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Abstract— This paper presents a new cross-layer resource
allocation model for multiuser packet-based Orthogonal
Frequency Division Multiplexing (OFDM) systems, where
the packet arrival process, delay QoS in the application layer
and the subcarrier conditions for all users in the physical
layer are considered in the MAC layer design. The objective
of the proposed cross-layer resource allocation is formulated
into a constrained optimization problem, which incorporates
the three layers into an integrated framework. To solve the
problem effectively, we propose an elitist selection adaptive
genetic algorithm (ESAGA), in which the probabilities
of crossover and mutation are varied depending on the
diversity of population. Numerical examples demonstrate
the effectiveness of our proposed algorithm. Due to its low
computational complexity, our proposed algorithm is very
suitable for implementation in a practical system.

Index Terms— OFDM, cross-layer, packet-based, resource
allocation, adaptive genetic algorithm (AGA)

I. INTRODUCTION

Broadband wireless networks providing QoS guar-
antees require efficient resource management schemes.
OFDM is a promising modulation technique used in wire-
less LANs, and can support high-rate data transmission.
Therefore, resource management in the OFDM systems,
including a variety of subcarrier allocation, power allo-
cation, and bit-loading algorithms, has drawn enormous
attention in recent years [1]–[3].

In most of the existing resource allocation algorithms
for OFDM systems, it is assumed that all users are delay-
insensitive and always have backlogs in their infinite
queues. The stochastic traffic arrivals to each user and the
delay QoS in the application layer are seldom considered
in the MAC layer design [2] [3]. These algorithms are
concentrated on exploiting the dynamics of physical layer
and optimizing the physical and MAC layers jointly. On
the other hand, in the traditional MAC scheduling design
such as packet scheduling, the physical layer is modeled
as a simple abstract pipeline to carry information with
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a fixed level of reliability [4]. The analysis is focused
on the abstract physical layer resource allocation among
stochastic traffic arrivals to each user and the delay
analysis from the queuing perspective. It only exploits the
source statistics of the application layer. This motivates
us to consider a new cross-layer approach in the packet-
based environment with bursty arrival of packets, where
the application, MAC and physical layers are jointly
optimized to achieve good QoS of the whole system.

The genetic algorithm is a family of computational
models inspired by the evolution and is used to find true
or approximate solutions to optimization problems [5].
It has been proposed to resolve the adaptive resource
allocation problem in the OFDM systems [6] and the
packet scheduling problem in the High-Speed Downlink
Packet Access (HSDPA) systems [7]. Moreover, it has
been proved to be very suitable for the optimization of
the subcarrier and bit allocation problem in multiuser
OFDM systems. Elitist selection is a variant of the general
process of constructing a new population in the genetic
algorithm. It allows some of the better organisms from
the current generation to carry over to the next, unaltered.
Elitist selection improves the convergence of the genetic
algorithm.

In [8], the MAC layer has been designed to be adaptive
to the physical layer and the source statistics of the appli-
cation layer, and a solution based on the elitist selection
genetic algorithm (ESGA) is proposed. In this paper, we
extend the idea of [8] to use the adaptive genetic algo-
rithm. In our proposed elitist selection adaptive genetic
algorithm (ESAGA), the probabilities of crossover and
mutation are varied depending on the population diversity.
Moreover, the complexity of ESAGA is analyzed. Numer-
ical examples demonstrate that our proposed algorithm
can further improve the performances of ESGA in terms
of packet delay distribution and average throughput.

