
QoE Evaluation for Video Streaming over eMBMS

Utsaw Kumar, Ozgur Oyman, and Apostolos Papathanassiou
Intel Corporation, Santa Clara, USA

Abstract—As the multicast standard for long term evolution

(LTE), Enhanced multimedia broadcast multicast service (e-

MBMS) was introduced by third generation partnership project

(3GPP) to facilitate delivery of popular content to multiple users

over a cellular network. If a large number of users are interested

in the same content, for e.g., live sports, news clips, etc.,

multicast transmission can significantly lower the cost and make

better use of the spectrum as compared to unicast transmission.

In this paper, we study and analyze the quality of experience

(QoE) at the end user during live video streaming over eMBMS.

We consider a comprehensive end-to-end MBMS streaming

frame-work based on H.264/AVC encoded video content

delivered in a chunked format over multiple segments using

the file delivery over unidirectional transport (FLUTE) protocol,

combined with application layer (AL) forward error correction

(FEC) based on Raptor and RaptorQ codes. Specifically, our

study involves QoE evaluation in terms of startup delay,

rebuffering percentage and peak signal-to-noise ratio (PSNR)

metrics and provides performance evaluations to characterize

the impact of various MBMS streaming, transport and AL-FEC

configurations on the end user QoE. For simulating media

access control-protocol data unit (MAC-PDU) losses, we

propose a new Markov model and show that our model captures

the coverage aspects of eMBMS in contrast to the RAN

endorsed model, which assumes the same Markov model for all

the users. We also propose a decoding strategy that takes into

consideration the systematic structure of AL-FEC codes to

enhance performance when a source block decoding fails. 

Index Terms—multicast, e-MBMS, video streaming, ALFEC,

QoE metrics

I. INTRODUCTION

Video communication over wireless is a unique and

challenging problem, owing to the scarcity of bandwidth

and the low-latency, high reliability constraints of video.

The growth of multimedia applications and increased

mobile internet access has created the need for enhancing

video delivery over wireless systems. In fact, mobile

video traffic has been projected to occupy more than two-

thirds of the total mobile traffic by 2015 [1]. eMBMS

allows multimedia content to be broadcasted and

received by many users in a scalable fashion. Delivery of

popular Youtube clips, live sports events, news updates,

advertisements, file sharing, etc. are relevant use cases for

eMBMS. This can be seen as a viable alternative to

unicast when the same content is of interest to a large

number of users. eMBMS would utilize the network

Manuscript received March 15, 2013; revised May 25, 2013.
Corresponding author email: utsaw.kumar@intel.com.

bandwidth more efficiently by using the inherent

broadcast nature of wireless channels.

Wireless channels are lossy and reliability

mechanisms are implemented to make up for losses

over the wireless media. For unicast transmissions,

retransmissions based on Automatic Repeat Request

(ARQ) and/or hybrid ARQ (HARQ) are used to ensure

reliability. However, for a broadcast transmission,

implementing ARQ can lead to network congestion with

multiple users requesting different packets. Moreover,

each user has a different channel to the base station

owing to different distance from the transmitting station,

user mobility, and attenuation characteristics. Thus,

different users might lose different packets and

retransmission could mean sending a large chunk of the

original content again, leading to inefficient use of

bandwidth as well as increased latency for some users.

AL-FEC is an error correction mechanism in which

redundant data is sent to facilitate recovery of lost

packets. Such increased reliability through AL-FEC help

to reliance on recovery procedures that involve

retransmission of lost packets over broadcast. For this

purpose, Raptor codes [2] were adopted in 3GPP TS

26.346 [7] as the AL-FEC scheme for MBMS delivery,

and were also adopted in Internet Engineering Task Force

(IETF) RFC 5053 [3]. Recently, improvements on the

Raptor codes have been developed and an enhanced code

called RaptorQ codes have been specified in RFC

6330 [5] and proposed to 3GPP. Decoding probability

and AL-FEC overhead comparisons between Raptor and

RaptorQ codes were presented in [6]. Streaming delivery

(based on the H.264/AVC video codec and real-time

tranport protocol (RTP)) over MBMS was studied in [4].

