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Abstract—As the multicast standard for long term evolution 

(LTE), Enhanced multimedia broadcast multicast service (e- 

MBMS) was introduced by third generation partnership project 

(3GPP) to facilitate delivery of popular content to multiple users 

over a cellular network. If a large number of users are interested 

in the same content, for e.g., live sports, news clips, etc., 

multicast transmission can significantly lower the cost and make 

better use of the spectrum as compared to unicast transmission. 

In this paper, we study and analyze the quality of experience 

(QoE) at the end user during live video streaming over eMBMS. 

We consider a comprehensive end-to-end  MBMS streaming 

frame-work based on H.264/AVC encoded video content 

delivered in a chunked  format  over multiple segments using 

the file delivery over unidirectional transport (FLUTE) protocol, 

combined with application layer (AL) forward error correction 

(FEC) based on Raptor and RaptorQ codes. Specifically, our 

study involves QoE evaluation in terms of startup delay, 

rebuffering percentage and peak signal-to-noise ratio (PSNR) 

metrics and provides performance evaluations to characterize 

the impact of various MBMS streaming, transport and AL-FEC 

configurations on the end user QoE. For simulating media 

access control-protocol data unit  (MAC-PDU) losses, we 

propose a new Markov model and show that our model captures 

the coverage aspects of eMBMS in contrast to the RAN 

endorsed model, which assumes the same Markov  model for all 

the users. We also propose a decoding strategy that takes into 

consideration the systematic structure of AL-FEC codes to 

enhance performance when a source block decoding fails.  
 
Index Terms—multicast, e-MBMS, video streaming, ALFEC, 

QoE metrics 
 

I. INTRODUCTION 

Video communication over wireless is a unique and 

challenging problem, owing to the scarcity of bandwidth 

and the low-latency, high reliability constraints of video. 

The growth of multimedia applications and increased 

mobile internet access has created the need for enhancing 

video delivery over wireless systems. In fact, mobile 

video traffic has been projected to occupy more than two-

thirds of the total mobile traffic by 2015 [1]. eMBMS 

allows multimedia content to be broadcasted and 

received by many users in a scalable fashion. Delivery of 

popular Youtube clips, live sports events, news updates, 

advertisements, file sharing, etc. are relevant use cases for 

eMBMS. This can be seen as a viable alternative to 

unicast when the same content is of interest to a large 

number of users. eMBMS would utilize the network 
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bandwidth more efficiently by using the inherent 

broadcast nature of wireless channels. 

Wireless channels are lossy and reliability 

mechanisms are implemented to make up for losses 

over the wireless media. For unicast transmissions, 

retransmissions based on Automatic Repeat Request 

(ARQ) and/or hybrid ARQ (HARQ) are used to ensure 

reliability. However, for a broadcast transmission, 

implementing ARQ can lead to network congestion with 

multiple users requesting different packets. Moreover, 

each user has a different channel to the base station 

owing to different distance from the transmitting station, 

user mobility, and attenuation characteristics. Thus, 

different users might lose different packets and 

retransmission could mean sending a large chunk of the 

original content again, leading to inefficient use of 

bandwidth as well as increased latency for some users. 

AL-FEC is an error correction mechanism in which 

redundant data is sent to facilitate recovery of lost 

packets. Such increased reliability through AL-FEC help 

to reliance on recovery procedures that involve 

retransmission of lost packets over broadcast. For this 

purpose, Raptor codes [2] were adopted in 3GPP TS 

26.346 [7] as the AL-FEC scheme for MBMS delivery, 

and were also adopted in Internet Engineering Task Force 

(IETF) RFC 5053 [3]. Recently, improvements on the 

Raptor codes have been developed and an enhanced code 

called RaptorQ codes have been specified in RFC 

6330 [5] and proposed to 3GPP. Decoding probability 

and AL-FEC overhead comparisons between Raptor and 

RaptorQ codes were presented in [6]. Streaming delivery 

(based on the H.264/AVC video codec and real-time 

tranport protocol (RTP)) over MBMS was studied in [4]. 

