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Abstract— This paper is a sequel of previous work, in
which we proposed a model and computational technique
to calculate the Erlang capacity of a single CDMA cell that
supports elastic services. The present paper extends that
base model by taking into account two important aspects
of CDMA. First, we describe a simple and a refined multi-
cell CDMA model that are able to capture the impact of
the neighbor cells on important performance measures of
the cell under study. These performance measures include
the class-wise blocking probabilities and the mean time that
elastic sessions spend in the system. Secondly, we model the
impact of the outage by taking into account that in-progress
sessions can be dropped with a probability that depends
on the current load in the serving and neighbor cells. We
then consider a system with elastic and rigid service classes
and analyze the trade-off between the total (soft and hard)
blocking probabilities on the one hand and the throughput
and the session drop probabilities on the other.

Index Terms— code division multiple access (CDMA), traffic
capacity, queueing theory, Markov chains

I. INTRODUCTION

The teletraffic behavior of code division multiple access
(CDMA) networks has been the topic of research ever
since CDMA started to gain popularity for military and
commercial applications, see for instance Chapter 6 of
[1] (and the references therein) that are concerned with
the Erlang capacity of CDMA networks. The paper by
Evans and Everitt used an M/G/∞ queue model to assess
the uplink capacity of CDMA cellular networks and also
presented a technique to calculate the outage probability
[2]. These classical papers have focused on ”rigid” traffic
in the sense that elastic or best effort traffic whose bit
rate can dynamically change was not part of the models.
Subsequently, the seminal paper by Altman proposed a
Shannon like capacity measure called the ”best effort
capacity” that explicitly takes into account the behavior
of elastic sessions [3].

Along another line, Iversen et al. and Mäder et al
proposed a CDMA model that takes account of the in-
terference from neighbor cells by introducing the notion
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of soft blocking [7], [8]. This means that arriving sessions
can be blocked in virtually any system state with a state
dependent probability. These papers however have not
considered the elastic traffic characteristics as described
in [3] and outages are not modeled.

The importance of modeling outages and session drops
and their impacts on the Erlang capacity in cellular net-
works in general and in CDMA in particular has been
emphasized by several authors, see for instance [2] and
more recently [9]. Session drops are primarily caused by
outages, when the desired signal-to-noise ratio for a ses-
sion stays under a predefined threshold during such a long
time that the session gets interrupted. However, sessions
can be dropped by a load control algorithm (typically
located in the radio network controller in WCDMA) to
preserve system stability. Session interruptions are per-
ceived negatively by end users - more negatively than
blocking a session - and therefore their probability should
be minimized by suitable resource management (including
admission control) techniques.

The purpose of this paper is to develop a model that
can be used to analyze the trade-off between the blocking
and dropping probabilities in multi-cell CDMA systems
in the presence of elastic traffic. We build on the model
developed for elastic traffic in previous work [5] and
extend it with allowing for a state dependent soft blocking
and capturing the fact that sessions are sometimes dropped.
We develop two alternative models to capture the multi-
cell impacts and show how these models can be used
when the system supports elastic service classes. When
the load is high, the interference from neighbor cells leads
to outages with a higher probability than when it is low.
For elastic sessions, fast rate and power control attempts
to reduce the transmission rates and the required received
power at the base station, as long as the transmission rates
stay above the session specific so called guaranteed bit
rate (GBR). Therefore, it seems intuitively clear that there
is a trade-off between how conservative the admission
control algorithm is (on the one hand) and what is the
average bit rate of elastic sessions and what session drop
probabilities users experience (on the other hand). The
contribution of the paper is to propose a model that can
be used for the analysis of this trade-off.
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II. MODELING ELASTIC TRAFFIC IN CDMA (THE
SINGLE CELL CASE)

A. Basic CDMA Equations

Consider a single CDMA cell at which sessions be-
longing to one of K service classes arrive according to
a Poisson arrival process of intensity λk (k = 1, . . . , K).
Each class is characterized by a peak bit-rate requirement
R̂k and an exponentially distributed nominal holding time
with parameter µk. When sending with the peak rate for
a session, the required target ratio of the received power
from the mobile terminal to the total interference energy
at the base station is calculated as follows:

∆̃k =
Ek

WN0
· R̂k, k = 1, . . . ,K, (1)

where Ek/N0 is the signal energy per bit divided by the
noise spectral density that is required to meet a predefined
QoS (e.g. bit error rate, BER); noise includes both thermal
noise and interference. This required Ek/N0 can be de-
rived from link level simulations and from measurements.
R̂k is the peak bit rate of the session of class-k and W is
the spread spectrum bandwidth. (R̂k/W is usually referred
to as the processing gain.)