In this paper, we focus on live streaming over eMBMS,

where the H.264/AVC encoded video content is

chunked at the server into multiple segments of a fixed

duration and each segment is then pushed to the client by

the use of MBMS download delivery methods, i.e.,

through the FLUTE protocol [13]. With an end-to-end

eMBMS system design approach focused on user QoE,

we analyze the effect of different design parameters on

startup delay, rebuffering percentage and PSNR

experienced at the MBMS client. We also provide

comparisons between Raptor and RaptorQ codes to

characterize their impact to the user QoE in terms of

PSNR and rebuffering percentage metrics. The novel

contributions of this paper include user QoE evaluations

for video streaming over eMBMS, a new multi-tiered

Markov model for simulating MAC layer losses and a

352

Journal of Communications Vol. 8, No. 6, June 2013

doi:10.12720/jcm.8.6.352-358

©2013 Engineering and Technology Publishing

Email: {utsaw.kumar; ozgur.oyman; apostolos.papathanassiou}@intel.com

mailto:@intel.com

353

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

decoding algorithm that intelligently exploits the

systematic nature of Raptor/RaptorQ codes. An earlier

version of results in this paper appeared in [10]

The rest of the paper is organized as follows. In

Section II, we briefly discuss the Raptor and RaptorQ

codes. In Section III, we present different components of

the eMBMS streaming framework, for e.g., video traffic

modeling, AL-FEC design parameters, transport protocols,

and loss models for the radio layer. In Section IV, we

present our simulation results. We conclude in Section V.

II. BACKGROUND ON AL-FEC SCHEMES

In this section, we discuss the 3GPP standardized

Raptor code and the more recent RaptorQ codes, the

latter being proposed to provide improvements over the

former. Both Raptor and RaptorQ codes are fountain

codes, thus as many encoding symbols can be generated

on-the-fly by the encoder from the source symbols. As

mentioned earlier, for broadcast applications, it is

important to provide some redundancy at the application

layer, as retransmissions become very frequent if ARQ is

used for reliable delivery of packets. For this purpose, the

AL-FEC framework decomposes each file into a number

of source blocks of approximately equal size. Each

source block is then broken into K source symbols of

fixed symbol size T bytes. The Raptor/RaptorQ codes are

used to form N encoding symbols from the original K

source symbols where N>K. Both Raptor/RaptorQ are

systematic codes which means that the original source

symbols are transmitted unchanged as the first K

encoding symbols. Both Raptor/RaptorQ codes have

linear encoding/decoding time complexity. The encoding

symbols are then used to form IP packets and sent. At the

decoder, it is possible to recover the whole source block

from any set of encoding symbols only slightly greater

than K with a very high probability. We now provide an

overview of Raptor codes.

