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Abstract— This paper analyzes the influence of time-varying
cyclic delay diversity (TV-CDD) on the channel fading
correlation properties in orthogonal frequency division mul-
tiplexing (OFDM) based systems. The underlying trans-
mit diversity technique CDD only increases the frequency
diversity at the receiver. In contrast, TV-CDD introduces
additionally time diversity which can be exploited without
the need of additional complexity at the receiver. This
paper gives investigations regarding the resulting chanre
characteristics from TV-CDD and the impact on the system
performance. Due to the increased frequency and time
selectivity, an unintended higher channel estimation effa is
possible. Therefore, we analyze the impact of choice of the
maximum cyclic delay. We show that the resulting channel
for TV-CDD can be seen as an uncorrelated Rayleigh
fading channel (except for the first sub-carrier) for a large
maximum cyclic delay. Furthermore, analysis and simulatio
results demonstrate a feasible choice of small time-varym
cyclic delays for guaranteeing the standard conformabiliy
of the TV-CDD technique at the receiver without significant
performance degradations.

I. INTRODUCTION

receiver (RX) without any additional antennas and pro-
cessing complexity. Signal delays in DD may cause inter-
symbol interference (ISI). This scheme was also took up
for orthogonal frequency division multiplexing (OFDM)
based systems and the new scheme, namely cyclic delay
diversity (CDD) [3], [4], introduces cyclic delays in the
signal replicas to avoid additional ISI. A further approach
to additionally increase the time diversity was given by
time-varying cyclic delays, i.e., time-varying CDD (TV-
CDD) [5].

Typically, multi TX/RX-antenna techniques like space-
time coding [6], [7] require signal processing in both the
transmitter and the receiver. However, CDD as well as
TV-CDD can be implemented solely at the transmitter.
The fact that the counterpart needs not to be aware of the
implementation makes these techniques standard compat-
ible, i.e., they can be implemented as an extension for
already existing systems without changing the standard.

Transmit diversity schemes increase the frequency
and/or time selectivity of the resulting channel seen at the
receiver. Furthermore, the overall channel delay is larger

Multiple-antenna concepts for communications systemsherefore, it is necessary to investigate the influence of
offer high spectral efficiency. Since these techniques inthe choice of cyclic signal delays on the performance for
crease the achievable data throughput, they have becomintaining the standard conformability of the applied
desirable in the last decade. One of these concepts, de'G}(/ersity technique.
diversity (DD) [2], is based on increasing the frequency |n principle, a system standard does not necessarily
diversity by using several transmit (TX) antennas anchayve to be changed when CDD is going to be imple-
sending modified replicas of the desired transmitted sigmented. Nevertheless, this TX-antenna technology has
nal. Due to the specific modification, i.e., introducing aattracted interest in present standardization activiiée
time delay, the transmitted signal can be processed at thgyaft of the IEEE 802.11n WLAN standard [8] includes

This paper is based on “Resulting Channel Characterigtics Time-
Varying Cyclic Delay Diversity in OFDM,” by S. Plass, A. Danamn, G.
Richter, and M. Bossert, which appeared in the ProceediBB& 166th
Vehicular Technology Conference (VTC 2007-Fall), BaltieoMD,
USA, October 2007. [1]© 2007 IEEE.

Part of this work was carried out during Richter’s employinanthe
Department of TAIT, Ulm, Germany.
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CDD under the term 'Cyclic Shift Diversity (CSD)'. In
the framework of 3GPP LTE3{? Generation Partnership
Project — Long Term Evolution) [9], CDD is used as a
special case of precoding technology.