Let Uk be the number of ongoing sessions of class-k
and Pk the power received at the base station from the
user equipment (UE) engaged in a session of class-k. We
will refer to the vector U = {Uk, k = 1, . . . , K} as the
state of the system. When the system is in state U , the
total power received at the base station from within its
own cell is

Yown =
K∑

k=1

UkPk. (2)

In order to determine the power required to be received
from a user of class-k, we make the following considera-
tions. The power received at the base station from a class-k
session has to fulfil:

Pk

PN + Yown − Pk
= ∆̃k, k = 1, . . . ,K, (3)

where PN denotes the background noise power. Rewriting
(3), we get:

Pk =
∆̃k

1 + ∆̃k

(PN + Yown) = ∆k (PN + Yown) ,

k = 1, . . . , K, (4)

where

∆k =
∆̃k

1 + ∆̃k

(5)

can be interpreted as the fraction of the system load that
is generated by a user of class-k, or with less words: the
load increment of class-k. Further, by substituting (4) into
(2), we find:

Yown =
K∑

k=1

PkUk =

K∑

l=1

Ul∆l

1−
K∑

l=1

Ul∆l

·PN =
Ψown

1−Ψown
·PN ,

(6)

where

Ψown = Ψown(U) ,
K∑

l=1

Ul ·∆l. (7)

Then, (4) and (6) give the power requirement of class-k
as a function of the load increments:

Pk = ∆k ·
(

1
1−Ψown

)
· PN , k = 1, . . . , K. (8)

B. The Load Factor and the Noise Rise

Ψown is also known as the load factor, ηown [10]:

ηown ,
S∑

i=1

Pi

Yown + PN
=

S∑
s=1

∆s =
K∑

k=1

Uk·∆k ≡ Ψown,

(9)
where S =

∑K
k nk denotes the total number of in-progress

sessions in state U and the index s refers to individual
sessions rather than to service classes.

Closely related to the load factor is the noise rise in the
cell:

Town =
Yown + PN

PN
=

1
1− ηown

. (10)

The noise rise describes how much the noise (i.e. the total
received power as seen by a new (imaginary) session) has
increased in state U compared to an empty system and is
a useful measure of the current interference level in the
system.

The QoS requirement of an arriving (new) class-k
session is characterized by ∆̃k according to equation (1),
and if admitted, the total power increases with ∆PTX

which is expressed as an increase of the load factor and
the noise rise in the cell:

∆ηown,k ≡ ∆k =
PN

PTXown
− PN

PTXown + ∆PTXown,k
;

∆Town,k =
∆PTXown,k

PN
. (11)

From (8) it is clear that if ηown reached Ψ̂ ≡ η̂own =
1, the required power Pk would tend to infinity. In the
single class case it means that the number of admitted
sessions must fulfill: U < bη̂own/∆c (where we now let
U = U1 and ∆ = ∆1). In practice, the admission control
procedure is often based on the noise rise value of the cell
and keeps the system load under a (much) lower value.
The admission control then aims to keep the noise rise
value under a predefined threshold value which we denote
by T̂own.

One can think of ηown(U) as the overall used resource
in state (U ) of the multi-rate CDMA system, while η̂own

corresponds to the ”total available resource”. This can be
seen as an analogy between the multi-rate CDMA model
and the multi-rate loss models developed in the 80’s and
90’s [11]. These models have been extended and used to
analyze multi-rate systems with elastic traffic for fixed
networks in a number of papers, see for instance [12],
[15], [16] and [13]. As we shall see in the next subsection,
the major difference between the classical loss models and
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the present CDMA model is that the relation between the
slowdown rate ak and the resource consumption ∆ak

is
not linear.

C. The Impact of Slowdown

Recall that the class-wise required target ratio (∆k)
depends on the required bit-rate. Explicit rate controlled
elastic services tolerate a certain slowdown of their peak
bit-rate (R̂k) as long as the actual instantaneous bit rate
remains greater than the minimum required R̂k/âk. When
the bit rate of a class-k session is slowed down to R̂k/ak,
(0 < ak ≤ âk) its required ∆ak

value becomes:

∆ak
=

∆̃k

ak + ∆̃k

=
∆k

ak · (1−∆k) + ∆k
, k = 1, . . . , K,

which increases the number of sessions that can be
admitted into the system, since now ηown,a must be kept
below η̂own, where

ηown,a =
K∑

k=1

Uk ·∆ak
.

We use the notation ∆min,k = ∆âk
to denote the class-

wise minimum target ratios (can be seen as the minimum
resource requirement), that is when the session bit-rates
of class-k are slowed down to that class’ minimum value.
The smallest of these ∆min,k values ∆ = mink ∆min,k

can be thought of as the finest ”granularity” with which the
overall CDMA resource is allocated between competing
sessions.

We note that a system characterized by these parameters
have been analyzed by Altman in [3], [4] and subsequently
by Fodor et al. in [5] and [14]. One of the results from
these papers is that increasing the slowdown factor for
some traffic classes leads to smaller blocking probabili-
ties at the expense of increased per-class sojourn times
(throughput degradation) and sometimes also somewhat in-
creased outage probabilities (on this latter issue see [14]).
Therefore, slowing down some sessions presents some
interesting trade-offs; the investigation of these trade-offs
are out of the scope of the present paper.

III. THE MULTI-CELL CDMA MODELS

First we note that we use the term neighbor cell to refer
to cells which cause non-negligible interference in a cell
under consideration. While all cells outside the cell under
consideration can contribute to the interference situation,
the interference is under practical propagation conditions
dominated by contributions from a limited set of cells that
are usually (but not always) located close to the cell under
consideration. Which cells contribute and which do not is,
however, outside the scope of this paper.