A. Raptor

Raptor codes first appeared in [2] and has been

standardized by 3GPP in the MBMS service

specification TS 26.346 [7]. A block diagram showing

the encoding process is given in Fig. 1. We describe the

encoding and decoding process very briefly. More details

can be found in [3]. A Raptor code is formed by a

concatenation of a very high-rate block code and a

non-systematic Luby Transform code [8]. The first

encoding step is a pre-coding step to generate L

intermediate symbols. The L intermediate symbols

satisfy a set of pre-coding relationships, defined such

that the last L–K intermediate symbols are expressed in

terms of the first K symbols. The linear operations in this

step can be represented by a matrix A. The second

encoding step is LT encoding to generate the repair

symbols and form the overall code with N encoding

symbols. Note that Raptor code is systematic as

ensured by the pre-coding relationships. The pre-coding

is useful for the following two reasons. First, since LT

codes are in general non-systematic, pre-coding ensures

that the overall code is systematic. Secondly, the

complexity of LT codes is O(KlogK), whereas for

Raptor codes is O(K), where K is the number of

source symbols. Decoding is performed at the receiver

by checking if an appropriate set of encoded symbols is

available such that the matrix A has full rank. If the

matrix A is rank deficient, an error is declared and

the whole source block is assumed to be lost. The

decoding failure probability decays exponentially in the

number of repair symbols received [9]. Thus, smaller the

code rate K/N, more is the redundancy and lower is the

decoding failure probability, but the smaller failure

probability comes at the cost of more overhead.

Figure. 1. Encoding overview of Raptor codes.

B. RaptorQ Codes

Since the introduction of Raptor codes in 3GPP for

MBMS, there has been a lot of progress in improving the

performance of Raptor codes. A superior form of Raptor

called RaptorQ codes have been introduced in IETF

RFC 6330 [5]. RaptorQ is more efficient than Raptor in

coding efficiency, coding flexibility, etc. The encoding

process for RaptorQ is given in Fig. 2. Most of the

encoding steps in RaptorQ are identical to those in

Raptor, albeit a few important differences. Firstly, the

algebra in RaptorQ is over GF(256) as compared to

GF(2) for Raptor codes. Operating over larger fields

allows the recovery of source blocks with lesser overhead.

Secondly, the first step of encoding in RaptorQ is to

construct an extended source block of K′ symbols by

padding the original source block with zeros, such that

K′ is one of the values listed in the specification [5],

(Section 5.6). Padding enables faster encoding and

decoding, while at the same time minimizing the

amount of information that needs to be stored. Note that

the encoder does not need to send the padded symbols

because padding can also be done at the decoder once the

symbols have been received. Thirdly, in the next

encoding step, an enhanced two-step pre-coder is used.

Fourthly, a superior algorithm for LT encoding is used in

the final step of the encoding process. Lastly, RaptorQ

codes support a wider range of the number of source

symbols and encoding symbols. Specifically, RaptorQ can

encode up to 56403 source symbols, whereas Raptor

codes can only encode upto 8192 symbols. Because of

the above properties, RaptorQ codes are much more

superior to Raptor codes in terms of performance as

well as flexibility. RaptorQ can deliver huge chunks of

data at once, owing to the fact that it can support large

source block sizes. File delivery decoding efficiency is

Codes

354

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

thus superior, since protection is distributed over the

larger chunks of the file. For delay sensitive real-time

applications too, RaptorQ has superior performance

because of the crucial functional differences listed above.

RaptorQ combines operations over GF(2) and GF(256)

to keep the complexity low, such that majority of the

operations are over GF(2), and only a small fraction of

the operations are over GF(256). Decoding is similar as

in Raptor codes, where the decoder checks for an

appropriate set of encoding symbols such that the

matrix A has full size.

Figure. 2. Encoding overview of RaptorQ codes.

III. STREAMING FRAMEWORK

A. Video Traffic Modeling

Simulation of video traffic based on packet traces of

actual encoded video streams has been considered a

viable approach for evaluation of various video delivery

systems. While the video bit streams give the actual bits

carrying the video information, the video traces only

give the number of bits used for the encoding of the

individual video frames. Each video frame is either intra-

coded (I), forward predictive coded (P) with motion

compensated prediction from the preceding I or P frames,

or bi-directionally predictive coded (B) according to its

position in a group of pictures (GoP) structure. One GoP

consists of a fixed number of I, B, and P frames.

