightpaths) in a network, determine the placement
of the minimum number of wavelength converters in the
network so that the number of required wavelengths does
not exceed a given upper bound αL, where L is the
maximum link load in the network and α is a parameter
that can be defined by the network designer to reflect the
overall availability of wavelength resources.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III presents the problem
assumptions, problem formulation and the methodology
used in this work. Section IV addresses the problem of
determining the wavelength requirements for the networks
with special topologies. The results we obtained in Sec-
tion IV are applied in Section V and a two-step algorithm
is proposed and analyzed. Results from our empirical
studies are discussed in Section VI. Section VII concludes
the paper.
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II. RELATED WORK

In general, given a network and a set of lightpaths,
if no wavelength converter is placed, the number of
wavelength required to support all lightpaths can be deter-
mined by solving the routing and wavelength assignment
problem(RWA). This problem, however, has been proved
to be NP-complete [8]. In [9], Baroni et.al studied the
relationship between wavelength requirement and net-
work topology. In particular, they evaluated the number
of required wavelengths as a function of the physical
connectivity, which is a parameter that can be calculated
from the network topology.

Some studies focus on determining the wavelength re-
quirements of the networks with special topologies. These
studies usually consider two types of communicationa
channels: duplex and unidirectional. In duplex channels,
data can be transmitted in both directions in one fiber;
in unidirectional channels, data are transmitted in one
direction from the source to the destination. Wilfong et.al
[10] proved that 2L − 1 wavelengths are sufficient and
necessary for a ring network with unidirectional chan-
nels. Here “sufficient” means the routing and wavelength
assignment can be realized with at most 2L − 1 wave-
lengths, without wavelength conversion and “necessary”
means that for any integer L there is an instance in
which routing and wavelength assignment requires 2L−1
wavelengths. For the network with tree topology, Erlebach
et.al [11] proved that 5

3L wavelengths are sufficient and
5
4L wavelengths are necessary in unidirectional channels;
Raghavan et.al [12] proved that 3

2L wavelengths are
sufficient and necessary in duplex channels.

In [10], Wilfong et.al defined a set S of nodes in a
network to be sufficient if placing converters at the nodes
in S can ensure that the number of wavelengths required
by any set of lightpaths is equal to its maximum linkload
L. They showed that the problem of finding a sufficient
set of minimum size for an arbitrary WDM network
with unidirectional channels, referred to as the minimum
sufficient set problem, is NP-complete. In addition, they
showed that for networks with unidirectional channels, (i)
the empty set (i.e. S = ∅) is sufficient if and only if the
topology of network is a spider (i.e. a tree with at most
one vertex of degree greater than two) and (ii) for any
ring networks, the size of a minimum sufficient set S is
equal to 1.

In [5], Kleinberg et.al extended the splitting tech-
nique to arbitrary directed graphs and proposed a 2-
approximation algorithm1 for finding the minimum suffi-
cient set for an arbitrary directed (unidirectional channel)
network. They also showed that the minimum sufficient
set problem is as hard as the minimum vertex cover
problem, which is believed to be unlikely to have an
approximation algorithm with performance ratio less than
2 [13].

1An algorithm A is said to be an ω-approximation algorithm, if the
ratio of the solution generated by A and an optimal solution, is bounded
by ω.

Erlebach el.al [14] considered the case in which all
lightpaths will be routed by the shortest path algorithm
and they gave the complete characterization of duplex
networks for which S = ∅ holds. They also noted that
the restriction to shortest-path routing could reduce the
converter requirements of a given network significantly.

The problem of finding a minimum sufficient set for a
given network has also been addressed by Jia et.al [6]. In
particular, Jia el.al [6] considered the problem of placing
a minimum number of wavelength converters in a network
such that the wavelength needed by the network does not
exceed the maximum link load L. They refer to this fea-
ture of wavelength converter placement and wavelength
assignment as L−assignability. Jia et.al proved that the
problem of finding a minimum sufficient set for a network
with duplex channel is optimally solvable in polynomial
time. In addition, they proved that the problem of finding
minimum sufficient set for a network with unidirectional
channel is NP-complete (also proven by Kleinberg et.al
[5]) and they proposed a 2-approximation algorithm for
this problem.

By noticing that achieving L-assignability usually re-
quires a large number of converters in some typical
network topologies, another work of Jia et.al [7] aims at
striking a trade-off between the number of wavelengths
and the number of wavelength converters. In [7], Jia et.al
introduced the notion of αL-assignability, which means
that the number of required wavelengths will not exceed
the maximum linkload by a factor of α. They showed
that the problem of placing a minimum set of converters
to achieve αL-assignability is NP-complete when α is
fixed at 3

2 (for duplex channel) and 5
3 (for unidirectional

channel). Jia et.al also proposed a 2-approximation for
both duplex and unidirectional cases.

