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Abstract— Waterfilling solutions provide optimal power 
distribution in multiple-input multiple-output (MIMO) 
system design.  However, the optimal distribution is usually 
obtained through costly computational processes, such as 
the determination of the system eigenvalues. For 
communication channels in a fast paced environment, the 
costs are even higher due to the necessity of tracking 
channel changes. In addition, the computational costs 
increase with the number of inputs and outputs, i.e. the size 
of the MIMO channel matrix. A solution for reducing the 
computational burden is to utilize pre-determined 
waterfilling based on the channel’s statistics. No updates are 
required unless the channel statistical characteristics 
change. This work studies waterfilling estimations based on 
random matrix theory. The results can be applied when the 
channel coefficients follow a Rayleigh distribution and the 
noise is additive, white, and Gaussian. 
 
Index Terms— MIMO systems, random matrix, eigenvalues, 
waterfilling 

I.  INTRODUCTION 

Space diversity techniques have significantly evolved 
allowing multiple sub-channels to share the same 
transmission media. A communications design that 
compiles a set of several sub-channels in a single channel 
can be classified as a Multiple-Input Multiple-Output 
(MIMO) system. The system performance depends on the 
characteristics of the sub-channels, which are generally 
different from one another. In general, some sub-channels 
require more power than others, but the total transmission 
power is a limited resource. The optimal power 
distribution is known as waterfilling solution [1] and it 
improves the system performance. 

The symbols transmitted through each sub-channel are 
firstly arranged in a vector s , known as the transmitted 

symbols vector. Symbols are assumed to be drawn from a 
random process and thus their power is related to their 

variance 2
ssσ . Power allocation is achieved by multiplying 

s  by a diagonal matrix Φ  before transmission. The 

coefficients iiφ  in the main diagonal of matrix Φ  

constitute the waterfilling solution. The transmitted 
vector z  can be expressed as  

 sVz Φ= , (1) 

where V  is a unitary matrix obtained from the 

eigenvectors of the system. In addition to finding V , 

several other computations are required to recover the 
symbols at the receiving side. Although this is also an 
interesting problem it is not in the scope of this research. 
This work is focused on the determination of estimated 
solutions for Φ  based on the statistical characteristics of 
the MIMO channel. 

Optimal waterfilling solutions have been proposed in 
[2], [3] and [4], based on the channel matrix eigenvalues. 
As will be shown latter, the solution to a waterfilled 
MIMO system described by  

 nHzy += , (2) 

can be obtained using the eigenvalues iiλ  of the matrix 

HH H  , where H is the MIMO channel matrix, for a 
noise vector n  with Gaussian and white elements. The 

waterfilling solutions were found assuming exact 
knowledge of H . However, estimated solutions can be 
determined for random channel matrices when the exact 
knowledge of H  is not available. Assuming that every 
matrix element hi,j is an independent and identically 
distributed (i.i.d.) zero mean complex Gaussian variable 

with variance 2
Hσ , it can be shown that the eigenvalues 

of HH H  follow a very specific probability density 
function. In this case a waterfilling solution can be 
estimated by knowing only the size of the channel matrix 
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and the variance of its elements 2
Hσ , which are also the 

same requirements to the estimation of the eigenvalues. 
Random matrix theory has been successfully applied in 

the determination of MIMO systems channels asymptotic 
capacity [5]. It has been shown that the channel capacity 
is a function of the channel matrix eigenvalues and has an 
asymptotic behavior determined using Girko’s Law [6]. 
In this work the method proposed in [7] is expanded to 
exploit the asymptotic behavior of system eigenvalues. 
Instead of the Wigner’s Quarter Circle Law (QCL) [8], 
that is only valid for square matrices, the Marčenko-
Pastur Law [9] will be utilized to describe the system 
behavior for more general rectangular matrices H . The 
result is an asymptotic waterfilling solution that 
approximates the real solution as the number of sub-
channels of the MIMO system increases. 

The asymptotic waterfilling solution can be pre-
calculated and stored off line. Then the pre-calculated 
solution can be applied during the symbol estimation 
while the system is in operation. The required Channel 

State Information (CSI) is based on the variance 2
Hσ  of 

elements in H . A waterfilling solution update is not 

necessary unless a change in the variance 2
Hσ  is detected.  