TABLE I: VIDEO TRACE DETAILS

Video source Quantization parameter Raw bitrate (kbps)

Sony-1080 34 164.72
NBC News 34 190.66

Frame size video traces are files mainly containing

video frame time stamps, frame types (e.g., I, P, or

B), encoded frame sizes (in bits), and frame qualities

(e.g., PSNR). Thus, in comparison with video traffic

models, simulation with trace-based video traffic sources

can provide much better information about the quality of

the received video stream. Publicly available video

traces can be used for the simulation

(http://trace.eas.asu.edu) [11], [12]. For the purpose of

our simulations, we use the H.264 SVC single layer

video traces with encoding type: Main (Level 2.1). The

H.264 SVC is an attractive choice for video streaming

simulations due to their superior compression efficiency

and network friendly video representation. The

resolution is CIF 352×288. The videos are variable bit

rate and encoded with a fixed quantization parameter.

The video details used for our simulations are given in

Table I The H.264 standard also defines a network

abstraction layer (NAL) which contains functions for

mapping the coded video data to a network transport

layer. For the purpose of our simulations, we assume

that each video frame is preceded by a 10 byte NAL

prefix.

B. AL-FEC Framework and Transport Layer

Processing

The eMBMS-based live video streaming is over the

FLUTE protocol, which allows for error-free

transmission of files via unidirectional MBMS bearers.

Since we are looking at live streaming, there are strict

time constraints for content delivery. Each video session

is delivered as a FLUTE transport object as depicted in

Fig. 3. Transport objects are created as soon as packets

come in. The IPv4/UDP/FlLUTE header is a total of 44

bytes per IP packet. The size of an IP packet is 1333 bytes,

thus the maximum FLUTE payload size is (1333–44) =

1289 bytes. The AL-FEC increases the number of

parameters that have to be chosen. The choice of the AL-

FEC parameters is made at the Broadcast Multicast

Service Center (BMSC). For example, the BMSC has to

select the number of source symbols K, the code rate

K/N and the source symbol size T. Larger the value of K,

better is the efficiency and performance of the AL-FEC

scheme. On the other hand, larger value of K leads to

higher latency for a fixed symbol size T, since there is a

need to wait a long time for sufficient number of frames

to come in order to do the encoding. The code rate choice

also affects the end-to-end performance because, smaller

the value of K/N, more is the redundancy added to

the source symbols as more repair symbols are generated,

and thus better is the performance. However, more repair

symbols come at a cost and thus the code rate needs to

be chosen intelligently. In addition, it is beneficial to

choose the symbol size T as a power of 2 for the sake of

complexity. Smaller values of T for a fixed symbol size

can mean large values of K, resulting in better

performance, but at the same time, resulting in higher

complexity because of the larger dimensions of the

encoding and decoding matrices. On the contrary, larger

value of T results in small K and thus poor performance.

Figure. 3. Transport layer processing overview.

For our simulations, the source block parsing is done

as follows. We simulate a live service and thus, a

long waiting time for encoding is not desirable.

However, to ensure good Raptor/RaptorQ performance,

we need to choose a high enough K. Thus, we have a

minimum value of K=Kmin as a design parameter. The

larger Kmin is, larger is the start-up delay. One source

block consists of one or more GoPs, which is decided

http://trace.eas.asu.edu/

355

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

based on the size of the GoP. The size of a source block

is chosen as follows. For this algorithm, it is assumed

that the gth GoP needs to be transmitted.

Algorithm: Choosing the source block size

1. source block size ← 0

2. while source block size<Kmin T

3. do source block size ←source block size+size of

gth GoP

4. g= g+1

5. end while

Note that a source block always consists of integer

number of GoPs unless size of a GoP is greater than 8192,

the maximum allowed K for Raptor. Furthermore, K is

computed as

source block size
K

T

 
  
 

where x   rounds x to the nearest integer greater than x.

Note that the value of K varies depending to the size of

GoPs. The resulting source block is padded with (KminT −

source block size) zeros to ensure that there are exactly

K symbols. Now N encoding symbols are generated from

these K symbols using the AL-FEC scheme. IP packets

are then formed using these encoding symbols as

payloads. The FLUTE packet is generated from the

FLUTE header and payload containing the encoding

symbols.