In this paper, we focus on live streaming over eMBMS, 

where the H.264/AVC encoded video content is 

chunked at the server into multiple segments of a fixed 

duration and each segment is then pushed to the client by 

the use of MBMS download delivery methods, i.e., 

through the FLUTE protocol [13]. With an end-to-end 

eMBMS system design approach focused on user QoE, 

we analyze the effect of different design parameters on 

startup delay, rebuffering percentage and PSNR 

experienced at the MBMS client. We also provide 

comparisons between Raptor and RaptorQ codes to 

characterize their impact to the user QoE in terms of 

PSNR and rebuffering percentage metrics. The novel 

contributions of this paper include user QoE evaluations 

for video streaming over eMBMS, a new multi-tiered 

Markov model for simulating MAC layer losses and a 
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decoding algorithm that intelligently exploits the 

systematic nature of Raptor/RaptorQ codes. An earlier 

version of results in this paper appeared in [10] 

The rest of the paper is organized as follows. In 

Section II, we briefly discuss the Raptor and RaptorQ 

codes. In Section III, we present different components of 

the eMBMS streaming framework, for e.g., video traffic 

modeling, AL-FEC design parameters, transport protocols, 

and loss models for the radio layer. In Section IV, we 

present our simulation results. We conclude in Section V. 

II. BACKGROUND ON AL-FEC SCHEMES 

In this section, we discuss the 3GPP standardized 

Raptor code and the more recent RaptorQ codes, the 

latter being proposed to provide improvements over the 

former. Both Raptor and RaptorQ codes are fountain 

codes, thus as many encoding symbols can be generated 

on-the-fly by the encoder from the source symbols. As 

mentioned earlier, for broadcast applications, it is 

important to provide some redundancy at the application 

layer, as retransmissions become very frequent if ARQ is 

used for reliable delivery of packets. For this purpose, the 

AL-FEC framework decomposes each file into a number 

of source blocks of approximately equal size. Each 

source block is then broken into K source symbols of 

fixed symbol size T bytes. The Raptor/RaptorQ codes are 

used to form N encoding symbols from the original K 

source symbols where N>K. Both Raptor/RaptorQ are 

systematic codes which means that the original source 

symbols are transmitted unchanged as the first K 

encoding symbols. Both Raptor/RaptorQ codes have 

linear encoding/decoding time complexity. The encoding 

symbols are then used to form IP packets and sent. At the 

decoder, it is possible to recover the whole source block 

from any set of encoding symbols only slightly greater 

than K with a very high probability. We now provide an 

overview of Raptor codes. 

A. Raptor  

Raptor codes first appeared in [2] and has been 

standardized by 3GPP in the MBMS service 

specification TS 26.346 [7]. A block diagram showing 

the encoding process is given in Fig. 1. We describe the 

encoding and decoding process very briefly. More details 

can be found in [3]. A Raptor code is formed by a 

concatenation of a very high-rate block code and a 

non-systematic Luby Transform code [8]. The first 

encoding step is a pre-coding step to generate L 

intermediate symbols. The L intermediate symbols 

satisfy a set of pre-coding relationships, defined such 

that the last L–K intermediate symbols are expressed in 

terms of the first K symbols. The linear operations in this 

step can be represented by a matrix A. The second 

encoding step is LT encoding to generate the repair 

symbols and form the overall code with N encoding 

symbols. Note that Raptor code is systematic as 

ensured by the pre-coding relationships. The pre-coding 

is useful for the following two reasons. First, since LT 

codes are in general non-systematic, pre-coding ensures 

that the overall code is systematic. Secondly, the 

complexity of LT codes is O(KlogK), whereas for 

Raptor codes is O(K), where K is the number of 

source symbols. Decoding is performed at the receiver 

by checking if an appropriate set of encoded symbols is 

available such that the matrix A has full rank. If the 

matrix A is rank deficient, an error is declared and 

the whole source block is assumed to be lost. The 

decoding failure probability decays exponentially in the 

number of repair symbols received [9]. Thus, smaller the 

code rate K/N, more is the redundancy and lower is the 

decoding failure probability, but the smaller failure 

probability comes at the cost of more overhead. 

 

Figure. 1. Encoding overview of Raptor codes. 

B. RaptorQ Codes 

Since the introduction of Raptor codes in 3GPP for 

MBMS, there has been a lot of progress in improving the 

performance of Raptor codes. A superior form of Raptor 

called RaptorQ codes have been introduced in IETF 

RFC 6330 [5]. RaptorQ is more efficient than Raptor in 

coding efficiency, coding flexibility, etc. The encoding 

process for RaptorQ is given in Fig. 2. Most of the 

encoding steps in RaptorQ are identical to those in 

Raptor, albeit a few important differences. Firstly, the 

algebra in RaptorQ is over GF(256) as compared to 

GF(2) for Raptor codes. Operating over larger fields 

allows the recovery of source blocks with lesser overhead. 