The rest of the paper is organized as follows. In Section
II, the system model of cross-layer resource allocation for
multiuser packet-based OFDM systems is given, and the
optimization problem is formulated. In Section III, the
complexity-reduced ESAGA is proposed and its compu-
tational complexity is analyzed. Numerical examples are
given and discussed in Section IV. Finally, conclusions
are drawn in Section V.
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Figure 1. Cross-layer resource allocation model for multiuser OFDM systems

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig.1 illustrates the cross-layer resource allocation
model for multiuser packet-based OFDM systems, where
the packet arrival process in the application layer and
the subcarrier conditions for all users are considered
in the MAC layer resource allocation design. Assume
that there are N subcarriers, K users in the system.
It is advisable to assign only one user to a subcarrier
[9]. Let S̄t = (st

1, . . . , s
t
N ) represent the subcarrier

allocation, which is a vector of the indices of users
scheduled over all subcarriers. Likewise, we define
B̄t = (bt

1, . . . , b
t
N ) and P̄t = (pt

1, . . . , p
t
N ) to be the

bit and power allocation vectors. At every time slot, the
resource allocation module has to generate S̄t, B̄t and
P̄t based on the observation of current channel state
information (CSI) H̄t in the physical layer and queue
state information (QSI) Q̄t = (qt

1, . . . , q
t
K) from the

application layer. Assuming that perfect instantaneous
CSI is available, the channel gain matrix can be expressed
as follows:

H̄t =




ht
1,1, . . . , ht

1,K

. . . , . . . , . . .
ht

N,1, . . . , ht
N,K


 , (1)

where ht
n,k is the channel fading for user k on subcarrier

n at time slot t.
The number of bits allocated to user k at time slot t is:

rt
k =

N∑
n=1

bt
n · 1{st

n=k}, (2)

where 1{·} is an indicator function:

1{st
n=k} =

{
1 if st

n = k,
0 otherwise. (3)

Assume a new packet with λt
k bits arriving during

(t− 1, t], the queue length is updated as follows:

qt+1
k = qt

k − rt
k + λt

k. (4)

A more general framework for the cross-layer resource
allocation is based on the utility functions [10]. The
problem is formulated to find the optimal subcarrier
allocation, bit allocation and power allocation policies so
as to maximize a system utility function of the average
user-specific variables:

U(R̄1, . . . , R̄K ; Q̄1, . . . , Q̄K), (5)

where R̄k is the average data rate and Q̄k is the average
queue length of user k. It is challenging to convert the
system utility function with respect to the average user-
specific variables directly to an instantaneous optimization
object with respect to the instantaneous variables which
makes sense in practice. This problem has been widely
studied in the single channel system such as CDMA
[11]. However, the same idea no longer performs well
in the multi-channel system like OFDM directly, due
to the multiple freedoms of resource management (e.g.,
subcarrier, bit, power). But the same effect can be pursued
if we optimize a predefined instantaneous utility function
firstly, then figure out the relationship between them.

It is reasonable to predefine an instantaneous utility
function U t with respect to the instantaneous queue sizes
{qt

k, k = 1, . . . , K} and the instantaneous achievable rates
{rt

k, k = 1, . . . , K} as follows:

U t =
K∑

k=1

Vk(rt
k, qt

k), (6)

where Vk(r, q) is the instantaneous utility function of user
k. The sum throughput maximization rule is a special case
when Vk(r, q) = c·r + d, where c > 0 and d are constants
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for all k. In the following, we define Vk(r, q) = q·r for
analysis convenience, then (6) can be rewritten as:

U t =
K∑

k=1

rt
k·qt

k =
K∑

k=1

N∑
n=1

bt
n·1{st

n=k}·qt
k. (7)

Let Ptol be the overall power offered for an OFDM
symbol. fk(c) represents the needed SNR to guaran-
tee BER constraint of user k with 2c-ary modulation.
fk(bt

n,k)/|ht
n,k|2 is the transmission power of user k on

subcarrier n. Let ρt
n,k be an indicator variable. ρt

n,k = 1
means that the subcarrier n is allocated to user k at time
slot t, otherwise ρt

n,k = 0. Our problem can be described
as follows:

max
(bt

n,k,ρt
n,k)

U t =
∑K

k=1 qt
k

∑N
n=1 bt

n,k·ρt
n,k

for ρt
n,k ∈ {0, 1}, bt

n,k ∈ {1, 2, · · · , C} (8)

s.t. 1)
∑N

n=1

∑K
k=1 fk(bt

n,k)/|ht
n,k|2·ρt

n,k≤Ptol,

2)
∑K

k=1 ρt
n,k≤1,

3)
∑N

n=1 bt
n,k·ρt

n,k≤qt
k.