C. RLC (radio link control)/MAC (multiple access

control) layer processing

1) RAN Endorsed Model: IP packets (RLC-SDUs

(service data unit)) are mapped into fixed-length RLC-

PDUs (protocol data unit). A 3GPP RAN1 endorsed two-

state Markov model [14] is used for the simulation of

LTE RLC-PDU losses as shown in Fig. 4. The Markov

model satisfies the following two properties:

(1) each state persists for 10 ms, and

(2) a state is good if it has

 less than 10% packet loss probability for the

1% and 5% BLER simulations,

 less than 40% packet loss probability for the

10% and 20% BLER simulations.

Figure. 4. Markov model for simulating LTE RLC-PDU losses.

The parameters in the figure are as follows:

 p: transition probability from Good state to Bad

state. 1/p will be the average length of the

Good state segment.

 q: transition probability from Bad state to Good

state. 1/q will be the average length of the Bad

state segment.

 p
g
: BLER in Good state.

 p
b
: BLER in Bad state.

The time in good state Tg can be calculated by

multiplying the average length of a good segment by the

sampling period. Similarly, one can calculate the the time

in bad state Tb. Table II gives the Markov model

parameters used for simulations.

TABLE II: MARKOV PARAMETERS FOR SPEED 3 KM/H

Para. BLER=1% BLER=5% BLER=10% BLER=20%

p 0.58% 1.80% 2.79% 4.61%

q 36.13% 24.01% 20.90% 16.80%

pg 0.03% 0.06% 0.56% 1.16%

pb 59.47% 70.54% 82.30% 89.20%

BLER 0.97% 5.02% 9.93% 19.92%

Tg (ms) 1724 555 359 217

T
b (ms) 28 42 48 60

It can be seen that the RAN model described above

does not capture the cell phone coverage aspect of a cell.

For a more comprehensive end-to-end analysis we

propose the following RAN model.

2) Proposed coverage-based Markov model: for

generating MBSFN subframe loss pattern, we simulate

the 3GPP Case 1 channel configuration with 10 MHz

carrier bandwidth. Users are picked randomly from a user

population of 210 users dropped uniformly over the cell.

The received SINR data is then used to generate MBSFN

subframe loss pattern. Such data is collected for different

MCS (Modulation and Coding Scheme) values. It was

observed that the RAN endorsed model does not capture

the coverage variations for the cellular layout. For the

results in this paper, we assume the MCS to be 21. The

rest of the LTE simulation parameters are given in Table

III.

TABLE III: LTE EMBMS SIMULATION PARAMETERS

Parameters Assumption

Cellular layout Hexagonal grid, 19 cell sites, 3 sectors per

site

Inter-site distance 1732 meters

Channel model Typical urban

User distribution Users dropped uniformly in cell

Total BS tx power 46 dBm

Distance-dependent

path loss

L=I+ 37.6 log10 (.R), R in kilometers

I = 128.1 − 2 GHz, I = 120.9 − 900 MHz

Lognormal shadowing Similar to UMTS 30.03, B 1.141

Shadowing std. dev. 8 dB

Penetration loss 20 dB

UE speed 3 km/h

Synchronization error None

Using the subframe loss pattern for a given MCS, we

generate separate Markov models for all the 210 users

(rather than one model as in Section III-C1) to capture the

variations and use that to generate capacity results later in

the paper. Note that this model is not a fundamentally

different from the RAN endorsed model, but that it

accounts for the varying BLER distribution across users

356

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

in a cellular environment. In other words, for each user

we deal with a Markov model, but a different BLER is

instantiated based on the coverage aspect.

For example, based on our results, we derived the

following BLER distribution for a user in a cellular

environment.

0, w.p. 0.7206
BLER 1, w.p. 0.0717

uniform[0,1], otherwise


 


Note that the BLER distribution would depend on the

specific deployment models and assumptions and could

be different subject to different coverage statistics.