In this paper, we investigate transmit diversity tech-
niques based on the frequency domain for OFDM based
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systems. This paper, which is an expanded version of [1] it iy ity ISk
extends previous work by a more detailed descriptior , %
Prefix

of the state-of-the-art and the given problem to investi- 3
gate. We introduce briefly different variants of transmit 3
diversity techniques. Then, the focus will be on the time- ‘
varying cyclic delay diversity principle. We will give

Cyclic
Prefix

first analyzes about the influence of TV-CDD on the = OFDM | Jy \ [Cyetic | 50D Y
resulting channel fading correlations. Furthermore, the Modulaiion | /N, | L Prefix_|
choice of the maximum random delay shift for TV- rondendlofafrencricl QRN Elian-miticy

CDD is analyzed to avoid additional channel estimation
requirements for TV-CDD systems. Finally, simulation
results are presented which confirm the analyzes.

Figure 1. Principle of cyclic delay diversity.

(FFT). This results inNgpr time domain OFDM sym-

Il. FREQUENCYDOMAIN DIVERSITY TECHNIQUES bols, represented by the samples
FOROFDM Nepp—1
Required reliable link performances for future commu- s(l) = ! > S(k)-€ et (2)
nications systems can be established by transmit antenna VNFFT =

signal are sent from additional implemented transmilgefore inserting a cyclic prefix as guard interval, the time

antennas. For OFDM based systems, shifts in time domaiflomain OFDM symbol is shifted cyclically, which results
are possible signal modifications. Since the additionay, the signal

time domain shift influences the signal spectrum, we

refer to these schemes as frequency domain diversity s(l = 6;°mod Nypr) =

techniques. The goal of these techniques is to increase 1 Neer—l jam pgeve PEEEIRY

the frequency selectivity of the channel, and therefore, VNerT Z e " Neer T §(k)e’ Nee T (3)
to decrease the coherence bandwidth. To exploit the k=0

additional diversity in an OFDM system, forward error The antenna specific TX-signal is given by
correction (FEC) is needed. The elementary diversity 1

method, namely delay diversity [2], transmits delayed sn(l) = N s(l — 0;“mod Nrpr) , (4)

replicas of a signal from several transmit antenias

with delayss,,n = 0,..., Nt — 1, whered, is given in  Where the signal is normalized by/\/Nr to keep the
samples. In DD inter-symbol interference (ISI) can occurdverage transmission power independent of the number
if the maximum possible delay exceeds the guard interva®f transmit antennas. To avoid ISI within CDD, the guard
length N¢; of the OFDM system: interval lengthN¢ has to fulfill

NG 2 Tmax maX 5n , (1) NG 2 Tmax - (5)

. . Therefore, the length of the guard interval for CDD does
wherer,,, denotes the maximum channel delay in sam- . .
not depend on the cyclic delay§™®, whered$¥° is given
ples. . : :
in samples. Furthermore, the cyclic delays avoid delayed
transmitted replica signals compared to DD which is

A. Cyclic Delay Diversity beneficial for synchronization processes at the receiver.

A neat solution to provide DD without exceeding the Therefore5;¥¢ does not delay the overall OFDM symbol
guard interval, and therefore, without reducing the bandbut the influence of57y¢ can be seen as a delay on
width efficiency, is the cyclic delay diversity technique €ach sub-carrier due to the corresponding phase shift in
which was proposed in the year 2001 [3], [4]. By applyingfrequency domain by the facter / et O
CDD no changes at the receiver are needed, there exists no
rate loss for higher number of transmit antennas, and thef®. Phase Diversity
are no requirements r_egarding constant channel _properties-l-he time domain cyclic shifts can be also transformed
over several sub-carriers or symbols and transmit anten the frequency domain by including the delays as

numbers. This is an advantage over already establish phase multiplication before the inverse FFT, which

diversity techniques, e.g., orthogonal space-time blocKqg s in phase diversity [11]. This techniques offers the
codes [6]. Figure 1 shows the front end of a CDD OFDMyeyipijiy of an arbitrary choice of the phase factor,
transmitter. For simplicity of the notation, we considez th with its phase increment

transmission of one OFDM symbaNggr data symbols

S(k),k=0,..., Nypr— 1 are obtained from a precedent Ay, = 2
coding, modulation, and framing part. These complex Nrpr
valued symbols are transformed into the time domain byfhis flexibility has to be payed by — 1 additional in-

the OFDM entity using an inverse fast Fourier transformverse FFT and cyclic prefix processings in the transmitter.