The paper is structured as follows: after Section I, 
Section II presents some relevant results from random 
matrix theory. Section III applies these results in 
waterfilling solutions. Section IV presents numerical 
simulations and discusses the final results. Section V 
contains the conclusion. 

II.  SOME USEFUL RESULTS ON RANDOM MATRICES 

A. System  Eigenvalues 

Significant information on a system behavior can be 

obtained from the eigenvalues of the matrix HHW H= , 
where H  is the channel matrix with size NM × . If the 

elements jih ,  in H  are complex random numbers 

following Gaussian distributions with zero mean and 

variance 2
Hσ  the eigenvalues of W  are continuous 

random variables that can be asymptotically described by 
a distribution known as the Marčenko-Pastur law [9]. 

The matrix eigendecomposition for W  is 

 HH VVHHW Λ==  (3) 

where V  is a unitary matrix composed of eigenvectors, 

and Λ  is the diagonal matrix whose entries iiλ  are the 

eigenvalues of W . For the purpose of finding a 

waterfilling solution, the eigenvalues are arranged in 

decreasing order, i.e. iiii ,11,
λλ ≥−− . The eigenvectors in 

V are arranged in an order that matches the eigenvalue 

elements in Λ .   
There are two estimation goals that will be pursued: 

the estimation of each eigenvalue iiλ , which leads to the 

matrix Λ , and the determination of a closed form for the 
expectation  

            { } ( ) ∑∫
=

≅=≥
N

i

m
ii

m
NN

m

N
dpE

~

1

~
1

λλλλλλ λ ,   (4) 

for the specific cases when { }1,1,2 −−=m . The term 

( )λp  refers to the single eigenvalue probability density 

function (p.d.f.). The single eigenvalue λ  can be thought 

as a random process where the outcome is any eigenvalue 
indistinctively.  

The analysis of the single eigenvalue p.d.f., performed 

in [10] for square matrices, proof that ( )λp  converges to 

Wigner’s QCL as the matrix size increases. A similar 
asymptotic behavior is known to occur for the Marčenko-
Pastur law, which describes the case of square and 
rectangular matrices.  

Several studies [9]-[13] exploit this asymptotic 
behavior of the eigenvalues. The upper limit index of the 

summation in (4) is the integer N
~

 where Θ≤≤ N
~

1 , and 

Θ  is the total number of eigenvalues. Notice that 

{ }Θ= ,...,3,2,1i  where the first eigenvalue 11λ  is the 

largest one and the thΘ  eigenvalue ΘΘλ  is the smallest 

one. 
Expectations that can be expressed by (4) arise when 

solving waterfilling solutions. The random matrix theory 
provides methods that help us estimate Λ  and (4). The 
following subsections will describe three approaches: the 

first uses ( )iip λ  if known, the second employs the roots 

of an associated Laguerre Polynomial, and the third 
integrates the Marcenko-Pastur law in a similar way as 
the QCL was used in [7]. Each approach exhibit 
advantages and that will be utilized according to the 
objectives described before. 

B. Numerical Estimation by Expectation 

The first approach considered here is the estimation of 

iiλ  using its expected value { }iiii E λλ = . The expectation 

can be obtained analytically if the p.d.f. of the thi  

eigenvalue ( )ii
p λ  is available.  

 ( )∫= λλλ λ dp
iiiiii  (5) 

The exact closed form ( )ii
p λ  for the thi  eigenvalue is 

yet an unsolved problem, except for the smallest 

eigenvalue ΘΘλ . Edelman [11] found a set of equations 

( )ΘΘλp  for an arbitrary matrix size NM × . Appendix A 

describes the formulation of ( )ΘΘλp  in more detail.  

Expectation (5) cannot be easily computed. However, 

the expected value iiλ  can still be obtained by means of 

numerical Monte Carlo simulation methods. The mean 

iiλ  and variance 2

iiλσ  can be estimated by randomly 
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selecting a large number of realizations of NMH × , 

calculating (3) and then averaging the corresponding 
moment. This method is slow and depends on the 
performance of random numbers generators.  