Our work differ from the works in [5] [6] [7] [10] in
two aspects:

1) The given set of lightpaths are taken into con-
sideration as a design input. We note that doing
so will help to reduce the redundant deployment
of wavelength converters in a given network. For
example, consider the scheme proposed in [6](for
duplex channels) whereby converters are placed at
each node whose degree is larger than two. In
applying this scheme for a star network, a converter
will be placed at the central node. Let’s consider
a case whereby there are only two lightpaths that
pass through this network (as shown in Figure.1).
It is easy to see that it is not necessary to place any
converter in this case. Thus a redundant wavelength
converter will be placed if the scheme proposed in
[6] is adopted.

2) The schemes proposed by existing work only pro-
vide fixed upper bounds for the wavelength usage.
Although Jia et.al introduced the notion of αL-
assignability, where 1 < α < 2, they only address
the case where α = 3

2 (for duplex channels) [7].
By noticing that there is a gap between L and
3
2L, we adopt a variable upper bound αL, whereby
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α is a variable which ranges between 1 to 3
2 .

By considering the availability of converters and
wavelengths, we can tighten this bound(use smaller
α) if the wavelength is scarce and converter is
comparably abundant and vice versa. It is easy to
see that this feature provides additional flexibility
for the network designers in the overall network
design process.

Lightpath A Lightpath B

Figure 1. A case that converter is not necessary

III. THEORETICAL PRELIMINARIES

A. Network Model
We model the network as an undirected simple graph

G(V, E), where V is the vertex set and E is the edge set.
The traffic demand is represented by a set of lightpaths
D = {l1, l2, l3 . . . lk}. In this paper, we consider the case
of static routing where all connections (lightpaths) are
known in advance and stay for an infinite period of time
in the network. The number of wavelengths needed to
support all lightpaths in D is denoted by W (G,D).

We assume that all communications support duplex
communication channels, whereby data can transmit in
both directions in the same fibre. The set of lightpaths
that occupy the same link must be assigned with different
wavelengths on this link regardless of their transmitting
direction.

In this paper, we assume all converters have full con-
version capability [15] [16]. This means the converter
can translate an incoming wavelength into any outgoing
wavelength. We adopt the shared by node model [16]
which allows converters placed at a node to be shared
by any lightpaths that pass through this node. In addition,
we assume the capacity of each converters is large enough
to support all lightpath pass though it.

Next we formally define the problem addressed in this
paper as follows: given the network G and a set of traffic
demand D = {l1, l2, l3 . . . lk}, locate a minimum set of
nodes S ⊆ V so that if we place wavelength converters
at each node in S, the number of required wavelengths
will not exceed the given bound αL, where L is the
maximum linkload in the network and α is a parameter
that can be defined by the network designer in the range
of [1, 3

2 ]. We refer this problem as Optimal Wavelength
Converter Placement with Bounded Wavelength Usage
Problem(OPWB).

B. The Computational Intractability of OPWB

Theorem 3.1 OPWB is NP-hard.
Proof. See Appendix.

C. Graph Decomposition

Consider the case whereby node vi is equipped with
wavelength converters. All lightpaths that pass though vi

can convert their wavelength at vi. The set of lightpaths
which shared these converters are thus split into two parts,
one from source node to the converter node vi while an-
other one from vi to the destination node. The wavelength
assignments for these two parts are independent from each
other; thus placing a set of wavelength converters at a set
of nodes S will result in the splitting of lightpaths that
pass through the nodes in S into shorter lightpaths. This
feature can be described by the splitting operation which
is defined as follows:

Given a graph G(V, E) and subset S ⊆ V , let
GS(V ′, E′) be a new graph derived from G by splitting
each node x ∈ S into deg(x) nodes in V ′, where deg(x)
denote the degree of node x in G. Each edge (x, y) in
G(V,E) becomes edge (x∗, y) in GS(V ′, E′), where x∗

is a new node that is generated by splitting x in G(V, E).
Let Wx ⊆ V ′ denote the set of vertices in GS which
are derived from node x in G. Note that each node
in Wx is of degree one. The process of decomposing
node x in G into a new set of nodes Wx in GS is
referred to as the splitting operation(as in [5] [6] [7]
[10]). Figure. 2 illustrates the decomposition of a given
graph G into a new graph GS by splitting nodes in the
set S, where S = {3, 4}. Given a graph G(V, E) and a
set S ⊆ V , the process of decomposing a graph G(V, E)
by splitting the nodes in S can be expressed as follows:
GS(V ′, E) = split[G(V,E), S]