Secondly, the first step of encoding in RaptorQ is to 

construct an extended source block of K′ symbols by 

padding the original source block with zeros, such that 

K′ is one of the values listed in the specification [5], 

(Section 5.6). Padding enables faster encoding and 

decoding, while at the same time minimizing the 

amount of information that needs to be stored. Note that 

the encoder does not need to send the padded symbols 

because padding can also be done at the decoder once the 

symbols have been received. Thirdly, in the next 

encoding step, an enhanced two-step pre-coder is used. 

Fourthly, a superior algorithm for LT encoding is used in 

the final step of the encoding process. Lastly, RaptorQ 

codes support a wider range of the number of source 

symbols and encoding symbols. Specifically, RaptorQ can 

encode up to 56403 source symbols, whereas Raptor 

codes can only encode upto 8192 symbols. Because of 

the above properties, RaptorQ codes are much more 

superior to Raptor codes in terms of performance as 

well as flexibility. RaptorQ can deliver huge chunks of 

data at once, owing to the fact that it can support large 

source block sizes. File delivery decoding efficiency is 
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thus superior, since protection is distributed over the 

larger chunks of the file. For delay sensitive real-time 

applications too, RaptorQ has superior performance 

because of the crucial functional differences listed above. 

RaptorQ combines operations over GF(2) and GF(256) 

to keep the complexity low, such that majority of the 

operations are over GF(2), and only a small fraction of 

the operations are  over GF(256). Decoding is similar as 

in Raptor codes, where the decoder checks for an 

appropriate set of encoding symbols such that the 

matrix A has full size. 

 

Figure. 2. Encoding overview of RaptorQ codes. 

III. STREAMING FRAMEWORK 

A. Video Traffic Modeling 

Simulation of video traffic based on packet traces of 

actual encoded video streams has been considered a 

viable approach for evaluation of various video delivery 

systems. While the video bit streams give the actual bits 

carrying the video information, the video traces only 

give the number of bits used for the encoding of the 

individual video frames. Each video frame is either intra-

coded (I), forward predictive coded (P) with motion 

compensated prediction from the preceding I or P frames, 

or bi-directionally predictive coded (B) according to its 

position in a group of pictures (GoP) structure. One GoP 

consists of a fixed number of I, B, and P frames. 

TABLE I: VIDEO TRACE DETAILS  

Video source Quantization parameter Raw  bitrate (kbps) 

Sony-1080 34 164.72 
NBC News 34 190.66 

 

Frame size video traces are files mainly containing 

video frame time stamps, frame types (e.g., I, P, or 

B), encoded frame sizes (in bits), and frame qualities 

(e.g., PSNR). Thus, in comparison with video traffic 

models, simulation with trace-based video traffic sources 

can provide much better information about the quality of 

the received video stream. Publicly available video 

traces can be used for the simulation 

(http://trace.eas.asu.edu) [11], [12]. For the purpose of 

our simulations, we use the H.264 SVC single layer 

video traces with encoding type: Main (Level 2.1). The 

H.264 SVC is an attractive choice for video streaming 

simulations due to their superior compression efficiency 

and network friendly video representation. The 

resolution is CIF 352×288. The videos are variable bit 

rate and encoded with a fixed quantization parameter. 

The video details used for our simulations are given in 

Table I The H.264 standard also defines a network 

abstraction layer (NAL) which contains functions for 

mapping the coded video data to a network transport 

layer. For the purpose of our simulations, we assume 

that each video frame is preceded by a 10 byte NAL 

prefix. 

B. AL-FEC Framework and Transport Layer 

Processing 

The eMBMS-based live video streaming is over the 

FLUTE protocol, which allows for error-free 

transmission of files via unidirectional MBMS bearers. 