-0, [rad . (6)

© 2008 ACADEMY PUBLISHER



JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 3, JULY 2008 21

wlH

C. Soft Cyclic Delay Diversity

201 S 7 - :

CDD introduces additional propagation paths. As long Wl " i . g
as non-line-of-sight propagation is considered by assum- o ¥ ‘”:';( : = R
ing Rayleigh fading processes, wireless communications R -
systems usually benefit from an increased amount of S ] :

diversity offered by the effective channel. The situation
changes when there is line-of-sight, which is usually
modeled by Ricean fading processes. Here CDD causes B
deterministic shaping of the spectrum for the constant part )
of the Ricean fading process. This decreases the SNR wl
gain or even turns the SNR gain into an SNR loss when : ; L Lt

the Ricean factor is high, i.e., the constant (line-of-8igh A ey Numbey 100 w020
part of the channel exceeds the Rayleigh fading (non-line- (a) Without CDD or TV-CDD

of-sight) paths. One approach is to use unbalanced TX

powers for the different TX-antenna branches in CDD. P A
Investigations in [12] have shown that an unbalanced . S
TX power decreases the SNR loss drastically in case
of line-of-sight. The price to pay is a slightly reduced
SNR gain in case of non-line-of-sight (Rayleigh fading)
propagation.

OFDM Symbol Number
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D. Time-Varying Cyclic Delay Diversity

The channel seen by the receiver for the CDD con-
cept is transformed from a multiple-input single-output
(MISO) channel to a single-input single-output (SISO) L e e
channel, i.e., the spatial diversity is transformed into Subcarrier Number
frequency diversity. Nevertheless, it is also possible to (b) With CDD
influence the time diversity in such a system by applying
the time-varying CDD (TV-CDD) technique introduced A
in 2006 [5]. In OFDM multi-user systems several users SEE
suffer from deep fades on their sub-carriers and others -
do not. To achieve a higher fairness among the users, a
time-varying component for CDD can break the long deep
fades to shorter ones which are scattered to the adjacent
sub-carriers. Since good sub-carriers can help the weak
sub-carriers, the outer FEC can exploit the additional time e LT
diversity [5], [13]. ol

The time-varying component is introduced to CDD by T
cyclic shifts which are a function of the time or the ceEed G IR e
discrete time value of a transmitted OFDM symbol. The T w0 w SjgcarrS?Nurfger L0 10 180 20
cyclic shifts §¥¢(¢) are elements of the integer interval _

S = [0,..., Ngpr — 1]. The cyclic shifts are randomly (c) With TV-CDD
chosen for each OFDM symbol. Therefore, the TV-CDD
signal at the transmit antennas is given by

sn(l,t) = (7)

1 NFFZT716—jﬁkéflyc(t)5(k)ejﬁkl

VNTNerr 355 multi-path channel. It is visible, that no applied trans-
The resulting TV-CDD concept preserves the frequencynit diversity results in burst errors for deep faded sub-
diversity of pure CDD and adds additional time diversity carriers (cf. Figure 2(a)). Including the CDD technique,
to the resulting channel. We chose the start of the intervahe frequency selectivity increases and the error bursts
S at0 instead ofl to ease the calculations and notationalreduces consequentially (cf. Figure 2(b)). Finally, the TV
convenience without loss of generality in the following CDD scatters the errors to neighboring sub-carriers and
section. The Appendix provides the basic calculations fono deep fades over a whole sub-carrier exist anymore
S=11,..., Nppr — 1]. (cf. Figure 2(c)). Therefore, an applied FEC will gain