C. Eigenvalues Estimation by Laguerre Polynomial 

Other common estimates of the eigenvalues are 
obtained from the roots of an associated Laguerre 

polynomial. The p.d.f. ( )ii
p λ  can be approximated as a 

Gaussian distribution centered at a root of an associated 
Laguerre polynomial. The estimation of the eigenvalue 

iiλ  is a corresponding Laguerre root multiplied by a 

normalization factor [12]. 
To apply this method, it is firstly necessary to closely 

examine the dimensions of NMH × . If MN > , then the 

matrix Λ  defined in (3) has MN −  zero elements on the 

main diagonal, which is not a problem. If NM > , no 

zero elements in Λ  are expected. In the formulation of 
Laguerre polynomial roots, the matrix dimensions are 
used as follows 

 { }NMQ ,max=  (6) 

 { }NM ,min=Θ . (7) 

In summary, the roots Θlll ,...,, 21  of the associate 

Laguerre polynomial ⋅⋅⋅+++/
2

210 tctcc , which is defined 

as 

 ( )( ) ( )∑
Θ

=

Θ−
Θ −









−Θ
=

0
!

1

j

jQ Qt
j

Q

j
QtL . (8) 

approximate the normalized eigenvalues 2
Hii Qσλ . The 

estimation then becomes 

 iHii lQ 2σλ = . (9)  

The convergence rate for the error, if ( ) ∞→ΘQ  

as ∞→Θ , is 

 
( )
























 Θ
=−

Θ≤≤

4

1

21

ln
max

Q
l

Q
i

H

ii

i
O

σ

λ
. (10)  

The estimation error converges to zero as the matrix 
size increases.  

D. Eigenvalues Estimation by p.d.f. Integral 

The last two methods directly estimate the eigenvalues 
in Λ , but the expectation in (4) is left for posterior 
processing. The waterfilling formulation can be greatly 
improved by using closed form equations for (4). The 
Marchenko-Pastur law [9] provides an appropriate 
method to directly calculate the expectations of 
eigenvalues as defined in (4). Extending the work 
presented in [6] for square matrices, this section will 

follow a similar approach with the exception that we are 
also considering non-square matrices, i.e. Θ≥Q . The 

development that will be presented depends on the 
parameter  

 1≤⇒
Θ

= ββ
Q

. (11) 

The eigenvalues requires a normalization expressed by 

 
2
HQ

x
σ

λ
= . (12) 

The eigenvalues x  are lower and upper limited as 

 bxa ≤≤ , where  (13) 

 ( )
2

1 β−=a , and  (14) 

 ( )
2

1 β+=b . (15) 

The limits in (13) are also the convergence of the 

minimum NNλ  and the maximum 11λ  respectively as 

∞→Q  [13]. The probability density function (p.d.f.) 

( )xp  of x  is then  

 ( )
( )( )

x

axxb
p x

πβ2

−−
= . (16) 

As proposed in [7] the index j  of the eigenvalues 

when ordered increasingly can be obtained by using 
frequency estimation and the cumulative probability 
function (c.d.f.)  

 [ ] ( )
Θ

−
≅=≤≤ ∫ 2

12 j
dxpxxaP

jx

a

xj . (17) 

The integration in (17) leads to a mapping between 
indexes and normalized eigenvalues as 

 ( ) 







Ω+

Θ
+≅ xj

πβ

1
1

22

1
. (18) 

where  

  ( ) ( ) ( ) ( ) ( ) ( )xxxx R νβϕβ arcsin1arcsin1 +−−−=Ω  (19) 

 ( ) ( ) ( )22 112 ββ −−++−= xxR x  (20) 

 ( )
( ) ( )

β

ββ
ϕ

x

x
x

2

11
2

−−+
=  (21) 

 ( )
β

β
ν

2

1 x
x

−+
= . (22) 
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The estimation of eigenvalues requires the inversion of 
(18) that is yet unknown. However, a numerical inversion 
is always an option and requires matching the index j  

with corresponding jx . So far only numerical inversion is 

known except for the special case where 1=β , i.e. square 

matrices Θ=Q , it is possible to utilize the approximate 

inversion formula [7] 

      






























Θ

−
−−









Θ

−
≈

Θ= 2

12

63

20
1ln

202

12

5
sin2 jj

x
Qj

πππ .(23) 

The discrepancy between increasing order index j  and 

decreasing  i  is corrected using the equation 

 1+−Θ= ji . (24) 

The results of (4) for Θ<N
~

 is a complex and do not 

offer substantial advantages. Only the case Θ=N
~

 has a 
simple and convenient closed form that depends 
on Θ−Q . 