D. Quality of Experience (QoE) Metrics

Different QoE metrics can be considered for

multimedia delivery to mobile devices. In the case of file

download or streaming of stored content, on user request,

there is a initial startup delay after which streaming of

video occurs and QoE can be measured by the initial

startup delay and fraction of the time rebuffering occurs.

Rebuffering can be defined as the state of streaming

invoked when the playback buffer is empty and buffer is

being filled up for video playback [15]. However, for live

streaming, when the playback buffer is empty, the client

cannot wait for the buffer to be filled up. Thus, it treats

the video content corresponding to when the playback is

stalled to be lost and moves ahead. We evaluate the

following metrics.

 Startup delay: we define startup delay as follows.

Definition 1: startup delay is defined as the total time it

takes to deliver live video from the moment the live

event starts till the moment playback starts at the user

end. The main contribution to startup delay for

eMBMS live streaming is the AL-FEC encoding

delay, i.e., when the service provider has to wait for

sufficient number of frames to be generated to

ensure large enough source block for efficient AL-

FEC implementation.

 Average PSNR: the PSNR of the received video

stream is calculated using the offset trace file used for

simulations. When a frame is lost, the client tries

to conceal the lost frame by repeating the last

successfully received frame. Such concealments lead

to loss in video quality at the user.

 Rebuffering percentage: rebuffering percentage for

live video streaming is defined as follows.

Definition 2: rebuffering percentage is defined as the

fraction of the time video playback is stalled in the

mobile device. For live streaming, rebuffering occurs

whenever two or more than two consecutive frames are

lost. The client repeats the last successfully received

frame and the video appears as stalled to the user.

Video playback resumes as soon as one of the future

frames is received successfully.

We consider two approaches for decoding.

a) D1: when an AL-FEC block is not correctly

decoded, we assume that all source symbols

are lost for PSNR and rebuffering percentage

calculations.

b) D2: when an AL-FEC block is not correctly

decoded, we use the fact that both

Raptor/RaptorQ are systematic codes and

uncorrupted symbols in the first K encoding

symbols are original source symbols. This

may result in a better performance because of

the frame structure of the video, if for e.g., we

receive an uncorrupted I or P frame in the K

source symbols, it will significantly enhance the

performance, as opposed to approach D1, where

we simply ignore the systematic structure of the

code.

IV. SIMULATION RESULTS

The performance bounds for eMBMS have been

evaluated under different conditions. The Bearer bitrate

is assumed to be 1.0656 Mbits/sec. The length of a

RLC-SDU is taken as 10 ms. The content length is set

at 17000 frames for each video trace. The video frame

frequency is considered to be 30 frames per second. The

video frames are then used to generate source blocks and

encoding symbols are generated using the AL-FEC

framework (both Raptor/RaptorQ). We choose the

source symbol size as T=16 bytes. We keep it small in

order to decrease the initial startup delay, so that we can

choose a large K for the same source block size. The

frames are then packetized into FLUTE packets to

appropriate lengths. The RLC-PDU losses are modeled

using the Markov model discussed earlier in Section

III-C. All of the users were simulated assuming same

target BER 5% from Table II. The received packets at the

MBMS client are then decoded to reconstruct the video

frames for playback. Based on the received frames, the

losses of the IPB frames were determined. The lost

frames are concealed by repeating the last successfully

received frame. The system level simulations offer

beneficial insights on the effect of system level and AL-

FEC parameters on the overall QoE.

Figure. 5. Startup Delay as a function of Kmin.

A. Startup Delay

We plot the average start-up delay (averaged over

different code rates K/N=0, 6, 0.7, 0.8, 0.9) in Fig. 5 as

a function of Kmin. As expected, the startup delay

increases on increasing Kmin. It can be seen that larger the

value of Kmin, larger is the value of the startup delay.

