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Abstract—A new class of (2k, k, 1) convolutional codes is 

proposed based on the method that creating long codes by short 

ones in this paper, by embedding (2k, k) double loop cyclic 

codes in (2, 1, 1) convolutional codes. The structural 

mechanism of the codes is revealed by defining a state 

transition matrix and using algebraic method. It is then shown 

that the code structure is excellent in both proportionality and 

diversity, so a superior code is easy to be obtained. Simulation 

results show that, the new convolutional codes present 

advantages over the traditional (2, 1, l) codes in the error-

correcting capability and decoding speed. 
 
 
Index Terms—convolutional codes, state transition matrix, 

magic square, viterbi decoding 
 

I. INTRODUCTION 

Convolutional codes are basic Error Correcting Codes 

(ECC) with memory and good error-correcting capability. 

Early convolutional codes mainly include the orthogonal 

convolutional codes [1] which are suitable for majority-

logical decoding, the nonsystematic convolutional codes-

Quick-look-in codes [2] with a “quick-look-in” feature, 

and the complementary convolutional codes [3] 

constructed by two complementary sub-generators. Since 

the 1980s, Punctured Convolutional Codes (PCC), Tail 

Biting Convolutional Codes (TBCC) and the Trellis 

Coded Modulation (TCM) have been widely used [4]-[6]. 

In the 1990s, a recursive convolutional codes-Recursive 

Systematic Convolutional Codes (RSC) appeared 

following the Turbo codes [7]. In recent years, some 

scholars began to research the convolutional LDPC codes 

[8]-[11]. This class of convolutional codes can realize 

iterative decoding based on Belief Proporgation (BP), and 

has excellent error-correcting performance. To obtain a 

long free distance, not only a good generated matrix 

should be depended on, but also the memory length kl of 

(n, k, l) convolutional codes should be increased, which 

can be achieved by the coding constraint degree l or the 

block length k. The orthogonal convolutional codes and 

the punctured convolutional codes have been successfully 

used to increase the block length k. But k is increased 
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quite a little, what’s more, the code rate is increased and a 

bad distance property is caused, which leads to more 

research on how to increase the coding constraint degree l. 

With the development of computer technology, 

enumeration type search can obtain the high quality 

convolutional codes [12] much easier than search by 

algebra theory. Unfortunately, people are more willing to 

pay attention to the change of coding structure by only 

increasing the constraint degree l when making the 

tentative search. 

It is indicated that the traditional (2,
 
1,

 
l) convolutional 

codes are long codes constructed by the (2, 1) even-parity 

codes in [13], also the essence of the information sharing 

among blocks in different time is clarified deeply. In this 

paper, by replacing the (2, 1) even-parity codes with the 

(2k, k) linear block codes, and combining with the 

encoder structure of (2, 1, 1) convolutional codes, a new 

(2k, k, 1) convolutional coding scheme, called first-order 

magic square convolutional codes, is presented. 

The structure of the paper is as follows: Based on the 

modificatory encoder given in the (2, 1, l) convolutional 

codes, Section II describes the encoding process of (2k, k, 

1) convolutional codes. In Section III, by using a state 

transition matrix, the code structure mechanism and the 

distance property are made a detailed algebraic analysis. 

In Section IV, we complete the simulation for the soft-

decision Viterbi matrix decoding, and make a comparison 

with the (2, 1, l) convolutional codes in both decoding 

speed and error-correcting performance. At last, we 

summarize our discovery finding in Section V. 

II. CODING OF (2K, K, 1) CONVOLUTIONAL CODES 

The operations following in the paper are calculated 

according to Galois Field GF(2). A modificatory encoder 

of (2, 1, l) convolutional codes with the embedded zero 

module is proposed in [13], which can show the 

mechanism that creating long codes by short ones. When 

G=[1 1]
T
, M(t)=[m0(t)], and the generator polynomial 

matrix of the (2, 1, 1) convolutional codes is: 

                   
1

2

1g

g


 
   
   

  

D
G D

D
                    (1) 