Figure 2 shows different error patterns for a transmisfrom more distributed error patterns and the coding gain

sion of an uncoded OFDM frame over a time-invariantfor TV-CDD is larger.
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Figure 2. Example of error patterns for uncoded OFDM franaag¥
mission.
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I1l. RESULTING CHANNEL CHARACTERISTICS Case 2:The correlation properties in time direction are

iven byk, = ko = k andt; # t,. We get
The influence of CDD based transmit diversity tech-g v g el g

niques on the system can be observed at the receiver 1 i 2E kS (1)
as a change of the channel conditions [14], [15]. In the Rk,t1 # t2) = Nrp Z Efe " Nerw }
following, we will investigate this modified channel in oo kécyc(t"):o
terms of its channel transfer functions (CTF) and fading ~ E{e™” Neer ™" "2V E{H, (k,t1)H, (k,t2)}. (12)
correlation in time and frequency.dlrectlon. ) ) . The probability of the uniformly distributed random cyclic

We assume for the channel fading a quasi-static fad'nghift 5 (t) € S is gi

. T . > given by

process, i.e., the fading is constant for the duration o
several OFDM symbols. With this quasi-static channel P(8) = 1/Nppr. (13)
assumption the well-known description of OFDM in
the frequency domain is given by the multiplication
of the transmitted data symbd¥) (k,t) = 1/v/Nr -

Ntr—1

The first expectation value in (12) can be developed from
a geometric series to

Nppr—1

S(k)e_jNE;Tk‘siyc(t) and a complex valued fading co- 2 kS () 2 ks
efficient H, (k,t). Therefore, the received signal at the {e " Nper b= Z e " Nerr " - P(0)
receiver for TV-CDD is 4 6=0
_ 1 L—e 2™ (1 for k=0 (14)
g B NppT 1— e—jﬁk o 0 for kK#0 °

R(k,t) = > Sh(k,t)- Hu(k,t) + n(k,t). (8)
n=0 Note the range ot is 0, ..., Ngppr—1. Sinced®¥“(t,) and

. . , deYe(t2) have the same statistical properties, the second
The frequency domain fading processes for different prop-" . :
. ; . Xpectation term can be expanded in the same manner.
agation paths are uncorrelated in the assumed quasu-staﬁc !
. . . n the case ok # 0, the resulting channel for TV-CDD
channel. Since the number of sub-carriers is larger than . .
. . ._can be seen as an uncorrelated Rayleigh fading channel.
the number of propagation paths, there exists correlatlorll
4 . - hus,
between the sub-carriers in the frequency domain.

Since the interest is based on the fading and signal
characteristics observed at the receiver, the additivéewhi In the case of no Doppler shift in the channel,
Gaussian noise (AWGN) term(k,t) with zero mean is E{H, (k,t1)-H}(k,t2)} = 1, and therefore, the resulting
skipped for notational convenience. Formally the cyclicchannel for the first sub-carriek & 0) is fully correlated:
shift can be assigned to the channel transfer function, and

R(k # 0,t1 # t2) = 0. (15)

therefore, the overall channel transfer functiéii(k, ¢) R(k=0,t1#t2) =1. (16)
can be displayed in the received signal Otherwise (Doppler shift is unequal zero), the channel
N1 characteristics are given bR(k = 0,t1 # t3) =
Rk, t) = S(k) - 1 Z efjﬁkéflyc(t)Hn(kJ) . E{H,L(k,tl.)-H;(k,tg)}. For further investigations of th_e
VNt = time-direction correlations we assume no Doppler shift.
Case 3:In frequency directioni; # ko andt; =t =
H (k,t) ©) t) the correlation properties are given by
The expectation Np—1

R(ki # kaut) = o= 3 Bfe /Fr -0},
R(lﬁ,k’g,fl,ﬁg) = E{H/(kl,fl)H/*(kQ,tg)} (10) T n=0