A. The Simplified Multi-cell Model

The interference contribution from neighbor cells is
typically quite high (around 30-40%). In the simple multi-
cell model this is taken into account as follows. We think

of the CDMA system as one that has a maximum of
n̂ = Ψ̂

∆ number of (virtual) channels. The neighbor cell
interference ξ is a random variable of log-normal distri-
bution with the following mean and standard deviation
respectively :

α =
ϕ

ϕ + 1
· n̂ and β = α, (12)

where ϕ is the factor characterizing the neighbor cell
interference and is an input parameter of the model.

The mean value of the interference α is equal to the
average capacity loss in the cell due to the neighbor cell
interference and β is chosen to be equal to α as proposed
by [8] and also adopted by [7]. (When ϕ = 0, the neighbor
cell interference is ignored in the model.)

Recall that we think of Ψ(U) as the used resource in
state U . Then in a given state U let bΨ(U) denote the
probability that the neighbor cell interference is greater
than the available capacity in the current cell that is (Ψ̂−
Ψ):

bΨ(U) = Pr{ξ > Ψ̂−Ψ} = 1− Pr{ξ < Ψ̂−Ψ} =

= 1−D(Ψ̂−Ψ),

where D(x) is the cumulative distribution function of the
log-normal distribution:

D(x) =
1
2

(
1+erf

( ln(x)−N

S
√

2

))
;N = ln

(
α2

√
α2 + σ2

)
;

S2 = ln

(
1 +

σ2

α2

)
.

The impact of state dependent soft blocking caused by the
neighbor cell interference, can conveniently be taken into
account by modifying the λi arrival rates in each state by
the (state dependent) so called passage factor: σk(U) =
gk(1−bΨ(U)) = gk(D(Ψ̂−Ψ(U))). The passage factor is
the probability that a class-k session is not blocked by the
admission control algorithm when such a session arrives
in system state U [7]. Obviously, the passage factor of
the hard blocking states is zero. 1 When gk(x) = x ∀i,
the passage factor only depends on the state of the system
through the total number of occupied virtual channels (the
”macro state” of the system) and is the same for all classes.
This is the assumption of the current paper. We note that
the notion of the passage factor is needed in the simple
model that builds on the probability that the neighbor cell
interference exceeds a certain value. As we shall see next,
when the state of the neighbor cells is explicitly modeled,
the passage factor becomes 1 in non-blocking states and
0 in the blocking states.

1From this point we somewhat casually use the term blocking to refer
to hard blocking, while we explicitly spell out soft blocking when this
casual usage is not confusing.
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B. The Refined Multi-cell Model

In the multi-cell case, we need to distinguish between
MSs that belong to the same service class but cause
different interference to neighbor cells. Therefore, in the
refined multi-cell model, the index k refers to a group of
mobile stations (MS) rather than to a set of MSs belonging
to the same service class. Likewise K is the number of
groups rather than the number of service classes. We say
that a set of MSs that are served by the same cell (base
station) and belong to the same service class and cause
(approximately) the same neighbor cell interference to
neighbor cells belong to the same group Gk. The indexing
of these groups will be useful, which we do as follows.
Let C be the number of cells (and base stations, BS), Kc

the number of groups served by Cell-c and Uk the number
of MSs that belong to Group-k in the system. Also, define
sm ,

∑m
i=1 Ki + 1. Then the groups belonging to Cell-

c are labeled by sc−1, . . . sc−1 + Kc − 1, the groups
belonging to cells in neighbor cells with lower (less than
c) and higher (greater than c) indexes are labeled by
sc−2, . . . sc−2 + Kc−1 − 1, c ≥ 2 and sc, . . . sc +
Kc+1 − 1, c ≤ C − 1, respectively. We will use the
notation Kc to refer to the set of indices of the groups
that belong to Cell-c, K̄c to refer to the (set of indices of
the) ”neighbor groups”, while C(k) denotes the index of
the cell that accommodates Group-k.

C. The per-Mobile Station Power Coupling Factor

We need to calculate the power received at the base
station of Cell-c from within its own cell and also from
the neighboring cells. Let h

C(k)
k,uk

denote the path gain from
the uk-th MS of Group-k to the BS of Cell-C(k) and let
pc

k,uk
(k ∈ K̄c) denote the coupling factor of groups that

belong to the neighbor cells. Also, let PTX,k,uk
denote

the transmit power of this MS. Then, the power received
at BS from its own groups and from the neighbor groups
respectively, can be expressed as follows:

Yc,own =
∑

k∈Kc

Uk∑
uk=1

hc
k,uk

· PTX,k,uk
;

Yc,neigh =
∑

k∈K̄c

Uk∑
uk=1

pc
k,uk

h
C(k)
k,uk

· PTX,k,uk

c = 1, . . . , C. (13)

We will continue to assume that the power received
at the BS from all MSs belonging to Group-k are equal
(which we denoted by Pk) and make use of the definition
of a group by noting that h

C(k)
k,uk

= h
C(k)
k and p

C(k)
k,uk

=
p
C(k)
k ∀uk ∈ Gk, which leads to

Yc,own =
∑

k∈Kc

Ukhc
k · PTX,k =

∑

k∈Kc

UkPk; (14)

Yc,neigh =
∑

k∈K̄c

Ukpc
kh
C(k)
k · PTX,k =

∑

k∈K̄c

pc
kUkPk

c = 1, . . . , C. (15)

Then, similarly to (3), but now taking into account the
interference from neighbor cells and the impact of the
slowdown as described in Subsection II-C we have:

Pk

PN + YC(k),own + YC(k),neigh − Pk
= ∆̃a,k;

Pk

PN +
∑

Kc

UkPk +
∑

K̄c

UkPkpc
k − Pk

= ∆̃a,k, (16)

for all k = 1, . . . , K; c = C(k). The equation system
(16) consists of K equations, where the unknowns are the
group-wise power values received at the BSs of the own
cells (Pk). The ”inputs” to this equation system are the
system state (U ), the per-group power coupling factors
to each neighbor cell pc

k and the group-wise target ratios
∆̃a,k. We note that the coupling factors can be obtained
from pilot measurement reports used also for handover
decisions in operating CDMA networks (see for instance
Section 9.3.1.2 of [10]).