We can obtain this encoder, as shown in Fig. 1, where 

D means the time delay. Unlike the conventional encoder, 

the input of embedded zero module is g1+g2, and not g2, 

and the output can be obtained as follows: 
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We find that (2) is in accordance with (1). In order to 

construct (2k, k, 1) convolutional codes, we set afresh that 

M(t)=[m0(t) m1(t) m2(t) …mk-1(t)]
T
 is the k-bit binary 

information vector, the D that is called vector register 

delays the k-bits information simultaneously, by which 

way we can obtain M(t–1)=[ m0(t–1) m1(t–1) m2(t–

1) …mk-1(t–1) ]
T
, and the generator matrix of the (2k, k) 

linear block codes is: 

                              
 
 
 

I
G

P
                                  (3) 

where I is the identity matrix, both I and P are k×k matrix, 

coding base on (3), we can obtain first: 

 
 1

( ) ( 1)
( ) ( 1)

P ( ) ( 1)

ij
t t

t t
t t

 
    

 

 
 
 

M M
C G M M

M M
  (4) 

By this process, we find that the adjoining information 

vector M(t) and M(t-1) implement encoding together, 

thereby the restriction and memorability are realized. 

Next, in embedded zero module, k zeroes are embedded 

and we obtain the 2k×1 output vector  

2

0

( )

ij

t

 
 
 

C
M

                             (5) 

Adding it with (4) the encoding output can be obtained 

as follows 

 1 2

( ) ( 1)

P ( ) ( 1) ( )

ij ij ij
t t

t t t

 
  

  

 
 
 

M M
C C C

M M M
  (6) 

where superscript i and j are respectively the decimal 

number of  M(t) and M(t–1), i, j=0, 1, 2, …, 2
k
–1, 

which can show conveniently the corresponding 

relation between encoding output and information 

vector. In the process above, the (2k, k) linear block 

codes (hereinafter, “embedded codes”) are embedded 

in the (2, 1, 1) convolutional codes, and the two kinds 

codes are integrated organically, which shows fully the 

trait that construct long codes with short ones. 

D  

Embedded 
zero

M(t)

G

M(t-1)
ij

1C

ij

2C

ij
C

  

Figure1. (2k,k,1) convolutional encoder 

III.  ANALYSIS OF CONSTRUCION MECHANISM 

With only a delay unit D, a determinate information 

vector corresponds to a state in the (2k, k, 1) 

convolutional codes encoder. We suppose that Si=M(t) 

denotes the current state, while Sj=M(t–1) is the previous 

state, where subscript i and j have the same meaning with 

(4)~(6). Clearly, altogether there are 2
k
 states in (2k, k, 1) 

convolutional codes because the size of the information 

vector are k bits in the D, where any two states can 

mutually transfer, in other words, corresponding to trellis 

diagram, 2
k
 branches collect or branch in each state node. 

Fig. 2 shows the state transition of (6, 3, 1) convolutional 

codes, and a trellis diagram can be obtained when several 

such state transition connect with each other end-to-end. 

S0 S1 S2 S3 S4 S5 S6

Sj  

Si  

S7

S0 S1 S2 S3 S4 S5 S6 S7

 

Figure 2. The state transition matrix of (6, 3, 1) convolutional codes 

In order to explain the structure mechanism of (2k, k, 1) 

convolutional codes, we define a state transition matrix as 

follows: 

00 01 0 00 01 0

1 1 1 2 2 2

10 11 1 10 11 1

1 1 1 2 2 2

1 2

0 1 0 1

1 1 1 2 2 2

... ...

... ...

... ...

K K

K K

K K KK K K KK

   

   
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   
   
      

C C C C C C

C C C C C C
C C C
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0 1

...

...
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K

K

K K KK



 
 
 
 
 
  

C C C

C C C

C C C

                            (7) 

where K=2
k 

–1,
1

ij
C , 

2

ij
C , ij

C  are elements of matrix C1, 

C2, C, respectively. 
ij

C  denotes the state transition from 

Sj to Si, for example, when M(t–1)=011 and M(t)=101 of 

(6, 3, 1) convolutional codes, we can obtain the state 

transition that is S3→S5, and the encoding output is C
53

. 