. . . ) E{H, (k1,t)- H}(ko,t)} =0. 17

yields the correlation properties of the frequency domain {Hn (k) (k2. 8)} (47

channel fading, wheré)* means complex conjugate. Therefore, the TV-CDD technique generates in fre-
guency direction for alt an uncorrelated Rayleigh fading

channel.
A. Fading Correlation Properties for TV-CDD

The fading correlation properties can be divided inB. Impact of Random Cyclic Delays

spectively power, the second investigates the correlatiop,gre frequency selective channel, the effective maximum

properties between the OFDM symbols (time direction) gelay of the resulting channef,,. becomes larger. An
and the third examines the correlation properties betweefipper bound can be given by

the sub-carriers (frequency direction).

Case 1:Since we assume uncorrelated sub-carriers the Thax = Tmax T Oax » (18)
autocorrelation of the CTRky = ko = ki1 =12 =) IS \yhere 5oy, represents the maximum cyclic shift of the
| Neo interval S. For an appropriate channel estimation process
R(k,t) = — Z E{|H,(k,t)?}=1. (11)  at the receiver the guard !nterval Ieng?th; is set to be
Nr ~ larger thanry,ax. If the maximum resulting channel delay

© 2008 ACADEMY PUBLISHER
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T2 dOes not intensively exceed the length/éf;, there
is no configuration at the receiver needed regarding the
channel estimation. For/ ., > Ng, the receiver needs
the additional information of the modified pilot grid for
the channel estimation process [16], and therefore, TV-
CDD is not standard conformable anymore. This can be
circumvented by using differential modulation [17] which
is not in the focus of this paper.

The impact of different:s, to the resulting channel
correlation properties is investigated in the following to
optimize the choice 06, and to endeavor a standard

conformable technique.

We assume an interv8l, = [0,..., %< | with integer sub-carrier o s sore
values, wheresye, = NEEL — 1 with a € 2™, m =
[1,...,log, (NFFT)] Again, Fhere are three cases for theFigure 3. Correlation properties in time direction witfppr = 512
channel correlation properties. for varying 6<%
Case 1:
R(k,t)=1. (29) N o -
09 % max ElE
o 59° =3 )
Case 2:The first expectation of (12) has now the o - * B Ll .
. % : \
probability orlt o ® —— 55015 [
- cyc ,' 1
_ o6H|" S B =255 % 1
P(5) = a/NFFT (20) ,5_ 1 ’X N f
S 05 || % N :
for 5 =0,..., Nppr/a — 1: Soat]}) . ¥ !
£ * N
oa |} * * !
NEFT _q 1 3 d :
27 cyc < _ 27 a 0.2 \
E{e J Nppm ke, (tl)} = Z e ) Neer ke @ “ ',
6=0 NFFT o X .
1 —J 2 % 106 200 300 400 500
a . —° ¢ . (21) sub-carrier

= )
NrrPT 1 _ ¢ INppr”

correlation

&5 ‘
z= — j

200

7?/

23

) ) __Figure 4. Correlation properties for differetfys, [samples] in time
In the case of the first sub-carrier and no Doppler shiftdirection with Nppr = 512.

the channel is fully correlated in the time direction, i.e.,

R(k=0,t; #£t) = 1. (22)

Since we assumes{H, (k,t1) - H(k,t2)} 1 and
55¥°(t1), 65¥°(t2) have the same statistical properties,

NTfl
1 i 2m  pseye
R(k# 0.t # ) = = 3 B{je /maa ™ ()
n=0

(23)
Figure 3 illustrates the correlation characteristics &)(2
versus the sub-carriers anf}y, for Nppr = 512. From
Figure 4, we see that most of the sub-carriers are sufficient
uncorrelated fosYe, > 7 ora < 64. Note, the correlation
properties do not depend on the time difference between
the considered OFDM symbols because the delays are
chosen randomly for each consecutive OFDM symbol.