S={3,4}

Figure 2. Derive a new graph by splitting operation

Since the task of wavelength assignment in networks
with special topologies, such as paths, stars and trees,
can be done more easily than in network with arbitrary
topologies, we adopt the approach of decomposing a
given network into edge-disjoint subgraphs with special
topologies which include paths, stars and trees. The
decomposition process is carried out by using the splitting
operation described above. We note that such an approach
has also been used in [5] [6] [7] [10]. However the
objectives of our approach differ from those in [5] [6]
[7] [10] as follow: the objectives of the work in [5] [6]
[7] [10] are to select a set of converters for placement
to satisfy L-assignability or 3

2L-assignability, i.e. fixed
bounds on wavelength usage; on the other hand, the
objectives of our approach is to place a minimal set of
wavelength converters to satisfy αL-assignability, where
α is a parameter that may be specified by the user. Hence
the problem addressed in this work is a generalization of
those addressed in [5] [6] [7] [10].
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IV. NETWORKS WITH SPECIAL TOPOLOGIES

A. Network with Path Topology

Theorem 4.1 [6] Given a network with path topology
(which is often referred to as linear network), denoted
by Gpath, then W (Gpath, D) = L holds for arbitrary D,
where L is the maximum linkload of Gpath.

Theorem 4.2 [7] Given a network G, if every connected
component of G is a path, then W (Gpath, D) = L holds
for arbitrary D, where L is the maximum linkload of G.

It follows from Theorem 4.2 that if we split an arbitrary
network into a set of linear networks, then L-assignability
can always be achieved for the network. However, a major
drawback of this approach is that a large number of nodes
will have to be split in the process, thus resulting in high
usage of wavelength converters.

B. Network with Star Topology

A star Gstar(V, E) is a graph whereby each vertex
in Gstar is of degree one except for one vertex whose
degree is at least three. The vertex whose degree is three
or above is referred to as the center node and all edges
that adjacent to this vertex are called legs. We note that
each lightpath in Gstar(V,E) has at most 2 hops. We
will show that the wavelength assignment problem for a
network with star topology can be transformed into an
edge coloring problem which can be defined as follows.

Definition 4.1 Let G be a graph without loops, A k−edge
coloring of G is an assignment of k colors to the edges
of G in such a way that any two edges meeting at a
common vertex are assigned with different colors. If G
has a k-edge coloring, then G is said to be k − edge
colorable. The chromatic index of G, denoted by χ′(G),
is the smallest value of k for which G is k-edge colorable.
The problem of finding a k-edge coloring of G whereby
k = χ′(G) is called the edge coloring problem.

Given a star network Gstar(V, E), we can construct a
new graph H∗(V ∗, E∗) which we refer to as the edge
compatibility graph, as follows:
Edge compatibility graph construction scheme(EGCS)
Input: A star network Gstar(V, E), V = {v1, v2, . . . vn}, E =
{e1, e2, . . . em} and traffic demand D = {l1, l2, l3 . . . lk}.
Output: Edge compatibility graph H∗(V ∗ ∪W ∗, E∗).

1) V ∗ = ∅; W ∗ = ∅; E∗ = ∅;
2) For each edge ei ∈ E, create a vertex v∗i ∈ V ∗(shown as

Figure.3-i);
3) For each lightpath li ∈ D we do the following:

Case(i): li is a 2-hop lightpath.
In this case, li will occupy two edges, say ex and ey in
Gstar . Insert an edge e∗i ∈ E∗ in H∗ that connects the
two vertices v∗x and v∗y in H∗ that correspond to the edges
ex and ey(shown as Figure.3-ii).

Case(ii): li is a 1-hop lightpath.
In this case, li will occupy an edge, say ex in Gstar . Insert
a new vertex w∗i ∈ W ∗ in H∗ and insert an edge e∗i ∈ E∗
in H∗ that will connect the pair of vertices v∗x ∈ V ∗ and
w∗i ∈ W ∗in H∗(shown as Figure.3-iii).

Based on the construction scheme described above, it
is easy to see that the edge compatibility graph H∗ of a
star network Gstar satisfies the following properties:

i.

ii.

iii.

e1

e2

e3

*

1
v

*

2v

*

3v

l1

l2

l3

*

1e

*

2
e

*

3e

*

3w

Figure 3. Constructing the edge compatibility graph for a star network

• Each vertex v∗i ∈ V ∗ in H∗ corresponds to an edge
ei ∈ E in Gstar;

• Each edge e∗i ∈ E∗ in H∗ corresponds to a lightpath
li ∈ D in Gstar;

• Any two edges in H∗ are adjacent if and only if
their corresponding lightpaths occupy the same edge
in Gstar.