Since we are looking at live streaming, there are strict 

time constraints for content delivery. Each video session 

is delivered as a FLUTE transport object as depicted in 

Fig. 3. Transport objects are created as soon as packets 

come in. The IPv4/UDP/FlLUTE header is a total of 44 

bytes per IP packet. The size of an IP packet is 1333 bytes, 

thus the maximum FLUTE payload size is (1333–44) = 

1289 bytes. The AL-FEC increases the number of 

parameters that have to be chosen. The choice of the AL-

FEC parameters is made at the Broadcast Multicast 

Service Center (BMSC). For example, the BMSC has to 

select the number of source symbols K, the code rate 

K/N and the source symbol size T. Larger the value of K, 

better is the efficiency and performance of the AL-FEC 

scheme. On the other hand, larger value of K leads to 

higher latency for a fixed symbol size T, since there is a 

need to wait a long time for sufficient number of frames 

to come in order to do the encoding. The code rate choice 

also affects the end-to-end performance because, smaller 

the value of K/N, more is the redundancy added to 

the source symbols as more repair symbols are generated, 

and thus better is the performance. However, more repair 

symbols come at a cost and thus the code rate needs to 

be chosen intelligently. In addition, it is beneficial to 

choose the symbol size T as a power of 2 for the sake of 

complexity. Smaller values of T for a fixed symbol size 

can mean large values of K, resulting in better 

performance, but at the same time, resulting in higher 

complexity because of the larger dimensions of the 

encoding and decoding matrices. On the contrary, larger 

value of T results in small K and thus poor performance. 

 

Figure. 3. Transport layer processing overview. 

For our simulations, the source block parsing is done 

as follows. We simulate a live service and thus, a 

long waiting time for encoding is not desirable. 

However, to ensure good Raptor/RaptorQ performance, 

we need to choose a high enough K. Thus, we have a 

minimum value of K=Kmin as a design parameter. The 

larger Kmin is, larger is the start-up delay. One source 

block consists of one or more GoPs, which is decided 

http://trace.eas.asu.edu/
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based on the size of the GoP. The size of a source block 

is chosen as follows. For this algorithm, it is assumed 

that the gth GoP needs to be transmitted. 

Algorithm: Choosing the source block size   

1. source block size ← 0  

2. while source block size<Kmin T 

3. do source block size ←source block size+size of 

gth GoP 

4. g= g+1 

5. end while 

Note that a source block always consists of integer 

number of GoPs unless size of a GoP is greater than 8192, 

the maximum allowed K for Raptor. Furthermore, K is 

computed as 

source block size
K

T

 
  
 

 

where x    rounds x to the nearest integer greater than x. 

Note that the value of K varies depending to the size of 

GoPs. The resulting source block is padded with (KminT − 

source block size) zeros to ensure that there are exactly 

K symbols. Now N encoding symbols are generated from 

these K symbols using the AL-FEC scheme. IP packets 

are then formed using these encoding symbols as 

payloads. The FLUTE packet is generated from the 

FLUTE header and payload containing the encoding 

symbols. 

C. RLC (radio link control)/MAC (multiple access 

control) layer processing 

1) RAN Endorsed Model: IP packets (RLC-SDUs 

(service data unit)) are mapped into fixed-length RLC-

PDUs (protocol data unit). A 3GPP RAN1 endorsed two-

state Markov model [14] is used for the simulation of 

LTE RLC-PDU losses as shown in Fig. 4. The Markov 

model satisfies the following two properties: 

(1) each state persists for 10 ms, and 

(2) a state is good if it has 

 less than 10% packet loss probability for the 

1% and 5% BLER simulations, 

 less than 40% packet loss probability for the 

10% and 20% BLER simulations. 

 

Figure. 4. Markov model for simulating LTE RLC-PDU losses. 

The parameters in the figure are as follows: 

 p: transition probability from Good state to Bad 

state. 1/p will be the average length of the 

Good state segment. 

 q: transition probability from Bad state to Good 

state. 1/q will be the average length of the Bad 

state segment. 

 p
g
: BLER in Good state. 

 p
b
: BLER in Bad state. 

The time in good state Tg can be calculated by 

multiplying the average length of a good segment by the 

sampling period. Similarly, one can calculate the the time 

in bad state Tb. Table II gives the Markov model 

parameters used for simulations. 

TABLE II: MARKOV PARAMETERS FOR SPEED 3 KM/H 

Para. BLER=1% BLER=5% BLER=10% BLER=20% 

p 0.58% 1.80% 2.79% 4.61% 

q 36.13% 24.01% 20.90% 16.80% 

pg 0.03% 0.06% 0.56% 1.16% 

pb 59.47% 70.54% 82.30% 89.20% 

BLER 0.97% 5.02% 9.93% 19.92% 

Tg (ms) 1724 555 359 217 

T
b (ms) 28 42 48 60 

 

It can be seen that the RAN model described above 

does not capture the cell phone coverage aspect of a cell. 

For a more comprehensive end-to-end analysis we 

propose the following RAN model. 

2) Proposed coverage-based Markov model: for 

generating MBSFN subframe loss pattern, we simulate 

the 3GPP Case 1 channel configuration with 10 MHz 

carrier bandwidth. Users are picked randomly from a user 

population of 210 users dropped uniformly over the cell. 