The number of bits that can be transmitted by each
subcarrier is bounded to C. Constraint 1) is to guarantee
the total allocated power is not more than the supportable
power. Constraint 2) is to ensure that one subcarrier is
allocated to at most one user at a time. Constraint 3)
comes from the fact that the scheduler should not waste
service rate at users whose queues are empty.

The problem of (8) is a combinatorial optimization
problem. The exhaustive search for the optimal solution
requires O((KC)N ) complexity and is prohibitive. In the
following section, we propose an ESAGA to solve the
problem efficiently.

III. ELITIST SELECTION ADAPTIVE GENETIC
ALGORITHM

Without power adaption, the problem (8) can be solved
using the largest weighted delay first (LWDF) algorithm
easily but at the cost of performance degradation. The
LWDF algorithm is a widely used scheduling algorithm
proposed by the Bell Labs [12].

In the general genetic algorithm, the crossover prob-
ability pc and the mutation probability pm are set to
fixed values. Recently, many researchers realize that these
parameters need to variate with the genetic evolution [13],
[14]. So we propose an adaptive genetic algorithm with
elitist strategy to solve (8).

The main idea of our proposed algorithm is to add
the LWDF solution as a good individual to the initial
population of the genetic algorithm and adopt elitist selec-
tion to guarantee that the ultimate solution of the genetic
algorithm is at least not worse than the LWDF solution.
Meanwhile, the population diversity in each generation is
calculated, and the probabilities of crossover and mutation
are adjusted to prevent premature convergence of genetic
algorithm to a local optimum.

TABLE I.
PARAMETERS FOR THE ADAPTIVE GENETIC ALGORITHM

Parameters Value
Individuals number Nind 20
Generations number Ngen 100
Generation gap pg 0.9
Distance threshold D 5
Initial crossover probability p0

c 0.8
Initial mutation probability p0

m 0.2

A. The LWDF Algorithm

In (8), once the power allocation is determined, the
{bt

n,k} can be estimated using fk(c). If the power is
uniformly distributed on each subcarrier, then we have:

bt
n,k = bf−1

k (Ptol/N ·|ht
n,k|2)c, (9)

where b·c is the flooring operation.
The optimal subcarrier allocation {ρt

n,k} is to select the
user with the largest weighted bit rate {qt

k·bt
n,k}, like the

LWDF scheduling algorithm in a single channel system.
Assuming that the user set selected at slot t on subcarrier
n is φt

n, where φt
n ⊂ {1, . . . , K}, the problem (8) can be

solved directly by the LWDF scheduling rule:

ρt
n,k =

{
1 qt

k·bt
n,k≥qt

j ·bt
n,j , j ∈ φt

n

0 otherwise.
(10)

After allocation, we update φt
n according to the con-

straint 3) in problem (8) by removing users whose queues
are empty.

B. Design of adaptive pc and pm

Table I illustrates the parameters needed in the pro-
posed algorithm. We adopt the adaptive genetic algo-
rithm proposed in [14]. The heuristic updating principals
are using large pc and small pm when the diversity
of population in the current generation is large. The
increase of pc leads to rich information exchange between
chromosomes, while the decrease of pm avoids random
search.

We regard a chromosome as a multidimensional vector
and use the vector distance to measure the similarity
of chromosomes. Chromosome i is expressed as Ci =
[gi(1), . . . , gi(N)], and chromosome j is expressed as
Cj = [gj(1), . . . , gj(N)]. The distance between chromo-
somes i and j is

d(i, j) =√
(gi(1)− gj(1))2 + · · ·+ (gi(N)− gj(N))2.