Next we note that if Gstar is a part of a larger network
G, i.e. Gstar is a subgraph of G, then there may exist
more than one lightpaths traversing through the same pair
of links in Gstar. This in turn implies that there may exist
more than one edges connecting the same pair of vertices
in H∗, i.e.H∗ is a multi-graph. Hence for the rest of the
discussion in this paper, we shall assume that H∗ is a
multi-graph.

Since each pair of lightpaths in Gstar must be assigned
with different wavelengths if they occupy the same link,
it is easy to see the task of assigning wavelengths to
lightpaths in Gstar is equivalent to that of assigning colors
to the edges in H∗ such that any two adjacent edges
are assigned with different colors, i.e. solving the edge
coloring problem on H∗. The edge coloring problem is
known to be NP-hard [18] [19] and various results have
been proposed in the literature to provide upper bounds
on the chromatic index of a given graph. Some of these
results are listed as follow.

Bounds on the chromatic index:

König’s Theorem [20] If G is a bipartite multi-graph
whose maximum vertex degree is d, then its chromatic
index χ′(G) = d.

Shannon’s Theorem [21] If G is a multi-graph whose
maximum vertex degree is d, then d ≤ χ′(G) ≤ 3

2d.

Vizing’s Theorem (extended version) [22] If G is a
multi-graph whose maximum vertex degree is d, and if
h is the maximum number of edges joining a pair of
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vertices, then d ≤ χ′(G) ≤ d + h.

Bounds on the wavelength requirement of a given network:

Theorem 4.3 Given a star network Gstar with traffic
demand D and it’s maximum link load is denoted by L,
let H∗ be its edge compatibility graph constructed using
EGCS. If H∗ is a bipartite graph, then W (Gstar, D) = L.

Proof. We note the maximum link load L of Gstar is
equal to the maximum degree d of H∗. Thus it follows
from König’s theorem the chromatic index of H∗ is equal
to L. This in turn implies that the wavelength requirement
of Gstar is L.

Theorem 4.4 Given a star network Gstar with traffic
demand D, let h denote the maximum number of light-
paths occupying the same pair of edges(links) in Gstar,
and let L denote the maximum linkload of Gstar. Then
W (Gstar, D) ≤ Min( 3

2L,L + h).

Proof. Let H∗ be the edge compatibility graph of Gstar

constructed by EGCS. The maximum linkload L of Gstar

is equal to the maximum degree d of H∗. The maximum
number of edges joining a pair of vertices in H∗ is equal
to the maximum number of lightpaths traversing the same
pair of edges in Gstar, i.e. h. Hence it follows from Shan-
non’s Theorem and Vizing’s Theorem that the chromatic
index of H∗ is bounded from above by 3

2L and L + h,
respectively. This in turn implies that the wavelength
requirement of Gstar is bounded by Min( 3

2L,L + h).

C. Network with Bridges

Definition 4.2. Given a network G(V, E), an edge e is
called a bridge if G− e is disconnected. Let C1 and C2

denote the two connected components of G−e, let G1 =
C1 ∪ e and G2 = C2 ∪ e, Then we say the two networks
G1 and G2 are singly connected by bridge e.

C1 C2

G1
G2

e

Figure 4. Two singly connected networks:G1 and G2

Theorem 4.5. Given two networks G1 and G2, if
G1 and G2 are singly connected by bridge e, then
W (G,D) = max[W (G1, D1),W (G2, D2)], where G =
G1 ∪ G2, D = D1 ∪ D2; D1 and D2 are the set of
lightpaths that traverses G1 and G2, respectively.

Proof. Without lost the generality, we assume that
W (G1, D1) ≥ W (G2, D2). We note that e is the only
common edge of G1 and G2. Let T denote the set of light-
paths over e and T = {l1, l2, . . . lk},|T | = k. Consider
the case whereby wavelengths have been assigned to all
lightpaths in G1 and G2 using their respective assignment
schemes, which we refer to as Scheme 1 and Scheme 2.

We note that the wavelengths that have been assigned
to G1 and G2 will form a valid assignment for G if

the two schemes assign the same set of wavelengths to
each lightpaths in T . The overall wavelength require-
ment of G in this case is W (G,D) = W (G1, D1) =
max[W (G1, D1),W (G2, D2)].

Next consider the case whereby Schemes 1 and Scheme
2 assign different set of wavelengths to the lightpaths
in T . In this case conflict will arise between Scheme 1
and Scheme 2 in the assignment of wavelengths to the
common lightpaths in T . Without loss of generality, we
can resolve this conflict by keeping Scheme 1 unchanged
while reassigning the wavelengths in Scheme 2 as de-
scribed below:
Wavelength reassignment for scheme 2:

Let the set of wavelengths assigned to G1 and G2 be
denoted by A and B, respectively. For each lightpath
li ∈ T , let xi ∈ A, yi ∈ B denote the wavelengths that
have been assigned to li using Scheme 1 and Scheme 2,
respectively.