All state transitions of (2k, k, 1) convolutional codes are 

included in (7) which form a whole codeword space. The 

rows and columns in (7) are ordered by i and j, so the 2
k
 

codes of each row (or column) correspond to not only the 

same M(t) (or  M(t–1)), but also the same state node 

where 2
k
 branches collect or branch in the trellis diagram. 

There are 2
2k

 elements in the matrix, which correspond to 

the 2
2k

 branches determined by the adjacent moments in 

the trellis diagram. Four properties about the code 

structure and distance property of (2k, k, 1) convolutional 
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codes are concluded with the help of computer 

programming for different k. Before proving these 

properties, we first list some lemmas. 

Lemma 1: Define a 2
k
-element natural binary codes set 

Φ(k) composed by all the k-bit binary vector M=[m0 m1 

m2 … mk-1]
T
. If all the elements in Φ(k) plus a certain 

same element respectively, the result will be mapped to 

themselves (without considering the sequence of 

elements). 

Lemma 2: Take a bit in all elements of set Φ(k) with 

same position, the numbers of 0s and 1s are both 2
k–1

. 

Lemma 3: M∈Φ(k), define w(M) as the code weight 

of M, then after M traverses Φ(k), the numbers that w(M) 

is odd and even number are both 2
k–1

. 

Lemma 4: Delete k–s bits in the same position of all 

elements in set Φ(k), and form a new set Φ'(k)(define a 

element of set Φ'(k) is M′i=[m′i0 m′i1 m′i2 … m′i(s-1)]
T
), 

where 0<s<k, then that contains 2
k-s

 Φ(s) in Φ' (k). 

Lemma 5: Take the k1-bit vector M1 in Φ(k1), and 

merge it with a k2-bit vector M2 in Φ(k2) as a (k1+k2)-bit 

vector. After M1 and M2 traverse Φ(k1) and Φ(k2) in order, 

we can obtain a new set Φ(k1+k2). 

Lemma 1- Lemma 5 can be inferred from the natural 

binary code structure, so the proof will not be given here. 

Lemma 6: Codeword D1, D2, D3∈Φ(k),then the code 

distance d(D1+ D3,D2+ D3) =d(D1, D2). 

Proof: It do not change the corresponding bit of D1 and 

D2 when one of the bits in D3 is 0. The code distance will 

not be changed though the corresponding bit is changed 

when one of the bits in D3 is 1, because the changes for 

D1 and D2 occur at the same time.  

Lemma 7:  The constant vector  M = [m0 m1 m2 … mk-

1]
T∈Φ(k), P=[pxy] is a k×k constant matrix in GF(2), 

where x, y=0~k–1, the elements in any row (column) 

cannot be all 0 in P. We define 

          Hi=P×Mi+M=[hi0 hi1 hi2 … hi(k-1)]
T
           (8) 

When Mi traverses Φ(k), all Hi can form a set ψ(k). 

Take a bit in all elements of set ψ(k) with same position, 

then the quantities of 0s and 1s are equal. 

Proof: Suppose H′i=P×Mi=[h′i0 h′i1 h′i2 … h′i(k-1)]
T
, then 

the first bit of H′I  is 

   h′i0 = [p00 p01 … p0(k-1)]×[mi0 mi1 mi2 … mi(k-1)]
T 

  






1

0

0

k

y

iyymp                                                    (9) 

When the coefficient p0y=0, it equals that miy is deleted, 

from the definition of M′i in Lemma 4, we can obtain 

1 1

0 0

0 0

' ' ( ' )(mod 2)
k s

i y iy iy i

y y

h p m m w
 

 

    M    (10) 

Combining Lemma 3 and Lemma 4, after i traverses 

0~2
k
 -1, the number of 0 and 1 for h′i0 are equivalent. The 

first bit m0 of M can be 0 or 1, from (8) we can obtain 

 
0 0 0 0 0

' ' '
i i i i

h h m h or h                (11) 

When m0=1, it equals to calculate the complement 

code of 
01200 ''

）（ khh ~  simultaneously, that is 0 and 1 

make interconversion with each other, and the 

interconversion number is in the same, so the number of 0 

and 1 will keep equivalent. Similarly, hi1~hi(k-1) can be 

proved. 