{ } ( )

( ) ∑∫
Θ

=

−−

Θ
≅

Θ−
==

1

1

22

1 11

i

ii

H

b

a H

x

QxQ

dxp
E λ

σσ
λ     (25) 

{ } ( )

( ) ( ) ∑∫
Θ

=

−−

Θ
≅

Θ−
==

1

2

34222

2 1

i

ii

H

b

a H

x

Q

Q

xQ

dxp
E λ

σσ
λ   (26) 

{ } ( ) ( ) ∑∫
Θ

=
Θ

≅==
1

22 1

i

ii

b

a

HxH QdxpxQE λσσλ   (27) 

III.  WATERFILLING USING ESTIMATED EIGENVALUES 

A. Linear Precoder Solutions 

The waterfilling solutions were originally formulated 
with linear pre-coders and decoders [2] and [3]. The 
channel model for linear pre-coders and decoders can be 
with or without memory. However, the channel model 
with memory requires the addition of zero samples 
between transmissions. The channel models are described 
in great detail in [3].  

The waterfilling matrix Φ  is part of the pre-coder and 
requires the knowledge of the noise covariance 

matrix nnR . The system eigendecomposition rely on the 

product HRH nn
H 1− .  The AWGN case reduces the 

covariance to IR nnn
2σ=  which leads to the consequent 

eigendecomposition  

 H

nn

H
nn

H VVHHHRH













Λ=














=−

22
1 11

σσ
. (28) 

However, the expression (3) will be utilized instead of 

(28) because of its simplicity. The noise variance 2
nσ  

becomes a scaling factor that can be rather included in the 
pre-coder and decoder solutions.  

The recovery ŝ  of the originally transmitted symbols s  

can be performed multiplying the received vector y  in (2) 

by the linear matrix HH HVG 1−ΓΛ= . The matrix Γ  is 

the receiver counterpart and a function of the waterfilling 
matrix Φ . Estimated symbols can be described by the 
equation 

 Gnss +ΓΦ=ˆ . (29) 

Several solutions for Φ  will be discussed, which 

depend on the eigenvalues of HH H . The function ( )ΦΓ , 

required to complete the symbols estimation, is described 
in [3] and it is calculated once Φ  is determined. For this 
reason it will not be analyzed it in this work. 

B. Zero Forcing Solutions 

Cases when †Φ=Γ  are called Zero Forcing (ZF) 
solutions. The symbol † here is used to represent the 
pseudo inverse of a matrix. The solution for each 

diagonal element iiφ  in Φ  can be generalized as [7] 

 12 −= iiii αλφ . (30) 

Due to its simplicity, ZF solutions will be explained 
firstly clarifying some concepts of using estimated 
eigenvalues.  

A common constraint used in finding waterfilling 

solutions is the total power 0P  that can be expressed as 

 ( ){ } ( )ΦΦ== H
ss

H zzEP trtr 2
0 σ  (31) 

where z  is defined in (1) and tr( ) is the trace function. 
The unitary matrix V  does not contribute to the total 

power 0P . The solution forα , obtained from (30) and 

(31), under power constraint is 

 

∑
Θ

=

−

=

1

12

0

k

kkss

P

λσ

α  (32) 

and thus from (30) 

 

∑
Θ

=

−

−

=

1

12

1
02

k

kkss

ii
ii

P

λσ

λ
φ . (33) 

If  H  is known then iiφ̂  can be calculated from (33). If 

H  is not perfectly known but is an estimate, (33) will 

also result in estimated values iiφ̂  with a precision that 

depends on the channel estimation. Moreover, if the 
elements in H  follow a complex Gaussian distribution, 

then a method to estimate iiφ̂  is to use the estimated 

eigenvalues obtained from random matrix theory, as 
described in Section II. The requirements to estimate the 
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eigenvalues are the knowledge of the channel 

variance 2
Hσ  and the size of H . The precision increases 

asymptotically with the size of H . 

For square matrices NNH ×  the estimation iiλ  can be 

calculated using (23) and scaling relation (12). 

Rectangular matrices NMH ×  will require the use of (18) 

instead of (23) and some algorithm to find the inverse of 
(18). The Laguerre roots method (9) is also an option to 
estimate the eigenvalues.  