1) Construct a bipartite graph GR(V, E), V = A∪B,
E = ∅;

2) Insert the edge (xi, yi) into E for i = 1, 2, . . . , k;
3) For each vertex bj ∈ B − {y1, y2, . . . , yk}, insert

the edge (aj , bj) into E, where aj is a vertex in
A − {x1, x2, . . . , xk} which is not adjacent to any
vertex in B, i.e. deg(aj) = 0. Since |A| > |B|, it
is always possible to find such a vertex aj ;

4) Reassign the wavelength in Scheme 2 as follows:
Let lp be a lightpath in D2 which has been assigned
with wavelength p, i.e. p ∈ B. Let the vertex which
is adjacent to p in the graph GR be denoted by q,
i.e. (p, q) ∈ E. In this case the lightpath lp will be
reassigned with wavelength q.

From the process described above, we can ensure that
the reassignment of Scheme 2 satisfy the following two
properties:

• After the reassignment, the set of lightpaths in T
will be assigned with the same set of wavelengths by
Scheme 1 and Scheme 2. This property is guaranteed
by step 2. We can also note since all lightpaths in
T shared a common edge, each lightpath will be
assigned with a distinct wavelength in both Scheme
1 and Scheme 2. Thus each edge (xi, yi) ∈ GR

inserted in step 2 will not adjacent to any other edges.
• This reassignment will not destroy the validity of

Scheme 2. In the step 2 and step 3 described above,
we always choose a vertex whose degree is 0 to insert
a new edge, hence every vertex in A is of degree 1
or degree 0, this implies that in the reassignment of
step 4, each wavelength in set B will be replaced by
a distinct wavelength, any pair of lightpaths that are
assigned with different wavelengths in Scheme 2 be-
fore reassignment will still be assigned with different
wavelengths when the reassignment is finished.

Following the reassignment of wavelengths
in G2, the overall wavelength requirements of
network G is again bounded by the W (G1, D1) =
max[W (G1, D1),W (G2, D2)].
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i. ii.

iii. iv.

v.

e

Figure 5. Reassignment of wavelengths in Scheme 2

In Figure. 5, we illustrate this process by a small
example. As shown in Figure. 5-i, network G is composed
by two singly connected stars G1 and G2, three lightpaths
l1, l2, l3 are traversing over G. l1 is the common lightpath
shared by G1 and G2. Scheme 1 and Scheme 2 assigned
different wavelengths(shown in Figure. 5-ii) to l1, thus
we need to reassign the wavelengths in Scheme 2. We
construct the bipartite graph GR shown in Figure. 5-iii,
w1 ∈ B is connected to w2 ∈ A because w1 is assigned to
l1 in Scheme 2 and w2 is assigned to l1 in Scheme 1. After
the reassignment for Scheme 2, two schemes assigned
same wavelength to their common lightpath l1(Figure. 5-
iv), thus they can form a valid assignment for G(Figure.
5-v).

Theorem 4.6. A tree Gtree(V,E) can be constructed by
taking a union of a series components C1, C2, . . . , Cr,
whereby the following conditions hold:

i). Gtree =
⋃r

i=1 Ci;
ii). Ci is either a path or a star, for i = 1, 2, . . . , r;

iii). Given two components: Ca =
⋃m

i=1 Ci, Cb =
Cm+1, Ca and Cb are singly connected for m =
1, 2, 3, . . . , r − 1.

Proof. We prove this theorem by proposing a tree-
construction scheme described as follow:
Tree construction scheme(TCS):
Input: A tree Gtree(V, E).

Output: An ordered list C = {C1, C2, . . . , Cr} that satisfy conditions
(i) to (iii) above.

1) Create an empty set C∗;
2) For each vertex vi ∈ V , if deg(vi) > 2, then vi is the center

vertex of a star. Thus we insert a star Si(Vi, Ei) into C∗,
where Vi is composed of vi(center node) and all its neighboring
vertices(terminal nodes) in Gtree(V, E), Ei is composed by the
edges that adjacent to vi in Gtree(V, E).

3) The rest of Gtree(V, E), i.e. the linear sub-networks between
two star centers or between one star center and one 1-degree
node are also inserted into C∗ as a set of paths.

4) Now we have a set C∗ whereby each member of C∗ is either a
star or a path. We randomly choose a member in C∗ and insert

this member into C as C1. Then for m = 1 to m = r − 1,
we do following: Ca =

⋃m

i=1
Ci, choose a member which is

singly connected to Ca in C∗ and insert it into C as Cm+1.
This process will finish when all members from C∗ are inserted
into C.