Property 1: All the elements in the state transition 

matrix of (2k, k, 1) convolutional codes form the set 

Φ(2k). 

Proof: Let the higher k bits of C
ij
 in (7) are 

                
( ) ( 1)

ij

h
t t  C M M

   
                (12)

 

Considering the closure of GF (2), for any M(t-1)∈

Φ(k), we can always find the only M(t)∈Φ(k) to make 

sure
ij

hC ∈Φ(k) is a given vector. When M(t-1) traverses 

Φ(k), after the vector encoded, it has a unchanged parity 

bit P×(M(t)+M(t-1)), the lower k bits can be obtained by 

Lemma 1  

     
( ( ) ( 1)) ( 1)

ij

l
t t t     C P M M M

      
(13)

 

where (13) can compose a set Φ(k). Known from Lemma 

5, after 
ij

hC  traverses Φ(k), we can get Φ(2k). 

Property 2: The distance distribution of 2
k
 elements 

in any row of the state transition matrix for (2k, k, 1) 

convolutional codes is as same as that of embedded codes. 

Proof: 0

1 1
~

i iK
C C , 0

2 2
~

i iK
C C , 0

~
i iK

C C  are the 2
k
 

elements in a certain row of C1, C2, C, respectively. For 
0

1 1
~

i iK
C C , obviously, the 2

k
 elements have a same M(t), 

and M(t-1) traverses Φ(k). From Lemma 1 we can know, 

M(t)+M(t-1) composes Φ(k), 
0

1 1
~

i iK
C C is the code set of 

embedded codes according to (4). And for 0

2 2
~

i iK
C C , the 

2
k
 elements have a same M(t), so 

0 1

2 2 2
...

i i iK
  C C C . It 

can be known that 0
~

i iK
C C is a new codes set composed 

by the sum of embedded codes and a same element. In 

Lemma 6, the code distance between two codes will not 

change if they plus a same code at the same time. It can 

be known that the new codes set distance distribution is 

as same as that of embedded codes. 

Property 3: The numbers of 0s and 1s in the same bit 

of the 2
k
 codes in any row (column) of (2k, k, 1) 

convolutional codes state transition matrix are equal. 

Proof: The higher k bits 0
~

i iK

h h
C C (or 0

~
j Kj

h h
C C ) in 

any row(column) of the state transition matrix can 

compose Φ(k). The conclusion can be proved by Lemma 

2. Next we consider the lower k bits 0
~

j Kj

l l
C C in a 

certain column. Known from (12), P and M(t–1) are the 

same. M(t)+M(t-1) composes Φ(k), which satisfies (8). 

The conclusion can also be proved by Lemma 7. The 

lower k bits 0
~

i iK

l l
C C is considered at last, the (13) can be 

rewritten as 
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P ( ( ) ( 1)) ( 1)

ij

l
t t t     M M MC   

  (P I) ( 1) P ( )t t    M M                  (14) 

M(t-1) composes Φ(k), so the formula still satisfies (8), 

and the conclusion is proved. 

Property 4: The code weight sum of the 2
k
 codes in 

any row (column) of the state transition matrix for (2k, k, 

1) convolutional codes is equal to 2
k
×k. 

Proof: According to Property 3, we can obtain a weak 

conclusion that the number of 0 and 1 in the 2
k
 codes in 

any row (column) are equivalent in (7). So the code 

weight sum of the 2
k
 codes is 

    k
k

j

ij

i

ij k
k

www

kk

2
2

2212

0

12

0




 








CC   (15) 

Property 5: In decimal case, the sum of elements in 

any certain row (column) in the state transition matrix of 

(2k, k, 1) convolutional codes is constant. 

Proof: The calculation is limited to GF(∞). Suppose 

that T

012212 ]...[ ijijij

k

ij

k

ij cccc C , the decimal sum of the 

2
k
 codes in any certain column in (7) is 

    
2 1 2 1 2 1 2 1 2 1

0 0 0 0 0

2 2

k k kk k

ij n ij n ij

n n

i i n n i

S c c

    
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    C       (16) 

Known from Property 3, when i traverses 0~2
k
-1, the 

numbers of 0s and 1s in 
ij

nc  are both 2
k-1

, so 

  

2 1 2 1 2 1

1 1 2

0 0 0

2 2 2 2 (2 1)

kk k

n ij n k k k

n

n i n

S c

  

 

  

           (17) 

Similarly, it can be proved that the decimal sum of the 

2
k
 codes in any certain row is also 2

k-1
(2

2k
–1). 