From the solution vector P of (16), Equations (14) -
(15) and the definition of the noise rise (the multi-cell
version of (10)) the calculation of the noise rise value in
each cell is straightforward:

Tc , PTX,c

PN
=

Yc + PN

PN
=

Yc,own + Yc,neigh + PN

PN
(17)

In the refined multi-cell model, equation (17) forms
the basis for admission control. An arriving session is
admitted into the system if Tc remains under the pre-
defined threshold T̂ for each cell. In practice, the issue
becomes estimating the coupling factors for the newly
arriving session - this is usually solved by (pilot signal)
path loss measurements by the MSs and by base stations.

D. A Comment on Equation System (16)

Equation system (16) constitutes the core of the model,
since it determines the group-wise received power value
at the BS in each system state. The power vector is
necessary to compute the noise rise. Therefore, from a
computational perspective, an efficient solution of this
equation system in each state is required in order to
generate numerical results. To solve Equation system (16),
one needs to assume that the ∆̃a,k group-wise target
ratios are known. The target ratios however depend on the
slow down factors, which need to be determined in each
system state assuming some fairness policy that decides
on how much resource should be assigned to each group
when some of the groups need to be slowed down. The
formulation of such fairness policies is outside the scope
of this paper, but we will illustrate the problem more in
detail in the 2-cell example.

E. Example: The Two-Cell Case

In this subsection we consider a two-cell system as
illustrated in Figure 1. Both cells support two groups,
one with constant bit rate sessions and one with elastic
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1 2

U1

elastic

elastic

CBR
CBR

U2 U3
U4

Figure 1. An example of a 2-cell CDMA system. Cell-1 supports two groups (here with U1 constant bit rate and U2 elastic in-progress sessions),
Cell-2 also supports two groups (with U3 constant bit rate and U4 elastic in-progress sessions). These groups can comprise sessions that belong to
the same service class, but they need to be distinguished because they belong to different cells and within a cell they can be at different geographical
positions causing different inter-cell interference. The figure illustrates the (power) coupling factors p2

1, p2
2 and p1

3, p1
4 between the groups and their

respective neighbor BSs.

sessions. In total, there are four groups. We describe the
state space structure and present the generator matrix.

In order to determine the set of feasible states, we need
to calculate the minimum noise rise value in an arbitrary
system state. If this minimum noise rise value (when all
sessions are slowed down to their minimum transmission
rates) is under the noise rise threshold, then that state
is part of the feasible state space. The minimum noise
rise can be calculated from the state dependent power
vector (obtained from Equation system (16)) by means
of Equation (22). For the two-cell example (see Figure 1)
we rewrite Equation system (16).

Considering the groups of Cell-1, we get:

Pk

PN +
2∑

i=1

UiPi +
4∑

i=3

UiPip
1
i − Pk

= ∆̃a,k,

k = 1, . . . , 2; (18)

likewise the groups in Cell-2:

Pk

PN +
4∑

i=3

UiPi +
2∑

i=1

UiPip
2
i − Pk

= ∆̃a,k,

k = 3, . . . , 4, (19)

where now ∆̃a,1 = ∆̃1, ∆̃a,3 = ∆̃3 are kept fixed (peak
allocated sessions).

IV. SYSTEM BEHAVIOR

A. Modeling Session Drop

When the system is in state U , a class-k ses-
sion leaves the system with intensity γk(U) · µk

ak(U) ,
where γk(U) is the state dependent session drop fac-
tor. The session drop factor is such that for all k:
γk(U) |Uk=0 = 1; and γk(U) |Uk 6=0 ≥ 1 . Furthermore,

we can assume that the drop probability for a given
session does not depend on the instantaneous slowdown
of that session. This is because whether a session gets
out of coverage or whether it gets dropped by the radio
network does not depend on the slowdown. The session
drop probabilities, however, depend on the actual level
of the noise rise, because higher noise rise level at the
base station makes decoding of signals more difficult. We
will thus assume that the session drop factor is a function
of the macro state only and is the same for all classes :
γk(x) = f(x) = f(Ψ) ∀k ∈ K. That is, we assume that
the session drop probability is determined by the load in
the system and is equal for all service classes.

Note that the session drop model as described above is
applicable in both the simplified and the refined multi-cell
models. In the simple model, the system state U describes
the state of the cell under study (and captures the impact
of the neighbor cells by means of the ξ random variable.
In the refined model, the impact of the neighbor cells is
explicitly taken into account by allowing the number of
in-progress sessions vary and by introducing the per-MS
coupling factors. The session drop model is common to
both these cases, since it relies only on the state dependent
session drop factor γ(U).