Closed form estimation can be obtained for α̂  in the 

case of rectangular matrices, i.e. matrices 

where 0>Θ−=− QNM . The eigenvalues summation 

in (32) can be considered the scaled expectation 

{ }11 −− Θ≅∑ λλ E  allowing us to find estimation for α̂  

based on (25) as  

 







−= 1

1
ˆ

2

2

β
γ

σ

σ
α

ss

n , (34) 

where β  was defined in (11). The variable 

 
2

0
2

n

H P

σ

σ
γ =  (35) 

reflects the relationship between transmitted power, 
channel and noise variances. 

In general, the Signal to Noise Ratio (SNR) of the thi  

sub-channel for linear pre-coders and decoders is known 
to be [3] 

 iiii

n

ss
iSNR λφ

σ

σ 2

2

2

= . (36) 

The ZF solution has equal SNR for every sub-channel. 

An estimated sub-channel ZFRNS ˆ  for ZF solutions under 

total power constraint can be calculated from (30), α̂  in 

(34), and (36)  

 







−== 1

1
ˆˆ

2

2

β
γα

σ

σ

n

ssZFRNS . (37) 

A new design concept can now be introduced. 
According to (37), the SNR depends on β , or the relation 

between matrix dimensions Q  and Θ . If the size of H  

can be freely chosen during system design (for example, 
by selecting the number of antennas), the dimensions Q  

and Θ  can be adjusted to achieve a desired SNR. The 

design equation is 

 













+=

Θ
= 1

ˆ1

γβ

ZFRNSQ
. (38) 

 

C. Waterfilling for Maximum Mutual Information on 
Parallel Gaussian Channels  

The second case considered is a little more complicated. 
However, it is known to achieve a better performance for 
low SNR. The waterfilling solution for each element in 
Φ  that maximizes the mutual information is 
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









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
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
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
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1

1

2
0

2
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2

~
1

~ ii

N

k
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n
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NN

P
λλ

σσ

σ
φ . (39) 

The eigenvalues in (39) as well as their summation can 
be obtained using any of the methods presented on 
Section II. Due to the Karush-Kuhn-Tucker Condition 

(KKTC) [1], settled by the function ( ) [ ]gg ,0max=+ , 

N
~

−Θ  elements iiφ  are zero. The determination of N
~

 is 

made through an iterative process.  
Analyzing (1), it can be seen that having zeroed values 

iiφ  will nullify corresponding symbols in s . In order to 

avoid this problem, all the eigenvalues need to comply 
with 

 

1

1

1

2
0 1

−
Θ

=

−













Θ
+

Θ
> ∑

k

kk

n

ii

P
λ

σ
λ . (40) 

Notice that if the minimum eigenvalue ΘΘλ  complies 

with (40), then the other eigenvalues will also do. A way 
to avoid zero elements in Φ  is to allow enough 

transmission power 0P . Another possibility, which will be 

better described in the following paragraphs, is to 
guarantee enough difference Θ−Q . This second method 

requires that the dimensions of NMH ×  can be freely 

selected. It is known that the minimum eigenvalue is 
almost sure (a.s.) larger than a  [13], as defined in (14) 

and scaled by (12). Using (25), (12), (14) and the 

inequality ax ≥ΘΘ  to solve the inequality (40), results in 

 















++≥

Θ

2

3

1

1

34
1

9

1

γ

ξ

ξ

γQ
 (41) 

where 

 ( )3
1 162733827 γγξ −+−=  (42) 

The result obtained from (39) establishes the inequality 
relationship between Q  and Θ  that complies with 

KKTC.  
Differently from the ZF solutions, the actual 

waterfilling produce a different iSNR  for each thi sub-

channel. Using (36) and (39) the SNR for Maximum 
Mutual Information (MMI) is  
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For the cases of rectangular matrices, Θ>Q , and if all 

the eigenvalues comply with (40), the closed form 

equation for the estimation MMI
iRNS ˆ , using (25), is 

 1
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Furthermore, defining the average estimated SNR as 
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and considering (27), the closed form for the average 
SNR becomes 

1
1

1
−

−
+=

ββ

γMMIRNS .               (46) 