Among the four properties above, Property 1 shows 

that there are no same elements in the state transition 

matrix, in other words, no same codeword in the 2
2k

 

branches of the trellis diagram, this is important for 

improving the distance characteristics. Property 2 shows 

that for any single state node, the distance distribution of 

the 2
k
 branches collecting in this node is as same as that 

of embedded codes. So the higher quality the embedded 

codes have, the easier it is to structure a good (2k, k, 1) 

code. A class of (2k, k) double loop cyclic linear block 

codes with a minimum and maximum distance is 

introduced as the embedded codes in [14]. The minimum 

distance when k=2~8 and P matrix in (3) are given in 

Table. I. The k-bit binary column vectors of P matrix are 

converted to octonary number for convenience. We take 

the (6, 3) double loop cyclic linear block codes as an 

example, according to Table 1, its generator matrix is 

 

T

O

B

3 5 6

10 0 011

010101

0 01110



 
    

     
      

II
G

P           
(18) 

We find that I or P is circular in (18), but G not, this is 

just the origin of the so-called double loop cyclic. We can 

easily obtain code set of (6, 3) codes base on G, which 

are 000000, 001110, 010101, 011011, 100011, 101101, 

110110 and 111000. Clearly, its minimum distance that is 

3 shows a high performance-price ratio under the length 

of codes 2k=6. 

TABLE I. MATRIX P AND MINIMUM DISTANCE OF (2K, K) EMBEDDED 

CODES 

k P Minimum distance 

2 [1 2] 2 

3 [3 5 6] 3 

4 [13 15 16 7] 4 

5 [7 23 31 34 16] 4 

6 [16 7 43 61 70 34] 4 

7 [154 66 33 146 63 131] 4 

8 [164 72 35 216 107 243 321 350] 5 

 

In Property 3-5, it is shown in the trellis diagram that 

the code structure and weight distribution of (2k, k, 1) 

convolutional codes are well balanced, which is very 

helpful for obtaining the high quality code. Besides, 

Property 5 shows an interesting magic square 

characteristics
[15]

, and considering the coding constraint 

degree is 1, the (2k, k, 1) convolutional codes are named 

by “first-order magic square convolutional codes”. In 

order to analyze the structure mechanism of (2k, k, 1) 

convolutional codes with the help of Property 1~5 further, 

we take the (6, 3, 1) convolutional codes as an example. 

Firstly, suppose that there are no embedded zeroes and 

superposition, C1 is outputted as the final codes, 

according to (4) and (18), we can obtain the first term of 

(7) as in (19).  

1

000000 001110 010101 011011 100011 101101 110110 111000

001110 000000 011011 010101 101101 100011 111000 110110

010101 011011 000000 001110 110110 111000 100011 101101

011011 010

              

              

              

  
C

101 001110 000000 111000 110110 101101 100011

100011 101101 110110 111000 000000 001110 010101 011011

101101 100011 111000 110110 001110 000000 011011 010101

110110 111000 100011 1

            

              

              

      01101 010101 011011 000000 001110

111000 110110 101101 100011 011011 010101 001110 000000

        

              

 
 
 
 
 
 
 
 
 
 
 
 

                        
(19) 
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It is easy to verify that (19) follows Property 2-5, but 

Property 1. We find that 8 code-words of each row 

(column) are exactly the same with the codeset of (6, 3) 

embedded codes, the distance characteristics of individual 

row (column) seems to be good. However, the code space 

is only Φ(3) in (19), each codeword appears in the matrix 

repeatedly for 2
3
=8 times, which means that there are 8 

branches with the same codeword will appear frequently 

in Fig. 2, the distance characteristics will be badly 

affected because the code distance will be 0 frequently 

when calculating the free distance, and we cannot obtain 

excellent codes by C1 though it has finished the encoding 

with memory. Fortunately, these problems could be 

solved if we consider the embedded zero, according to (5), 

we can obtain the second term of (7) as in (20). 