357

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

This is a live streaming simulation and the multicast

service provider has to wait for sufficient number of

video frames to be generated such that the source block

size is at least KminT. Note that the startup delay for both

Raptor/RaptorQ codes is same because we assume similar

encoding/decoding complexity for both. Also, it was

observed that the major chunk of the startup delay

was because of the encoding delay. Other delays like

video encoding/decoding, IP packet delivery delays, etc.

are negligible as compared to the encoding delay. The

decoding is assumed to be instantaneous as soon as all

the encoding symbols are received.

B. Rebuffering Percentage and PSNR

1) RAN Endorsed Model: For a fixed code rate, we plot the

average PSNR and rebuffering percentage in Fig. 6 and Fig. 7

respectively for the RAN endorsed model in Section III-C1.

Increasing the value of Kmin only slightly increases the

performance. This is due to the fact that we treat one

GoP as one source block. Most of the video traces we

used have most GoPs big enough to ensure high values of

K for most of the source blocks. Thus, on average, the

value of K does not change. The superiority of RaptorQ

as compared to Raptor can be clearly seen from the plots,

especially in terms of rebuffering percentage. We also see

that the second decoding approach D2 is much more

efficient than the decoding approach D1. This is because

in D2, we recover as many frames as we can, given the

systematic structure of Raptor/RaptorQ codes. We also

observed that decreasing the code rate K/N improves the

performance both in terms of average PSNR and

rebuffering, as expected.

Figure. 6. Performance comparisons for K/N = 0.9: Average PSNR.

Figure. 7. Performance comparisons for K/N = 0.9: Rebuffering

percentage.

2) Proposed coverage-based Markov model: using the

new model proposed in Section III-C2, we plot the

empirical cumulative density function (CDF) of the

PSNR and rebuffering percentage for code rates 0.9 and

0.8, as shown in Fig. 8 and Fig. 9, respectively. Since

increasing the value of Kmin does not affect the PSNR and

rebuffering performance much, for the simulations in this

section we fix Kmin to be 64. It can be observed that

improving the code rate improves the coverage from a

QoE perspective as it guarantees better PSNR and

rebuffering for more number of users. It can be seen that

the results in the previous section is just a point on the

curve and thus, the RAN endorsed model is insufficient

for analysis of coverage and resulting video streaming

QoE distribution across users

Figure. 8. Performance comparisons for K/N = 0.9: Average PSNR.

Figure. 9. Performance comparisons for K/N=0.9: Rebuffering

percentage.

V. CONCLUSIONS

With an end-to-end eMBMS system design approach

focused on evaluating QoE, we simulated the effect of

different design parameters on startup delay, rebuffering

percentage and PSNR experienced at the MBMS client.

The new Markov model proposed captures the coverage

aspects of MBMS as compared to the old model that

assumed the same model for all users. The decoding

strategy for AL-FEC decoding that takes into account

the systematic code structure for Raptor/RaptorQ was

shown to outperform the decoding strategy when a

decoding failure leads to the loss of the whole source

block.

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2010-2015.

[2] A. Shokrollahi, “Raptor codes,” Digital Fountain, Tech. Rep.

DR2003-06-001, Jun. 2003.

[3] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, Raptor

Forward Error Correction Scheme for Object Delivery, RFC 5053

(Proposed Standard), IETF, Oct. 2007.

[4] J. Afzal, T. Stockhammer, T. Gasiba, and W. Xu, “Video

streaming over MBMS: A system design approach,” Journal of

Multimedia, vol. 1, no. 5, Aug 2006.

358

Journal of Communications Vol. 8, No. 6, June 2013

©2013 Engineering and Technology Publishing

[5] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L.

Minder, RaptorQ Forward Error Correction Scheme for Object

Delivery, RFC 6330 (Proposed Standard), IETF, Aug 2011.

[6] C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois,

“Evaluating RaptorQ FEC over 3GPP multicast services,” in Proc.