The design solution to find the relation between Q  and 

Θ  can be obtained from (46) and results in a quadratic 

equation with solution 
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D. Waterfilling  for Maximum Information Rate 

This last case is the most complex of the three. The 
waterfilling solution for each element in Φ  is 
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Estimated eigenvalues can be used to solve (48) using 
the methods of Section II. In order to avoid zero elements 
in Φ  it is required that every eigenvalue complies with 
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The problem to find a minimum for the matrix 

dimension Q  from (49) is the solution for }{ 2
1−

λE  which 

includes elliptical integrals, as shown in Appendix B. 
Instead of the original solution, two approximations will 
be used 

{ }
32

1 1
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Θ
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−−
.             (51) 

The reason for (50) and (51) is that Q  becomes the 

predominant value as the difference Θ−Q  increases, i.e. 

0/→β  as ∞→Q . We have found that ( ) 311 −− β  is a 

good approximation for }{ 2
1−

xE , as shown in Appendix 

B, which then applying (12) results in (50). 
Approximation (51) is less accurate but also simpler than 
(50). An approximate solution for the inequality (49) can 
now be made following the procedure used in Section III-
C and (51)  
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where 

 ( )3 2
2 42739 γξ −+=     (53) 

and the variable γ  is defined as in (35). 

The iSNR for Maximum Information Rate (MIR) for 

each thi sub-channel, from (36) and (48) is 
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In the case of rectangular matrices Θ>Q , and if all the 

eigenvalues comply with (49), the closed form equation 

for the estimation MIR
iRNS ˆ  using (50) is 

1
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The average value MIRRNS  requires now finding 

}{ 2
1

λE  which solution also includes elliptical integrals. 

Proceeding similar to (50), see also Appendix B, the 

approximation for }{ 2
1

λE  will be set as 
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Figure 1.   Sub-Channel Availability for Maximum Mutual Information. 

 

 

Figure 2. Sub-Channel Availability for Maximum Information Rate. 

 

 

Figure 3. Waterlevel Comparison MRI and MMI. 

Using (55) and (56), an approximate closed form for 
MIRRNS  can be written as 

( ) 1
1

1
1 94 −









−
+−=

ββ

γ
βMIRRNS .         (57) 

The inversion of (57) is very complex. For this reason, 
numerical inversion methods are used if it is necessary to 

find ΘQ  based on MIRRNS and γ . 

IV.  NUMERICAL RESULTS AND DISCUSSION 

The conditions chosen for the simulations were 
extracted from [14], where measurements tell us that a 

typical value for the channel variance is 12 =HHσ . Symbols 

and noise are assumed to be independent, white, and 

Gaussian distributed with variances 12 =ssσ  and 2
nnσ , 

respectively. Several other parameters are set up 
according to the specific type of simulation. This section 
shows three different numerical simulations that illustrate 
the results presented in this work.  

A. The Waterlevel 

The waterfilling cases MMI and MRI allocate the 

transmission power 0P  to achieve optimal system 

performance. The term waterfilling was chosen in 
literature because power is allocated in a way similar to 
filling a recipient with water [1]. The water reaches a 
certain level (the waterlevel) leaving the rest of the 
recipient unfilled. A nice explanation of the waterlevel 
problem is presented in [4].  In the case of (39) and (48) 
some of the elements are zeroed because the waterlevel is 

not high enough to cover all iiφ . The problem of finding 

the number N
~

 of non-zero elements iiφ  is referred as the 

waterlevel problem. 
A closed form estimation for the waterlevel is very 

difficult to be obtained because it requires modifying 
(25), (26) and (27) into an integral with arbitrary upper 
limit, similarly to (17). Until now, a closed form solution 
for the waterlevel is not available in the literature. 

Figures 1 and 2 compare the average waterlevel of 

square random matrix MMH ×  against the case where the 

matrix size can be changed by decreasing the smallest 
dimension Θ . The curve labeled “average Θ ” shows the 

average size for the smaller dimension Θ  of NMH × , 

( )NM ,min=Θ . In both cases, MMI and MIR, the plots 

show that (41) and (52) are valid inequalities for the 
waterlevel problem, i.e. the KKTC is met. Notice that the 
waterlevel has a better sub-channel availability than 

changing the size of NMH × . Figure 3 shows a comparison 

between the two lower waterlevel limits. Notice that the 

MRI allows more non-zero elements iiφ  than the MMI. 