 

2

000000 000000 000000 000000 000000 000000 000000 000000

000001 000001 000001 000001 000001 000001 000001 000001

000010 000010 000010 000010 000010 000010 000010 000010

000011 000

              

              

              

  
C

011 000011 000011 000011 000011 000011 000011

000100 000100 000100 000100 000100 000100 000100 000100

000101 000101 000101 000101 000101 000101 000101 000101

000110 000110 000110 0

            

              

              

      00110 000110 000110 000110 000110

000111 000111 000111 000111 000111 000111 000111 000111

        

              

 
 
 
 
 
 
 
 
 
 
 
 

                             
(20) 

Adding it and (19) together the result is 

1 2

000000 001110 010101 011011 100011 101101 110110 111000

001111 000001 011010 010100 101100 100010 111001 110111

010111 011001 000010 001100 110100 111010 100001 101111

011000

              

              

              

 C = C C
010110 001101 000011 111011 110101 101110 100000

100111 101001 110010 111100 000100 001010 010001 011111

101000 100110 111101 110011 001011 000101 011110 010000

110000 111110 1001

              

              

              

    01 101011 010011 011101 000110 001000

111111 110001 101010 100100 011100 010010 001001 000111

          

              

 
 
 
 
 
 
 
 
 
 
 
 

                                 
(21) 

where the code space is expanded to Φ(6), only first row 

(column) is the same with the codeset of (6, 3) embedded 

codes. Although there is a difference between first row 

(column) and other rows (columns) in (21), they can hold 

equivalent code distance, see Property 2. For example, 

the third row of (21) is 

T T

2

010111 010101 000010

011001 011011 000010

000010 000000 000010

001100 001110 000010

110100 110110 000010

111010 111000 000010

100001 100011 000010

101111 101101 000010

j


   
   
   
   
   
    
   
   
   
   
   
   

C

T

 
 
 
 
 
 
 
 
 
 
 
 

   
(22) 

where 000010 are added to the embedded codes, but the 

code distances don’t change. By this way, the same codes 

are avoided in (21) under ensuring the distance 

characteristics of all rows (columns), and the free 

distance of codes can be significantly improved. From the 

analysis above, we can find that embedded zero and 

superposition in Fig.1 play a very important role to 

construct the (2k, k, 1) convolutional codes, because they 

can keep Property 2-5 while obtain Property 1. 

In addition, converting to decimal number for all 

codewords of (21), we can obtain a magic square matrix 

as follows 

   

D

0 14 21 27 35 45 54 56

15 1 26 20 44 34 57 55

23 25 2 12 52 58 33 47

24 22 13 3 59 53 46 32

39 41 50 60 4 10 17 31

40 38 61 5111 5 30 16

48 62 37 43 19 29 6 8

63 49 42 36 28 18 9 7

       

       

       

       

       

       



 
 
 
 
 
 
 
 
 
 
 
 

C               
(23) 

where we can verify one by one, that the accumulation 

of each (columns) is 2
2 

× (2
6
–1) = 252, the result is in 

accordance with (17). 
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IV.   SIMULATION 

A matrixing method is proposed to perform Viterbi 

algorithm for traditional (2, 1, k) convolutional codes in 

[13], the advantage of matrixing is that a single-structured 

decoder with parallel processing ability [16] can be 

designed, this decoding scheme can also be used in (2k, k, 

1) convolutional codes in the Gaussian channel and 

BPSK modulation. In simulation, double precision data is 

used to calculate path metric, the storage depth of 

survived path is τ=10k, and simulation should be stopped 

when 2000~10000 mistakes appear. 