(11)

If the distance is below a predefined threshold D, we think
the two chromosomes are similar; else, the two chromo-
somes are dissimilar. We use the following equation to
estimate the diversity of the population

div =

∑Nind

i=1

∑Nind

j=i+1 1{d(i,j)>D}(
2

Nind

) . (12)

If all chromosomes in the population are similar, div = 0.
On the other hand, if all chromosomes in the population
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are dissimilar, div = 1. So div is a variable in the range
[0, 1].

pc and pm are adjusted according to the following:

pc = p0
c + div · (1− p0

c), (13)
pm = p0

m − div · p0
m, (14)

where p0
c is the initial crossover probability and p0

m is
the initial mutation probability. It is shown that if p0

c and
p0

m are chosen in [0, 1], pc and pm can be guaranteed in
[0, 1].

C. Proposed ESAGA

The elitist selection adaptive genetic algorithm is de-
scribed as follows:

1) Initialization. Pick the deterministic LWDF solu-
tion alongside with other randomly generated so-
lutions to form the Nind initial population. Each
solution is mapped to a chromosome, which con-
sists of N genes and each gene’s value is confined
to the integer from 1 to K that represents the user
index.

2) Updating. Calculate the diversity of the current
population according to (12). Then adjust pc and
pm according to (13), (14), respectively.

3) Selection. Calculate the utility function as the fit-
ness of each chromosome, applying water-filling
power allocation. Select (1− pg)Nind individuals
with the highest fitness as elitists and let them go
to the next generation directly. The rest individuals
are put into the mating pool for the next operation.

4) Breeding. The breeding process consists of two
stages: crossover and mutation. Use a two-point
crossover algorithm with crossover probability of
pc. For each bit in the chromosomes of the off-
spring, there is a mutation probability of pm to
chance the bit.

5) Termination. Replace the original population with
(1− pg)Nind elitists to form the population of the
new generation. Repeat steps 2), 3) and 4) until the
predefined generation number Ngen is reached. The
best individual in the last population is our needed
solution.

D. Complexity Analysis

We quantify the complexity of our proposed algorithm
in the form of the number of flops. A flop is defined to
be a real floating point operation [15]. A real addition,
multiplication, or division is counted as one flop. The
number of flops used to compute the logarithm of a
number is about 20 [16]. Although flop counting cannot
characterize the true computational complexity, it captures
the order of the computation load.

The computational complexity of our proposed ESAGA
mainly comes from steps 2), 3) and 4). In step 2),
calculating the distance between two chromosomes takes
2N real additions and N real multiplications, hence the
calculation of population diversity requires 3

2Nind(Nind+

1)N flops. In step 3), water-filling over N subcarriers
takes up to (N2 + 3N) real additions, 1

2 (N2 + 3N) real
multiplications, and 1

2 (N2 +3N) real divisions. The flop
count for water-filling is 2(N2 + 3N). The complexity
of calculating the fitness of chromosome is dependent on
the utility function. Under (7), it takes 2N real additions,
2N real multiplications, and N logarithmic operations.
So the flop count of calculating the fitness of Nind

chromosomes is Nind(2N2 + 30N). The complexity of
selecting (1−pg)Nind elitists is (1−pg)N2

ind flops. In step
4), the complexity of crossover operation can be ignored.
Considering that the mutation is operated on each gene of
the pgNind individuals, its complexity can be expressed
as pgNindN flops.

Hence, the flop count of our proposed ESAGA is

Ngen[
3
2
Nind(Nind + 1)N + Nind(2N2 + 30N)

+ (1− pg)N2
ind + pgNindN ],

(15)

which is independent of K and C. Obviously, it is less
than the exhaustive search mentioned above, especially
when N , K, C become large, but Nind and Ngen are not
very large. Complexity in step 2) introduces the additional
complexity compared to ESGA. Using the parameters in
Table I, the complexity in step 2) is less than 25% of the
whole algorithm. So it won’t add too much computation
burden.