B. State Space Structure

For the simple multi-cell model, the maximum number
of sessions from each class can be calculated as follows:

Ûk = b(∆min,k)−1c, k = 1, . . . , K. (20)

Recall that in each U state of the system, the inequality∑
k Uk · ∆ak

< Ψ̂ must hold. The states that satisfy
this inequality are the feasible states and constitute the
state space of the system (Θ). The feasible states, in
which the acceptance of an additional class-k session
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would result in a state outside of the state space are the
class-k blocking states. The set of the class-k blocking
states is denoted by Θi. Due to the ”Poisson Arrivals See
Time Averages” (PASTA) property, the sum of the class-
k blocking state probabilities gives the (overall) class-k
blocking probability [11].

In each feasible state, it is the task of the bandwidth
sharing policy to determine the ∆ak

(U) class-wise target
ratios for each class. ∆ak

(U) reflect the fairness criterion
that is implemented in the resource sharing policy men-
tioned above. From these, the class-wise slowdown factors
and the instantaneous bit-rates of the individual sessions
can be calculated as follows:

ak(U) =
∆k · (1−∆ak

(U))
∆ak

(U) · (1−∆k)
; Rak

(U) = Rk/ak(U)

(21)
For ease of presentation, in the rest of the paper we will
not indicate the dependence of ak, ∆ak

and Rak
in state

U .
For the refined model, the states in which (16) has a

solution (P ) whose elements are non-negative and that
power setting causes less noise rise than the noise rise
threshold in each cell (that is Tc ≤ T̂ ∀c) are the
feasible states, the set of which we denote by Γ. From
this definition and Equation system (16) it follows that
the feasibility of a state depends on the coupling factors.

To determine the feasible state space, we need to
calculate the minimum noise rise value in each state.
Since the noise rise is monotonously increasing with
respect to the rates of individual sessions, that is
∂Tc

∂Rk
(R1, R2, . . . , RK) > 0, the minimum noise rise value

can be calculated from the state dependent power vector
obtained from equation system (16) setting ∆̃a,k = ∆̃â,k

(that is assuming maximum slowdown):

Ti,â(U) =
Yi,own + Yi,neigh + PN

PN
=

=

∑

Ki

UkPk +
∑

K̄i

pi
kUkPk + PN

Pn
. (22)

The set of feasible states (Γ) consists of U :s for which
Ti,â(U) < T̂i. That is: Γ = {U : Ti,â(U) < T̂i}.

C. The Markovian Property
We now make use of the assumptions that the arrival

processes are Poisson and the nominal holding times
are exponentially distributed. In both the simple and the
refined models, the transitions between states are due to
an arrival or a departure of a session of class-k. The
arrival rates are given by the intensity of the Poisson arrival
processes. Due to the memoryless property of the exponen-
tial distribution, the departure rates from each state depend
on the nominal holding time of the in-progress sessions
and on the slowdown factor in that state. Specifically, when
the slowdown factor of a session of class-k is ak(U),
its departure rate is γk(U)µk/ak(U). Thus, the system
under these assumptions is a continuous time Markov
chain (CTMC) whose state is uniquely characterized by
the state vector U .

D. Determining the Generator Matrix

The generator matrix for the simple model has been
derived in [6]. For the refined model, the derivation is
similar and exemplified below for the 2-cell system. In the
feasible states of the 2-cell system, the noise rise values in
both cells must remain under the predefined threshold. In
other words, the feasible states are given by the U vectors
for which the noise rise values calculated from (22) remain
under T̂ .

Based on the considerations of the preceding subsec-
tions we see that the generator matrix Q possesses a
nice structure, because only transitions between ”neigh-
boring states” are allowed in the following sense. Let
q(U1, U2, U3, U4 → U ′

1, U
′
2, U

′
3, U

′
4) denote the transition

rate from state (U1, U2, U3, U4) to state (U ′
1, U

′
2, U

′
3, U

′
4).

Then the non-zero transition rates between the feasible
states are (taking into account the impact of the slowdown
factors):

q(U1, U2, U3, U4 → U1 + 1, U2, U3, U4) = λ1 (23)
q(U1, U2, U3, U4 → U1, U2 + 1, U3, U4) = λ2

q(U1, U2, U3, U4 → U1, U2, U3 + 1, U4) = λ3

q(U1, U2, U3, U4 → U1, U2, U3, U4 + 1) = λ4

q(U1, U2, U3, U4 → U1 − 1, U2, U3, U4) = U1 · µ1

q(U1, U2, U3, U4 → U1, U2 − 1, U3, U4) =
= U2 · µ2/a2(U)

q(U1, U2, U3, U4 → U1, U2, U3 − 1, U4) = U3 · µ3

q(U1, U2, U3, U4 → U1, U2, U3, U4 − 1) =
= U4 · µ4/a4(U)

Note that the derivation of the generator matrix relies
on the fact that the system is Markovian. This is not
trivial because one could intuitively argue that since the
elastic flows bring with themselves a certain amount of
workload (a file to transmit), the memoryless property
does not hold, even if this workload is exponentially
distributed. However, the Markovian property for such
systems was independently of one another observed and
formally proven by Altman et al. [12] and Nunez Queija
et al. [15]. It is also used by Massoulie and Roberts in
[16], where the death rates of the birth-death process are
modulated by the actual instantaneous bandwidth of elastic
traffic.