In order to monitor the decoding process, we can 

observe the output of survived path memory by matrix 

viewer. Fig. 3 shows the screen of (8, 4, 1) convolutional 

codes. where the storage depth τ is set to 10×k=40, the 

numbers of state node is 2
k
=16, and the black and white 

denote 1 and 0, By comparing the two figures, we see the 

decoder can get the survivor path together better in (a), it 

can implement a helpful observation for real time channel 

condition.  
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Figure3. Path storage matrix of (8, 4, 1) convolutional codes: (a) Good 
channel condition, (b) Bad channel condition 

Take Table. I as embedded codes, we can construct 

seven (2k, k, 1) convolutional codes. Fig. 4 shows their 

BER performance. When k=2~8, we can see that 3~6dB 

coding gain can be obtained compared with no coding at 

BER=10
-5

. In addition, with k increases, the gain 

increment of BER performance gradually reduces, and it 

has a similar convergence with the conventional 

convolutional codes. 

It is well known that the state numbers of (n, k, l) 

convolutional codes are 2
kl
, therefore, there are 2

k
 states 

in both (2k, k, 1) and (2, 1, k) convolutional codes. As a 

result, these two codes need perform 2
k
 times add-

compare-select (ACS) as well as save-update for survivor 

path in the Viterbi matrix decoding, the decoding 

complexity is approximately equivalent, and the error-

correcting capability can be made a comparison. To 

enhance convincing, five optimal (2, 1, k) codes are 

chosen from [14], the BER performance of the two types 

codes when k=2~6 is shown in Fig. 5. When BER=10
-5

, 

we can see that (2k, k, 1) convolutional codes have a 

0.2~0.5 dB advantage over (2, 1, k) codes on coding gain 

except when k=2, 3.  
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Figure 4. Error performance of (2k, k, 1) convolutional codes 
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Figure 5. Error performance comparison between (2k, k, 1) and (2, 1, l) 
convolutional codes 

TABLE II. COMPARISON OF TWO CONVOLUTIONAL CODES DECODING 

SPEED 

k （2k, k, 1） （2, 1, k） 

2 1.8×107 4.8×106 

3 1.7×107 4.9×106 

4 1.6×107 4.2×106 

5 1.1×107 3.8×106 

6 6.4×106 2.9×106 

7 5.6×106 2.6×106 

8 2.2×106 1.3×106 
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In addition, we will also discuss the efficiency of (2k, k, 

1) and (2, 1, k) convolutional codes. The branches that 

join the same state node for (2k, k, 1) and (2, 1, k) 

convolutional codes are 2
k
 and 2, see Fig. 2, so the 

implementation of ACS should be 1-from-2
k
 and 1-from-

2, respectively, it led to (2k, k, 1) convolutional codes 

seem to be more complex. However, we find that the 

information bits processed for (2k, k, 1) and (2, 1, k) 

convolutional codes are respectively k and 1 in each 

decoding time, the batch processing for the former is 

more efficient. In other words, to obtain k-bit information, 

k-times decoding must be implemented for (2, 1, k) 

convolutional codes, this process will still result in 2
k
 

times 1-from-2, from this we can see that (2k, k, 1) 

convolutional codes is essentially more efficient. Table 2 

shows the bits of information calculated after the program 

run for 10 minutes for the two types of codes. It is 

obvious that the (2k, k, 1) convolutional codes have a 

higher decoding speed. 

V.  CONCLUSION 

A new class of (2k, k, 1) convolutional codes is 

constructed by combining with the (2, 1, 1) convolutional 

codes and the (2k, k) double loop cyclic codes, its main 

contribution is present a novel method to increase the 

memory length of convolutional codes. The distance 

property and the structural mechanism of the codes are 

revealed by defining a state transition matrix as well as 

trellis diagram. The five properties of the state transition 

matrix are proved by algebraic method, which indicate 

that the codes structure is very excellent in both 

proportionality and diversity. Simulation results show the 

BER performance of parts of codes, and the advantages 

of the codes in error-correcting capability and decoding 

speed is verified further. Similar to the concatenated 

codes, (2k, k, 1) convolutional codes also use the existing 

codes, however, the structure mechanism is quite 

different with that of concatenated codes. The 

significance of the research lies in a new method that 

constructs long codes with short codes is proposed, and a 

broad development space is to be expanded in this field. 

We will conduct further research on how to construct (2k, 

k, l) convolutional codes based on this paper in order to 

increase both block length and constraint degree. 
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