Figure. 6 gives an illustration for how a tree can be
constructed by singly connecting a set of stars and paths.
It is easy to verify that the ordered list of components
derived by TCS satisfies conditions i-iii, so Theorem 4.6
holds.

Gtree

i. Given a tree network ii. Locate star center

iii. Decompose into 

stars and paths

C1

C2

C3

Figure 6. Constructing a tree by singly connecting a set of stars and
paths

Theorem 4.7. For a tree network Gtree, W (Gtree, D) ≤
αL if and only if for each star sub-network Ci ⊆ Gtree,
W (Ci, Di) ≤ αL, where Di is the set of lightpaths that
traverses Ci.

Proof. If: From Theorem 4.5 and The-
orem 4.6 we have: W (Gtree, D) =
Max[W (C1, D1),W (C2, D2), . . . , W (Cr, Dr)], where
C1, C2, . . . , Cr is a set of star networks or linear networks
that satisfy conditions i-iii stated in Theorem 4.6 and
D1, D2, . . . , Dr are the lightpath sets traversing over
C1, C2, . . . , Cr, respectively. For each linear network Cj ,
Theorem 4.2 states that W (Cj , Dj) ≤ L ≤ αL. Thus
W (Gtree, D) ≤ αL holds if the wavelength usage of
each star networks, W (Ci, Di), is bounded by αL.

Only if: Since Ci is a sub-network of Gtree,
W (Ci, Di) ≤ W (Gtree, D). Thus if W (Ci, Di) >
αL, then we will have: W (Gtree, D) ≥ W (Ci, Di) >
αL. Hence W (Gtree, D) ≤ αL holds only when
W (Ci, Di) ≤ αL.

V. PROPOSED ALGORITHM

A. Algorithm for OPWB

As proven in [17], the problem of determining the
wavelength usage of a network is NP-hard. In fact, to
the best of our knowledge, no efficient upper bound has
been proposed for the wavelength usage of a network
with arbitrary topology. In [7] Jia et.al showed that even
for a network with simple topology(a 4-nodes graph), its
wavelength requirement may exceed 3

2L. Furthermore,
in [10] Wilfong et.al showed that for a single ring
network, its wavelength requirement may also exceed 3

2L.
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Fortunately, if G is a tree network then its wavelength
usage can be bounded by 3

2L regardless of the traffic
demand [12]. Based on this fact, in the first step of our
proposed algorithm, we aim to determine the minimum
set S1 so that GS1(V ′, E) = split[G(V, E), S1] will
be a tree or a forest(a set of disconnected trees). This
problem is often referred to as the minimum feedback set
problem and is known to be NP-complete [19]. However,
as a well-studied problem, there exist some approximation
algorithms with good performance guarantee. For exam-
ple, in [23], a 2-approximate algorithm is proposed for
this problem. Thus we can determine the vertex set S1

which will be equipped with converters by applying these
approximation algorithms.

After the converters are placed at each node in S1, the
wavelength usage of GS1(V ′, E) is bounded by 3

2L. We
can further tighten this bound by applying step 2. In this
step, for each star sub-network, we examine the upper
bound for its wavelength requirement which is determined
using Theorem 4.3 and Theorem 4.4. For those star
sub-networks whose upper bounds on wavelength usage
exceed αL, we will include their center nodes into set
S2. Converters will be placed at each node in S2. After
all these converters are placed, some stars are split into
paths and we let the resultant network be denoted as GS .
We can guarantee that for all remaining stars Ci ⊆ GS ,
W (Ci, Di) ≤ αL. Thus from Theorem 4.7 we have
W (GS , D) ≤ αL, which implies that the total wavelength
usage is bounded by αL and the total number of converter
nodes is |S1| + |S2|. Our algorithm can be described by
the pseudo code:
Input: Network G(V, E), V = {v1, v2, . . . , vn}, E =
{e1, e2, . . . , em} with traffic demand set D = {l1, l2, . . . , lk}, the
upper bound for the wavelength usage αL.
Output: Vertex set S.