8th Int. Wireless Communications & Mobile Computing

Conference , August 27-31, 2012.

[7] 3GPP TS 26.346. (2011). Multimedia broadcast/multicast Service

(MBMS): Protocols and codecs, 3rd Generation Partnership

Project (3GPP). [Online]. Available:

http://www.3gpp.org/ftp/Specs/archive/26 series/26.346/

[8] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on

Foundations of Computer Sci., pp.271-282, 2002.

[9] T. Stockhammer, A. Shokrollahi, M. Watson, M. Luby, and T.

Gasiba, Application Layer Forward Error Correction for Mobile

Multimedia Broadcasting, Handbook of Mobile Broadcasting:

DVB-H, DMB, ISDB- T and Media Flo, CRC Press, pp. 239–

280, 2008.

[10] U. Kumar and O. Oyman, “QoE evaluation for video streaming

over eMBMS,” presented at IEEE International Conference on

Computing, Networking and Communications, San Diego, USA,

Jan 2013.

[11] P. Seeling and M. Reisslein, “Video transport evaluation with

H.264 video traces,” IEEE Communications Surveys Tutorials, vol.

14, no. 4, pp. 1–24, Sep 2011.

[12] G. Van Der Auwera, P. David, and M. Reisslein, “Traffic and

quality characterization of single-layer video streams encoded

with the H.264/MPEG-4 advanced video coding standard and

scalable video coding extension,” IEEE Trans. Broadcast, vol. 54,

pp. 698-718, Sep 2008.

[13] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh, FLUTE-

File Delivery Over Unidirectional Transport, RFC 3926 (Proposed

Standard), IETF, Oct 2004.

[14] 3GPP Tdoc S4-111021, “Channel modeling for MBMS,” 3rd

Generation Partnership Project (3GPP), 2011.

[15] S. Singh, O. Oyman, A. Papathanassiou, D. Chatterjee, and J. G.

Andrews, “Video capacity and QoE enhancements over LTE,” in

Proc. IEEE International Conference on Communications,

Ottawa, Canada, June 2012.

Utsaw Kumar is a wireless systems engineer with
the Standards and Advanced Technology Division

of the Mobile and Communications Group at Intel.

He is author or co-author of over 10 technical
publications, He holds Ph.D. and M.S. degrees

from University of Notre Dame, and a B.Tech.
degree from Indian Institute of Technology in

Kanpur, India.

Ozgur Oyman is a senior research scientist and

project leader in the Wireless Communications
Lab of Intel Labs. He joined Intel in 2005. He is

currently in charge of video over 3GPP Long
Term Evolution (LTE) research and

standardization, with the aim of developing end-

to-end video delivery solutions enhancing
network capacity and user quality of experience

(QoE). He also serves as the principal member of
the Intel delegation responsible for standardization at 3GPP SA4

Working Group (codecs). He is author or co-author of over 70 technical

publications, and has won Best Paper Awards at IEEE GLOBECOM07,
ISSSTA08 and CROWNCOM08. His service includes Technical

Program Committee Chair roles for technical symposia at IEEE
WCNC09, ICC11, WCNC12, ICCC12 and WCNC14. He also serves an

editor for the IEEE Transactions on Communications. He holds Ph.D.

and M.S. degrees from Stanford University and a B.S. degree from
Cornell University.

Apostolos Papathanassiou is a senior principal

wireless architect with the Standards and
Advanced Technology division of the Mobile and

Communications Group at Intel. He has hundreds

of technical contributions on 3G and 4G mobile

broadband research and development since 1996

and on 3G and 4G standardization in ITU, 3GPP,
and IEEE since 1999. His current interests include

advanced multi-antenna PHY algorithms, multi-
technology heterogeneous networks, and device-to-device

communications.

Author’s formal

photo

Author’s formal

photo

Author’s formal
photo

http://www.3gpp.org/ftp/Specs/archive/26