The received SINR data is then used to generate MBSFN 

subframe loss pattern. Such data is collected for different 

MCS (Modulation and Coding Scheme) values. It was 

observed that the RAN endorsed model does not capture 

the coverage variations for the cellular layout. For the 

results in this paper, we assume the MCS to be 21. The 

rest of the LTE simulation parameters are given in Table 

III. 

TABLE III: LTE EMBMS SIMULATION PARAMETERS 

Parameters Assumption 

Cellular layout Hexagonal grid, 19 cell sites, 3 sectors per 

site 

Inter-site distance 1732 meters 

Channel model Typical urban 

User distribution Users dropped uniformly in cell 

Total BS tx power 46 dBm 

Distance-dependent 

path loss 

L=I+ 37.6 log10 (.R), R in kilometers 

I = 128.1 − 2 GHz, I = 120.9 − 900 MHz 

Lognormal shadowing Similar to UMTS 30.03, B 1.141 

Shadowing std. dev. 8 dB 

Penetration loss 20 dB 

UE speed 3 km/h 

Synchronization error None 

 

Using the subframe loss pattern for a given MCS, we 

generate separate Markov models for all the 210 users 

(rather than one model as in Section III-C1) to capture the 

variations and use that to generate capacity results later in 

the paper. Note that this model is not a fundamentally 

different from the RAN endorsed model, but that it 

accounts for the varying BLER distribution across users 
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in a cellular environment. In other words, for each user 

we deal with a Markov model, but a different BLER is 

instantiated based on the coverage aspect. 

For example, based on our results, we derived the 

following BLER distribution for a user in a cellular 

environment. 

0,                    w.p. 0.7206
BLER 1,                    w.p. 0.0717

uniform[0,1],  otherwise


 


 

Note that the BLER distribution would depend on the 

specific deployment models and assumptions and could 

be different subject to different coverage statistics. 

D. Quality of Experience (QoE) Metrics 

Different QoE metrics can be considered for 

multimedia delivery to mobile devices. In the case of file 

download or streaming of stored content, on user request, 

there is a initial startup delay after which streaming of 

video occurs and QoE can be measured by the initial 

startup delay and fraction of the time rebuffering occurs. 

Rebuffering can be defined as the state of streaming 

invoked when the playback buffer is empty and buffer is 

being filled up for video playback [15]. However, for live 

streaming, when the playback buffer is empty, the client 

cannot wait for the buffer to be filled up. Thus, it treats 

the video content corresponding to when the playback is 

stalled to be lost and moves ahead. We evaluate the 

following metrics. 

 Startup delay: we define startup delay as follows.  

Definition 1: startup delay is defined as the total time it 

takes to deliver live video from the moment the live 

event starts till the moment playback starts at the user 

end. The main contribution to startup delay for 

eMBMS live streaming is the AL-FEC encoding 

delay, i.e., when the service provider has to wait for 

sufficient number of frames to be generated to 

ensure large enough source block for efficient AL-

FEC implementation. 

 Average PSNR: the PSNR of the received video 

stream is calculated using the offset trace file used for 

simulations. When a frame is lost, the client tries 

to conceal the lost frame by repeating the last 

successfully received frame. Such concealments lead 

to loss in video quality at the user. 

 Rebuffering percentage: rebuffering percentage for 

live video streaming is defined as follows. 

Definition 2: rebuffering percentage is defined as the 

fraction of the time video playback is stalled in the 

mobile device. For live streaming, rebuffering occurs 

whenever two or more than two consecutive frames are 

lost. The client repeats the last successfully received 

frame and the video appears as stalled to the user. 

Video playback resumes as soon as one of the future 

frames is received successfully. 

We consider two approaches for decoding. 

a) D1: when an AL-FEC block is not correctly 

decoded, we assume that all source symbols 

are lost for PSNR and rebuffering percentage 

calculations. 

b) D2: when an AL-FEC block is not correctly 

decoded, we use the fact that both 

Raptor/RaptorQ are systematic codes and 

uncorrupted symbols in the first K encoding 

symbols are original source symbols. This 

may result in a better performance because of 

the frame structure of the video, if for e.g., we 

receive an uncorrupted I or P frame in the K 

source symbols, it will significantly enhance the 

performance, as opposed to approach D1, where 

we simply ignore the systematic structure of the 

code. 