Figure 4 illustrates the case when it is desired to increase 
the size of H  by increasing Q . The MMI solution 

increases faster than MIR as γ  decreases. 
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Figure 4.    Ratio Q/Θ compared to γ. 

Figure 5.    Ratio Q/Θ required for an objective SNR/γ. 

Figure 6.    Symbol Error Rate (SER) vs. γ . 

B. The Signal to Noise Ratio 

The SNR for ZF solutions ZFSNR  is the same for each 

sub-channel and is equal to its average ZFRNS . There is a 

linear relationship between γ/ZFSNR  a 

nd Θ/Q  which is valid except for Θ=Q . Since the 

design objective is to find Θ/Q  based on an average 

SNR, it was more useful to plot Θ/Q  vs. γ/SNR , 

shown in Figure. The MMI and MIR required a value for 
γ  large enough so that the KKTC is met; the value 

chosen was dB30=γ . The theoretical curve for MIR was 

obtained by numerical inversion of (57). 
As it can be seen in Figure 5, as Θ/Q  approaches one, 

the numerical curve labeled as “Average” deviates from 
the theoretical prediction curve labeled as “Equation”. 

The prediction (37) is that 0=ZFSNR  for Θ=Q , but the 

square matrix is a special case and it is not well described 

by the Marčenko-Pastur law. However, the numerical 

average of ZFSNR  does approach zero for Θ=Q . The 

MMI and MIR exhibit an undetermined RNS  for Θ=Q  

because of the factor ( ) 11 −− β  present in (46) and (57).  

The numerical and the theoretical curves are very close 
to each other for all cases ZF, MMI and MIR. This 
validates the theoretical approximations developed in this 
work, especially in obtaining (57) from (50), (51) and 
(56).  

C. Symbol Error Rate Simulations 

The Symbol Error Rate (SER) was simulated for a 

64QAM modulation scheme. Since 12 =HHσ , the variable γ 

defined in (35) is 2
0 nP σγ =  and can be seen as the 

system SNR, but different from the iSNR  experienced by 

each thi sub-channel. The relation between γ and the sub-

channel average RNS  was given in the previous 
subsection.  

 

The SER curves in Figure 6 are plotted against dBγ  

because this quantity is a characteristic of the system, 

contrary to iSNR  that depends on the algorithm that is 

used. The numbers of transmission and reception 
antennas for this simulation are 4 and 6, respectively. 
This arrangement provides a rectangular channel matrix 

46×H  that allows utilizing the closed form equations 

requiring Θ>Q . Even when the MMI method provides a 

better relation γRNS  than the MIR, as shown in Figure 

5, it is clear in Figure 6 that this apparent advantage does 
not hold for SER.  

There are two curves for each waterfilling case in 
Figure 6. The curves labeled as “Montecarlo” belong to 
the average SER calculated with exact match between 

MIMO 46×H  channel and its corresponding matrix Φ . 

The curves labeled “Equation” were calculated with Φ  
obtained from (39) and (48) but utilizing eigenvalues 
estimated with (18). Notice that both curves show similar 
performance. This indicates that once Φ  has been 
estimated it is possible to use the same waterfilling 

coefficients iiφ  for a randomly changing MIMO channel.  
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Figure 7.   p.d.f. of ΘΘλ  ( minλ ) for several matrix sizes. 

CONCLUSION 

Several methods to estimate waterfilling solutions 
were developed. These methods take advantage of 
theoretical probability density functions known to be 
asymptotically accurate as the dimensions of the MIMO 
channel increases. However, even for a relatively small 
channel size, such as 46× , a numerical example showed 
that estimated and exact SER are very close to each other. 
This result is especially important because it indicates 

that the channel coefficient jih ,  may vary at random 

without extremely changing the system performance. 
A method to select the size of a MIMO channel, or to 

predict its performance, was also presented. It was 
necessary to calculate the system performance in an 

average SNR sense, i.e. RNS . Similar calculations allow 
us to estimate the channel size so that the KKTC is met 
for a random channel environment. 