1) Step one(place converters at the feedback set nodes):
S = ∅, S1 = ∅
find the minimum feedback set S1 for G
S = S ∪ S1

GS(V, E) = split[G(V, E), S]
2) Step two(place converters at centers of star networks):

S2 = ∅
for i = 1 to n do: /* for each vertex vi

if deg(vi) ≤ 2 /*vi is not a star center
i + +

else
build the edge-compatibility graph H∗

i of the star with center
vi by the EGCS scheme
check whether H∗

i is a bipartite graph
check the value of l and h, which denotes the maximum
linkload and the maximum number of edges joining a pair of
vertices, separately
if H∗

i is not a bipartite graph and Min( 3
2
l, l + h > αL)

S2 = S2 ∪ vi, i + +
S = S ∪ S2

end and output vertex set S

B. Performance Analysis

1) Computational complexity

Theorem 5.1. The computational complexity of proposed
two-step algorithm is O(|E||V |+ |D||V |).
Proof. In the first step, finding the minimum feedback
set by using the approximation algorithm proposed in

[23] can be done in O(|E||V |) time; splitting operation
can be done in O(|E|) time in the worst case. In the
second step, each legs of the stars should be checked
to determine the maximum linkload of stars, we note
each edge can be included in two stars at most so the
complexity of checking linkload is O(|E|). Next we note
the number of lightpaths after Step 1 is |D||V | at most,
thus building edge compatibility graph by EGCS can be
done in O(|E| + |D||V |); checking whether the edge
compatibility graph is bipartite for all stars can be done
in O(|E|+ |D||V |). Step 2 will cost O(|E|+ |D||V |) and
the two-step algorithm we proposed will cost O(|E||V |+
|D||V |) in the worst case.
2) The setting of α

As mentioned in Section I, the size of converter nodes
set S is determined by network topology, traffic demand
and given bound for the wavelength usage. In this section
we will study the relationship between |S| and the value
of α:

1) α = 1: In this case the wavelength usage is the
minimum possible. Thus the size of S would be
large. In the worst case, every center node of stars
will be equipped with converters so the network will
be split into a set of linear networks by node set S;
this is the case that studied by [6].

2) α = 3
2 : It is proved in [12] and [7] that for the

network with tree topology, this upper bound can
always be met for arbitrary traffic demand. Thus
we do not need to place any converter in the second
step. We can also note that in this case the OPWB
is equivalent to the minimum feedback set problem.
The wavelength converter placement problem under
this case is studied by [7].

3) 1 < α < 3
2 : This is the general case that we are

addressing in this paper, as shown our algorithm
will generate a vertex set S with the size between
case 1) and case 2).

VI. EXPERIMENTAL STUDY

In this section, we adopt experimental approach to
study the relationship between the size of S and the value
of α . The converter set S is constructed by the proposed
algorithm. Three typical networks were studied which
include NSFnet network, USA long haul network and
mesh network. We also varied the size of mesh network
from 4× 4 to 7× 7 to evaluate the effects of the network
size. Some statistics of these networks are listed in Table
I.

Traffic demand are generated for each pair of vertices
with probability p, where p is a parameter controlling the
total traffic load of the network. In this study we defined
three types of traffic load condition:

i). Low traffic load, where p is set to 0.2;
ii). Moderate traffic load, where p is set to 0.5;

iii). High traffic load, where p is set to 0.8;
All traffic demands are routed by the shortest path

algorithm. For each traffic load condition, we repeat the
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TABLE I.
STATISTICS OF SOME TYPICAL NETWORKS

Topology Number
of vertices

Feedback
set size

Number of vertices
whose degree larger
than two

NSFnet 14 3 10
USA long
haul

28 8 21

4×4 mesh 16 4 12
7×7 mesh 49 13 45

experiment by ten times to get the mean value of |S|,
which denotes the size of wavelength converter nodes set.
The results are shown in Figures 7 to 10.

Figure 7. Number of converter nodes in NSFnet

Figure 8. Number of converter nodes in USA long haul network

Figure 9. Number of converter nodes in 4× 4 mesh network

Figure 10. Number of converter nodes in 7× 7 mesh network

The results show that the size of S decreases as α
increases from 1 to 3

2 . This phenomenon is expected and
it indeed verify that correctness of the implementation of
our proposed algorithm. With these |S| vs α curves, the
network designer can easily estimate the upper bound of
wavelength usage when given the number of wavelength
converters or estimate the number of required converters
when given the upper bound for the wavelength usage.

Next we note when the traffic load of network in-
crease, both the number of lightpaths and the maximum
linkload increase. This in turn results in an increase in the
number of wavelengths needed. In addition, we note that
our proposed algorithm is able to achieve similar trend
of performance (in terms of the trade-off between the
number of wavelength converters needed and the value
of α) as the traffic load increases.

We could also note when α = 1, which means the
wavelength usage is the minimum possible, the size of
S constructed by the proposed algorithm is much smaller
than the size of converter set constructed by the algorithm
proposed in [6], which is equal to the number of vertices
whose degree is larger than two (listed in the last column
of Table.I). For instance, the number of wavelength con-
verters needed for the case of NSFnet when α = 1 and
p = 0.2 in Figure. 7 is equal to 5 while the number needed
by the algorithm proposed by Jia et. al. [6] is equal to 10.