Case 3:The frequency-direction properties of the re-

sulting channel are

NT—l
1 i 2m _ cyc
R (k ¢k2,t):N_ }: E{le Jwes (k1 —k2)03; M2y
T
n=0

(24)
which are similar toR(k # 0,t1 # t2).

© 2008 ACADEMY PUBLISHER
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Figure 6. BER for users ddcheme with differents&S, and Nt = 4. Figure 7. BER for users ddcheme #vith different 55, and Nt = 4.

IV. SIMULATION RESULTS =

The simulation results for verifying the derived chan-
nel analysis of TV-CDD are based on the following [
parameters. The carrier frequency5isGHz, bandwidth " £ Scheme 3
is 20 MHz, Nppr = 512, N¢ = 128, and BPSK
modulation. All 512 sub-carriers are used for data trans-
mission. To exploit the received diversity at the receiver
a (171, 133),.+ convolutional code is used. The codeword
length is set to 200 code bits. The channel has an
exponential decaying power delay profile with 25 taps, 5[ ]
has a maximum channel delay,., = 5 us, and remains f‘g B s s g
constant over one OFDM frame (quasi-static). Perfect ! ‘ ! ‘ ! ‘ ! ‘ !
channel knowledge is assumed at the receiver. 100 T 00 50

Two mapping schemes for the users onto the OFDM
frame (consisting of 200 OFDM symbols) will be inves- Figure 8. SNR gain in dB for a traget BER 0~ * for varying o1z
tigated, see also Figure 5. Fir§cheme 1s the extreme 2"4NT =4
case by allocating on each sub-carrier only one user,
and therefore, this scheme has 512 us8&cheme 4s
a more realistic approach by distributing each user ove
25 consecutive OFDM symbols and 8 sub-carriers whic
are periodically interleaved over the available sub-easti
The second scenario serves 64 users.

SNR gain [dB]

10— =

NR and no introduced cyclic delay we can outperform
Scheme Hue to the exploitation from the mapping of the
frequency and time diversity. There is a large performance

Figure 6 shows the bit error rat (BER) performancesJ2!" bY increasing the maximum cyclic delay frato
igu W, i (BER) p 7 and for 69¢, = 7 the performance of<YS, = 511

for each user for the first scheme with differefjf, .
. ) ; i e
4 transmit antennas and a signal-to-noise ratio (SNR) of almost reached. Therefore, smaff;, can already

11 dB. Since each user allocates only one sub-carrier, thgcmeve performances close to the maximum possible
performance results correlate directly with the analyﬂcaperformance.

results of Figure 4 and (23). For no additional cyclic The overall performance differences averaged over all
delay, the system does not increase the frequency/timesers for both schemes is pictured in Figure 8. The
selectivity, and therefore, the BER has the worst perperformance differences are measured in a SNR gain in
formance constant over all users and marks an uppetB for a target BER ofl0~%. Through the averaging
performance bound. The larger the cyclic delay the moreoncept,Scheme 2as a smaller SNR gain th&cheme
sub-carriers are uncorrelated. With the maximum time<. The first scenario can gaif2.3 dB by using the
varying cyclic delay of 511, the best performance overmaximum possible cyclic delay an8cheme 2gains

all sub-carriers (except the first, see also (16) and (22)3.3 dB compared to a system without introduced cyclic
can be achieved. Since the performances are based orddlays. Both performances show a fast convergence to
used transmit antenna&’, < 7 guarantees a standard the maximum SNR gain for smadsys (05 < 31 for

max —
conformable systemr{ . < Ng by using (18)) and a Scheme land §<, < 7 for Scheme R These results
preferred maximum performance over most sub-carrierssubstantiate the possible choice of smglf, to preserve
By using the mapping o6cheme 2 constant perfor- the standard compatibility of communications systems by
mance over all users can be achieved. These results ansing TV-CDD without a larger performance degradation.

shown in Figure 7 for an SNR af dB. Even with lower

© 2008 ACADEMY PUBLISHER
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