E. Determining the Blocking Probabilities and Session
Drop Probabilities

From the steady state analysis, the blocking and drop-
ping probabilities directly follow. The hard blocking prob-
abilities can be easily calculated, because we assume
that the sessions from each class arrive according to a
Poisson process: Phard,k =

∑

U∈Θk

π(U). In the simplified

model, the total blocking probabilities include the soft
blocking probabilities in each state and the hard blocking

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 1, JANUARY 2007 27

© 2007 ACADEMY PUBLISHER



probabilities: Ptotal,k = 1 −
∑

U∈Θ

π(U)σk(U). Finally,

the class-wise dropping probabilities can be calculated
using the following observation. Since the dropping related
departure rate from state U is (γk(U) − 1) · Uiµk

ak(U) ,
the long-term fraction of the dropped sessions must be
proportional to γk(U)−1

γk(U) · Ukµk

ak(U) . Weighing this quantity
with the stationary probability distribution of the system
and normalizing yields:

Pdrop,k =

∑

U∈Θ

π(U) · γk(U)− 1
γk(U)

· Ukµk

ak(U)
∑

U∈Θ

π(U) · Ukµk

ak(U)

. (24)

In the next section we will show how this intuitively clear
formula can be verified by defining a trapping state in this
system.

V. SOLUTION BASED ON THE TAGGED CUSTOMER
APPROACH

The calculation of the (mean and the distribution of the)
time to completion of successful sessions requires some
additional effort. As we shall see, the method we follow
here can also be used to verify the dropping probability
calculations as suggested by Equation (24). In order to
describe our approach, we use the simple multi-cell model
and note that it is also applicable in the refined model when
using the subset of the state variables that specify the state
of the serving (own) cell.

A. Session Tagging and Modifying the State Space

In order to calculate the moments and the distribution
of the holding time of successful (not dropped) sessions
we modify the state space by introducing a trapping
(absorbing) state and make the following considerations.

We will continue to think of an elastic session as one
that brings with itself an exponentially distributed amount
of work and, if admitted into the system, stays in the
system until this amount of work is completed or the
session gets dropped. The method we follow here is based
on (1) tagging an elastic session arriving to the system,
which, at the time of arrival is in one of the feasible
states; and (2) carefully examining the possible transitions
from the moment this tagged call enters the system until it
acquires the required service or gets dropped and therefore
leaves the system. Finally, un-conditioning on all possible
entrance state probabilities, the distribution of the best
effort service time can be determined.

For the purpose of illustration, we again concentrate on
the part of the state space in which U1 = 8 and tag a class-
3 session. Figure 2 shows the state transition diagram from
this tagged session’s point of view an infinitesimal amount
of time after this tagged session entered the system. Since
we assume that at least the tagged session is now in
the system, we exclude states where U3 = 0. Figure 2
also shows the entrance probabilities for each state, with
which the tagged session finds the system in that state.

Thus, in Figure 2, the tagged arriving session will find the
system in state (U2, U3) with probability P (U2, U3), and
will bring the system into state (U2, U3+1) unless (U2, U3)
is a Class-3 hard blocking state. For non hard blocking
states the entrance probabilities have to be ”thinned” with
the passage factor (i.e. γ(U1, U2, U3)). In order for the
entrance probabilities to sum up to 1, they need to be re-
normalized since we have excluded entrances in the hard
blocking states.

In this modified state space, we also define a trapping
(absorbing) state. Depending on how this trapping state
is interpreted and how the transition rates into that state is
defined, we can calculate the moments and the distribution
of the holding time of successful sessions and the time
until dropping of dropped sessions as well.

We first discuss the case of successful sessions. In this
case, the trapping state corresponds to the state which
the tagged session enters when the workload is completed
(”the file has been transferred successfully”). The transi-
tion rates from each state are given by µ3/a(U). The time
until absorption corresponds to the time the tagged session
spends in the system provided that it is not dropped.
Indexing the modified state space in a similar manner as
the original state space, the new generator matrix Q̃S will
have the following structure:

Q̃S =
[

BS bS

0 0

]
(25)

where the BS matrix represents the transitions between
the non-trapping states, the bS vector contains the tran-
sitions to the trapping state, the 0 vector indicates that
no transitions are allowed from the trapping state. When
the trapping state represents the state that the tagged
session enters when it is dropped, the transition rates to the
trapping state are given by γ3(U)−1

a3(U) µ3 and the generator
matrix takes the following form:

Q̃D =
[

BD bD

0 0

]
(26)

where the BD matrix represents the transitions between
the non-trapping states, and the bD vector contains the
transitions to the trapping state. Once the structure of
the expanded state space and the associated transition
rates together with the (thinned) initial probability vector,
PR(0), are determined, we can determine the rth moment
of TS :

E[T r
S ] = r! · P t

R(0) · (−BS)−r · e (27)

We note that the procedure to calculate the moments of TD

is the same as that for TS , except that we now have to make
use of the BD matrix instead of BS . The distributions of
TS and TD are given by:

Pr{TS < x} = 1− P t
R(0) · exBS · e;