IV. NUMERICAL EXAMPLES

An OFDM system with 32 subcarriers and 4 users is
considered in our simulation. The channel model is a 6-
path Rayleigh fading channel with 10 µs delay spread.
The length of cyclic prefix is 8 and the normalized
doppler spread is 0.01. Each time slot comprises one
OFDM symbol. We assume BERk = 10−3 for all users
and SNRk = (10 + 3k)(dB). When uncoded 2c-ary QAM
is employed, the required SNR function can be ap-
proximated as fc

k = 1−2c

1.5 log(5·BERk) [17]. The queuing
system is modeled the same as [18]. The data sources
generate packets with poisson arrivals and exponentially
distributed packet lengths. The average packet length is
100 bits. User k’s average arrival rate in bits is given
by λk = 15. Packets with delay up to 30 slots will be
dropped.

We compare the performance of four algorithms:
FDMA, LWDF, ESGA in [8] and our proposed ESAGA.
In the FDMA allocation algorithm, subcarriers are allo-
cated in proportion to the user’s queue length. It only takes
the QSI in the application layer into consideration. The
FDMA algorithm is served as a benchmark to measure
how much gain results from exploiting CSI. For compar-
ison, we use the packet delay distribution and average
throughput as performance metrics. The cumulative dis-
tribution curve of packet delay is an easy way to illustrate
the delay performance. If a packet is dropped due to the
delay bound, its delay will be considered as 30 slots for
statistical convenience. The average throughput is defined
as the number of bits sent successfully per slot averaged
over time.
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Figure 2. The CDFs of packet delay for all users

The cumulative distribution of packet delay for all
users are plotted in Fig.2. For each algorithm, user 1
with the lowest SNR corresponds to the worst user
case, while user 4 with the highest SNR corresponds to
the best user case. It is shown that for each user, our
proposed ESAGA achieves the best delay performance.
Our proposed ESAGA outperforms ESGA due to the
adaptive crossover probability and mutation probability in
the advanced adaptive genetic algorithm. The delay per-
formance of FDMA is the worst because it only exploits
QSI. For the worst user case, more than 70% packets are
dropped due to the delay bound. Even for the best user
case, the drop rate of FDMA can be as high as 42%. So
it is essential to make use of the physical layer dynamics.
Both our proposed ESAGA and the ESGA can achieve
much better delay performance than the LWDF algorithm
due to the full use of resource allocation freedoms.
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Figure 3. Each user’s average throughput

In Fig.3, the average throughputs are illustrated for all
users for the four algorithms. The average throughput of
ESAGA is very close to the upper bound (the packet
arrival rate). Our proposed ESAGA can achieve about 3%
gains over ESGA. For each user, our proposed ESAGA
retains high throughput even for the worst user case, while
the average throughput in others algorithms decreases for
the low SNR users. The FDMA algorithm has the worst
performance for each user. So it is not enough to only
exploit the application layer dynamics in the cross-layer
design.

V. CONCLUSIONS

In this paper, a new cross-layer resource allocation
model for multiuser packet-based OFDM systems has
been proposed. In this model, the application, MAC and
physical layers are jointly optimized. Then the cross-
layer resource allocation problem is formulated into a
constrained optimization problem. In order to solve the
problem effectively, we extend the idea of ESGA in [8]
to use the adaptive genetic algorithm. The probabilities
of crossover and mutation are varied depending on the
population diversity. The numerical examples demon-
strate the good performances of our proposed ESAGA in
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forms of packet delay distribution and average throughput.
Our proposed ESAGA can improve the performances of
ESGA further at the cost of minor increase in complexity.
So it is very suitable to a practical system.
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