APPENDIX A  EIGENVALUES’ PROBABILITY DISTRIBUTION  

The p.d.f. of the thi  single eigenvalue iiλ  is still an 

open research topic with the exception of the smallest 

eigenvalue ΘΘλ . Figure 7 shows the p.d.f. of the 

minimum eigenvalue for matrices of size 44× , 54× , 

and 64× . The shape of the p.d.f. changes as the 

difference Θ−Q increases, which, in this case, is 0, 1 and 

2, respectively. Exact equations for the p.d.f. of ΘΘλ  for 

rectangular random matrices can be found in [11]. 
An example, preferred for its simplicity, is the p.d.f. of 

square random matrices of size Θ×Θ  with complex 

Gaussian entries. The p.d.f. is given by the exponential 
distribution [15] 
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ΘΘ

Hσ
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Notice that the square matrix case indicates a high 
probability of obtaining a zero valued eigenvalue. This is 
a problem for waterfilling calculations since they use the 

sum of the inverse eigenvalues ∑ −

i

m
iiλ .  

The inclusion of ΘΘλ  in the sum may result in a very 

large number leading to an ill posed problem.  Unless the 
transmission power is high enough to compensate for the 

size of ΘΘλ , it is most likely that at least one coefficient 

iiφ  will be zeroed when obtaining a waterfilling solution.  

 
 

 

As it can be seen in Figure 7, it is unlikely for 
rectangular matrices 0>Θ−Q  to have a small 

probability of having a small ΘΘλ , i.e. an ill pose system 

will be rarely observed. In fact, the probability 
( )0=ΘΘλp  is zero, indicating the advantage of using 

rectangular channel matrices. 

Approximated p.d.f. for the other eigenvalues were 
proposed in [13]. In general, the p.d.f. of any eigenvalue 
can be approximated by a Gaussian distribution with its 
mean value centered at one of the associated Laguerre 
polynomial roots. Numerically obtained p.d.f. and their 
variance relation with the size of the system channel 
matrix were presented in [7]. The exact p.d.f. for an 
arbitrary eigenvalue is not yet available in the literature. 

APPENDIX B  APPROXIMATION OF SOME EXPECTATIONS 

OF EIGENVALUES 

The calculation of (4) for integer exponents m, results 
in simple equations that depend on β−1 , which is related 

to ( ) Θ−=− QQ β1 . In (25), (26) and (27) this calculation 

simplifies to the integration of the normalized eigenvalue 
mx  multiplied by the p.d.f. (16). The simplicity of the 

expectations of (4) allows obtaining the closed form 
equations presented in this work.  

A problem occurs when m is not an integer. For 

example, let us calculate the expectation of 2
1−

x  as 

{ } ( )( )
∫

−−
=

−
b

a

dx
x

axxb
xE

2
3

2
1

2

1

πβ
.                 (61) 

The solution is   

{ } ( )( )

( )( ) { } { }[ ]
( )( ) 













−

−−

−Ε−−−

−−
=

−

1
1

21

1

2
1

2
1

ax

Faxab

x

axxb
xE

b
x

b
x ϖϑϖϑ

πβ

  (62) 

 

20 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 5, OCTOBER 2008

© 2008 ACADEMY PUBLISHER



 Figure 8.   Approximation errors of the exponent r when approximating                 
the expectation E{x -1/2} with 1/( 1-β ) r . 

 Figure 9.   Approximation errors of the exponent r when approximating                 
the expectation E{x1/2} with (1-β ) r . 

where E and F are elliptical integrals of the second and 
first kind,  

1arcsinh1 −−=
b
xϑ    and        

ab

b

−
=ϖ .       (63) 

The obtained result is too complex to be applied in 
further analysis. Following the results for integer values 
of m, it was searched for an approximation of  (61) based 

on the factor ( )rβ−1/1 , with the exponent r as the 

approximation parameter. Error plots for several values 
of r are presented in Figure 8. The best approximation is 
obtained for r = 1/3, i.e.  

 

{ }
( )3

1
2
1

1

1

Q
xE

Θ−
≈

−
.                 (64) 

 

After applying the normalization in (12), (50) was 
obtained. Yet, the result obtained with (64) is also hard to 
manipulate. The approximation in (51) is valid only 

because the number ( ) 11 →− β  as ∞→Q . 

Figure 9 shows the error for the expectation { }2
1

xE  

approximated by ( )rβ−1 . The best value for the 

parameter is 9/1=r .   
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