This result shows that taking the traffic demand into
consideration will helps to reduce the redundant deploy-
ment of wavelength converters.

VII. CONCLUSION AND DISCUSSION

We have studied the problem of placing a minimal set
of wavelength converters in WDM networks with arbitrary
topology and the total wavelength usage is bounded. The
traffic demand is also taken into consideration. In this
work, the network designer can set the upper bound
for wavelength usage in the range of [L, 3

2L]. Thus the
proposed algorithm is more flexible compared to existing
work in this area. A two-step algorithm is proposed
for this problem, its correctness is guaranteed by a set
of theorems and its effectiveness is evaluated by both
theoretical and experimental studies.

This work can benefit WDM network design and de-
velopment in several aspects. Firstly, by considering the
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traffic status, the number of converter required can be
further reduced compared to earlier works. Secondly, it
can help us to understand the relationship between the
number of converters and the bound on wavelength usage,
thus enabling more efficient utilization of wavelength
converters. Thirdly, by adopting our two-step algorithm
and wavelength switching techniques, the wavelength
assignment problem for a network with arbitrary topology
can be reduced to a wavelength assignment problem in a
set of independent stars and paths, which in turn helps in
reducing the overall computational complexity.
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APPENDIX

Proof of Theorem 3.1: Let’s formulate the corresponding
decision problem of OPWB, which is referred as OPWB’,
as follows:

Instance: A network G(V,E), a lightpath set D, non-
negative integer i1 and positive real number r1, where
i1 = |S|, r1 = αL.

Question: Is it possible to place i1 converters in G so
that the number of wavelengths required to support all
lightpaths in D will not exceed r1?

Now we consider the special case where i1 = 0 and
G is a star. We note it is equalent to the wavelength
assignment problem in a star network:

Instance: A star network Gstar(V, E), a lightpath set
D, positive real number r1, where r1 = αL.

Question: When no converter is placed, is it possible
establish all lightpaths in D so that the number of required
wavelengths will not exceed r1?

Lemma. The wavelength assignment problem in a star
network is NP-hard.

Proof: In Section IV.B we have shown that the wave-
length assignment problem for any star network can be
transformed to the edge coloring problem by constructing
the edge compatibility graph. In this proof we will show
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the complement is also true, i.e. an edge coloring problem
can be transformed into a wavelength assignment problem
of a star network. This transformation can be done by the
scheme described below:
Star network construction scheme(SNCS)
Input: A graph G(V, E), V = {v1, v2, . . . vn}, E =
{e1, e2, . . . em}.
Output: A star network Gstar(V ∗∪vc, E∗), V ∗ = {v∗1 , v∗2 , . . . v∗n},
E∗ = {e∗1, e∗2, . . . e∗n} lightpath set D = {l1, l2, l3 . . . lm}.

1) V ∗ = ∅; E∗ = ∅; D∗ = ∅;
2) Create a vertex vc as the center of the star network;
3) For each vertex vi ∈ V , create a vertex v∗i ∈ V ∗ and insert an

edge e∗i ∈ E∗ by connecting vc and v∗i ;
4) For each edge ei ∈ E, where ei = (va, vb), va ∈ V, vb ∈ V ,

we create a 2-hop lightpath li ∈ D which traversing over edge
e∗a ∈ E∗, e∗b ∈ E∗ that correspond to va ∈ V, vb ∈ V .

It’s easy to see that the star network Gstar constructed
by the scheme described above satisfies the following
properties:
• Each vertex e∗i ∈ E∗ in Gstar corresponds to a

vertex vi ∈ V in G;
• Each lightpath li ∈ D in Gstar corresponds to an

edge ei ∈ E in G;
• Any two lightpaths in Gstar will share an edge(link)

e∗i ∈ E∗ if and only if their corresponding edges are
adjacent to the same vertex vi ∈ V in G.

From Definition 4.1 in Section IV.B, the task of edge
coloring is to assign colors to all edges so that any pair
of edges which are adjacent to the same vertex will be
assigned with different colors; On the other hand, the
task of wavelength assignment is to assign wavelengths
to all lightpaths so that any pair of lightpaths which
occupying the same link will be assigned with different
wavelengths. It’s easy to see the edge coloring problem in
G is equivalent to the wavelength assignment problem in
Gstar when r1 = χ′(G), i.e. the edge coloring problem
of an arbitrary graph G is reducible to the wavelength
assignment problem by SNCS, which can be done in poly-
nomial time. Since the edge coloring problem is known to
be NP-hard [18] [19], the wavelength assignment problem
in a star network is also NP-hard.

As mentioned above, the wavelength assignment prob-
lem in a star network is a special case of OPWB’, hence
OPWB’ is NP-hard.
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