Pr{TD < x} = 1− P t
R(0) · exBD · e. (28)

B. Verifying Equation (24): An Alternative Way to Calcu-
late the Dropping Probabilities

The trapping state approach can also be used to de-
termine the dropping probabilities, which can be used to
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Figure 2. Modified state space with a trapping state that represents successful session termination. The transition rates to this trapping state correspond
to the transition rates with which the tagged session enters the trapping state. The initial probability vector can be determined from the steady state
by normalization and taking into account the ’thinning’ affect of the passage factors.
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Figure 3. Modified state space with two trapping states representing successfully terminated and dropped sessions respectively. Seen from the transient
states, the total transition rates with which the tagged session enters either of these states is the sum of the two transition rates. This modified state
space can be used to determine the probabilities of success and drop.

verify results obtained from Equation (24). In order to
do this, we consider the modified state space with two
trapping states illustrated in Figure 3. From each state, the
tagged class-i session can enter any of the two trapping
states corresponding to the case when the tagged session
successfully terminates or gets dropped. The generator
matrix of this state space is given by:

Q̃i =




Bi bS,i bD,i

0 0 0
0 0 0


 (29)

where bdrop,i is the column vector containing the transition
rates to the trapping state representing the session drops.
The Bi matrix has to be determined considering the total
transition rates to the two trapping states.

The class-wise dropping probabilities can be calculated
using Equation (30):

Pdrop,i = P t
R(0) · (−Bi)−1 · bD,i. (30)

VI. NUMERICAL RESULTS

A. Input Parameters

The input parameters for the two cases that we study are
summarized by Table I. In Case I, Class-1 is a rigid class,
whereas in Case II, Class-1 is elastic with a maximum
slow down factor â1 = 3. In both cases we change the
maximum slow down factor of Class-2 â2 = 1 . . . 4. (â2

is changed along the x axis in each Figure.) The offered
traffic is set to 2.72 Erlang per each class and the required
∆i value for sessions of each class is ≈ 0.15. The function
γi(U) = f(U) is set such that it does not depend on the
slow down factors, according to the discussion at the end
of Section IV-A. Specifically, in this paper we choose the
following dropping factor: f(U) = 1 + νln(1 + U1 ·∆1 +
U2 ·∆2), expressing that the dropping factor is a function
of the total load in the system (see also Table I). For the
refined multi-cell model, we study a 2-cell model and let
the per-MS coupling factor vary between 0.09 and 0.39.
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TABLE I.
MODEL (INPUT) PARAMETERS

I 2
R̂i 128 [kbps]
λi 87.2613 [1/s]
µi 32.03 [1/s]
â1 1 (Case I); 3 (Case II)
â2 1 . . . 4 (along the x axis)
ϕ 0.25

Ei/N0 7 [dB]
Dropping factor f(U) = 1 + νln(1 + U1 ·∆1 + U2 ·∆2),ν = 1; [17]

B. Numerical Results
1) Blocking Probabilities: Figures 4-5 and Figures 6-7

show the impact of state dependent blocking on the total
blocking probabilities. State dependent blocking implies
that the admission control takes into account the instanta-
neous value of the noise rise at the base station rather
than just the state of the own cell. This increases the
class-wise total blocking probabilities from around 7% and
2% to 10% and 6% in Case I when â2 = 4. We also
note that when both classes are rigid (Case I, â2 = 1),
the total blocking values are high, but these high values
are brought down to reasonably low blocking probability
values when either one and especially when both classes
tolerate slowing down of the instantaneous transmission
rates (Case II, â2 = 4).
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Figure 4. Case I, no soft blocking, blocking probabilities (total and hard
blocking probabilities being equal)
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Figure 5. Case I, soft blocking, blocking probabilities

2) Dropping Probabilities: Figures 8-9 and Figures 10-
11 show the impact of soft blocking on the session drop
probabilities. First, we note that the session drop proba-
bilities slightly (less than 2%) increase as traffic becomes
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Figure 6. Case II, no soft blocking, blocking probabilities (total and hard
blocking probabilities being equal)
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Figure 7. Case II, soft blocking, blocking probabilities

more elastic. The reason is that the system utilization
increases when traffic is elastic and the system operates in
”higher states” with a higher probability than when traffic
is rigid.

We also see that state dependent blocking decreases
the session drop probabilities in both cases (for example
from around 7% to 5% in Case I when â2 = 4). This
is because soft blocking entails that in average there are
fewer sessions in the system that decreases session drops.

3) Mean Holding Time of the Successful (Not Dropped)
Sessions: Figures 12-13 show the mean holding times of
successful sessions (normalized to the nominal expected
holding time, that is when the slow down factors are
1). In Case I, Class-1 sessions are rigid and there is no
increase in their mean holding times. In this case, Class-2
sessions benefit from soft blocking (keeping in mind that
we are now only taking into account the sessions that are
successful). Their holding time is somewhat lower in the
case of soft blocking.