IV. SIMULATION RESULTS 

The performance bounds for eMBMS have been 

evaluated under different conditions. The Bearer bitrate 

is assumed to be 1.0656 Mbits/sec. The length of a 

RLC-SDU is taken as 10 ms. The content length is set 

at 17000 frames for each video trace. The video frame 

frequency is considered to be 30 frames per second. The 

video frames are then used to generate source blocks and 

encoding symbols are generated using the AL-FEC 

framework (both Raptor/RaptorQ). We choose the 

source symbol size as T=16 bytes. We keep it small in 

order to decrease the initial startup delay, so that we can 

choose a large K for the same source block size. The 

frames are then packetized into FLUTE packets to 

appropriate lengths. The RLC-PDU losses are modeled 

using the Markov model discussed earlier in Section 

III-C. All of the users were simulated assuming same 

target BER 5% from Table II. The received packets at the 

MBMS client are then decoded to reconstruct the video 

frames for playback. Based on the received frames, the 

losses of the IPB frames were determined. The lost 

frames are concealed by repeating the last successfully 

received frame. The system level simulations offer 

beneficial insights on the effect of system level and AL- 

FEC parameters on the overall QoE. 

 
Figure. 5. Startup Delay as a function of Kmin. 

A. Startup Delay 

We plot the average start-up delay (averaged over 

different code rates K/N=0, 6, 0.7, 0.8, 0.9) in Fig. 5 as 

a function of Kmin. As expected, the startup delay 

increases on increasing Kmin. It can be seen that larger the 

value of Kmin, larger is the value of the startup delay. 
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This is a live streaming simulation and the multicast 

service provider has to wait for sufficient number of 

video frames to be generated such that the source block 

size is at least KminT. Note that the startup delay for both 

Raptor/RaptorQ codes is same because we assume similar 

encoding/decoding complexity for both. Also, it was 

observed that the major chunk of the startup delay 

was because of the encoding delay. Other delays like 

video encoding/decoding, IP packet delivery delays, etc. 

are negligible as compared to the encoding delay. The 

decoding is assumed to be instantaneous as soon as all 

the encoding symbols are received. 

B. Rebuffering Percentage and PSNR 

1) RAN Endorsed Model: For a fixed code rate, we plot the 

average PSNR and rebuffering percentage in Fig. 6 and Fig. 7 

respectively for the RAN endorsed model in Section III-C1. 

Increasing the value of Kmin only slightly increases the 

performance. This is due to the fact that we treat one 

GoP as one source block. Most of the video traces we 

used have most GoPs big enough to ensure high values of 

K for most of the source blocks. Thus, on average, the 

value of K does not change. The superiority of RaptorQ 

as compared to Raptor can be clearly seen from the plots, 

especially in terms of rebuffering percentage. We also see 

that the second decoding approach D2 is much more 

efficient than the decoding approach D1. This is because 

in D2, we recover as many frames as we can, given the 

systematic structure of Raptor/RaptorQ codes. We also 

observed that decreasing the code rate K/N improves the 

performance both in terms of average PSNR and 

rebuffering, as expected. 

 
Figure. 6. Performance comparisons for K/N = 0.9: Average PSNR. 

 
Figure. 7. Performance comparisons for K/N = 0.9: Rebuffering 

percentage. 

2) Proposed coverage-based Markov model: using the 

new model proposed in Section III-C2, we plot the 

empirical cumulative density function (CDF) of the 

PSNR and rebuffering percentage for code rates 0.9 and 

0.8, as shown in Fig. 8 and Fig. 9, respectively. Since 

increasing the value of Kmin does not affect the PSNR and 

rebuffering performance much, for the simulations in this 

section we fix Kmin to be 64. It can be observed that 

improving the code rate improves the coverage from a 

QoE perspective as it guarantees better PSNR and 

rebuffering for more number of users. It can be seen that 

the results in the previous section is just a point on the 

curve and thus, the RAN endorsed model is insufficient 

for analysis of coverage and resulting video streaming 

QoE distribution across users 

 
Figure. 8. Performance comparisons for K/N = 0.9: Average PSNR. 

 
Figure. 9. Performance comparisons for K/N=0.9: Rebuffering 

percentage. 

V. CONCLUSIONS 

With an end-to-end eMBMS system design approach 

focused on evaluating QoE, we simulated the effect of 

different design parameters on startup delay, rebuffering 

percentage and PSNR experienced at the MBMS client. 

The new Markov model proposed captures the coverage 

aspects of MBMS as compared to the old model that 

assumed the same model for all users. The decoding 

strategy for AL-FEC decoding that takes into account 

the systematic code structure for Raptor/RaptorQ was 

shown to outperform the decoding strategy when a 

decoding failure leads to the loss of the whole source 

block. 
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