30 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 1, JANUARY 2007

© 2007 ACADEMY PUBLISHER



1 1.5 2 2.5 3 3.5 4
CLASS-2 SLOWDOWN

0.062

0.064

0.066

0.068

C
LA

S
S
-

1�
2

S
es

si
on

D
ro

p
P

ro
ba

bi
lit

y

CLASS-2

CLASS-1

Figure 8. Case I, no soft blocking, session drop probability
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Figure 9. Case I, soft blocking, session drop probability

4) The Impact of the per-MS Coupling Factor: Figures
14-21 illustrate the impact of an increasing per-MS cou-
pling factor on the blocking probabilities, the session drop
probabilities and the successful sessions mean holding
time. In these figures, the per-MS coupling factor increases
from 0.095 to 0.38 along the x axis. The load in the
system is quite high, in fact as the per-MS coupling factor
increases and when â1 = â2 = 1 (both service classes are
peak allocated), the blocking probabilities increase from
around 7% to 15% (not shown in the figures). When
â2 = 2, the blocking probabilities become significantly
lower (see Figure 14 and less sensitive to the increase
in of the coupling factor. (This effect is even more
visible when â2 = 4 in Figure 19.) We also note that
the blocking probability of the peak allocated class is
significantly higher than that of the elastic class, especially
at high coupling factor values. The admission control
algorithm in this refined model is such that the session
drop probabilities basically remain at the same level (or
even decrease a little bit) as the coupling factor increases
(the session drop probabilities remain around 4%). The
mean holding time of the elastic class (in this example
Class-2) increases somewhat, especially (as expected) in
the case when â2 = 4 (see Figure 21). This is because the
throughput of the system degrades at increasing coupling
factor and a highly elastic traffic class becomes sensitive
for such throughput degradation. (The peak allocated class
mean time remains of course unit, irrespective of the
coupling factor.)

VII. CONCLUSIONS

In this paper we have proposed a model to study and
analyze the trade-off between the blocking and dropping
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Figure 10. Case II, no soft blocking, session drop probabilities
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Figure 11. Case II, soft blocking, session drop probabilities

probabilities in CDMA systems that support elastic ser-
vices. The model of this present paper captures the impact
of state dependent blocking, which is a consequence of
the CDMA admission control procedure that takes into
account the actual noise rise value at the base station
(including the interference coming from surrounding cells)
rather than just the state of the serving cell. Session drops
happen with a probability that increases with the overall
system load.

As traffic becomes more elastic, the session drop
probability increases, but this increase can be compen-
sated for by a suitable admission control algorithm. Such
state dependent admission control algorithms increase the
blocking probabilities somewhat, but this increase can be
mitigated if sessions tolerate some slow down of their
sending rates. Thus, the design of the CDMA admission
control algorithm should take into account the actual traffic
mix in the system and the per-class blocking and session
drop probability targets.

An important consequence of the presence of elastic
traffic is that the blocking probabilities decrease as the
maximum slow down factors increase. This is a nice
practical consequence of one of the key findings in [3],
namely that the Erlang capacity increases. Another con-
sequence of elasticity is that the dropping probabilities
increase somewhat, but this increase is not significant (the
exact value would depend on the model assumptions, for
instance the value of ν).
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Figure 12. Case II, no soft blocking, successful sessions’ mean holding
time
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Figure 13. Case II, soft blocking, successful sessions’ mean holding
time
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Figure 17. Blocking probabilities vs Coupling factor, â1 = 1, â2 = 3
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Figure 18. Successful Session Mean Time vs Coupling factor, â1 =
1, â2 = 3
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Figure 19. Blocking probabilities vs Coupling factor, â1 = 1, â2 = 4
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Figure 20. Session Drop probabilities vs Coupling factor, â1 = 1, â2 =
4

0.1 0.15 0.2 0.25 0.3 0.35

1

1.02

1.04

1.06

1.08

1.1

1.12

C
LA

S
S
-

1�
2

S
uc

ce
ss

fu
lS

es
si

on
M

ea
n

T
im

e

Class-2

Class-1

Figure 21. Successful Session Mean Time vs Coupling factor, â1 =
1, â2 = 4

[11] K. W. Ross, ”Multiservice Loss Models for Broad-
band Telecommunication Networks”, ISBN 3-540-19918-8,
Springer Verlag, 1995.

[12] E. Altman, D. Artiges and K. Traore, ”On the Integration of
Best-Effort and Guaranteed Performance Services”, INRIA
Research Report No. 3222, July, 1997.

[13] S. Racz, B. P. Gero and G. Fodor, ”Flow Level Performance
Analysis of a Multi-service System Supporting Elastic and
Adaptive Services”, Performance Evaluation 49, Elsevier,
pp. 451-469, 2002.

[14] G. Fodor and M. Telek, ”A Recursive Formula to Calcu-
late the Steady State of CDMA Networks”, International
Teletraffic Congress 2005, Beijing, China, September 2005.

[15] R. Nunez Queija, J. L. van den Berg, M. R. H. Mand-
jes, ”Performance Evaluation of Strategies for Integration
of Elastic and Stream Traffic”, International Teletraffic
Congress, UK, 1999.

[16] L. Massoulie and J. Roberts, ”Bandwidth Sharing: Objec-
tives and Algorithms”, INFOCOM 1999.

[17] W. Ye and A. M. Haimovich, ”Outage Probability of
Cellular CDMA Systems with Space Diversity, Rayleigh
Fading and Power Control Error”, IEEE Communications
Letters, Vol. 2, No. 8, pp. 220-222, August 1999.

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 1, JANUARY 2007 33

© 2007 ACADEMY PUBLISHER


