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Abstract— RF-ID systems are susceptible to frequency in-
terference from other communciation systems particularly
when the RF-ID tags transmit on a fixed carrier frequency.
The RF-ID systems are less vunerable to frequency interfer-
ence when frequency diversity is used by the RF-ID system.
This paper proposes an architecture for an RF-ID receiver
which allows a number of active RF-ID tags with oscillators
of low frequency stability to be accommodated within the
same RF-ID cell. The synchronisation technique used by
the receiver contains a carrier frequency estimator which
has been designed using SAW dispersive delay lines. The
carrier frequency estimator uses the spectral properties of
the received signal to estimate the carrier frequency. The
analytic and simulated performance of the carrier frequency
estimator has been examined for two peak search algorithms.

Index Terms— RF-ID, communication, receiver, synchroni-
sation, wide bandwidth, tags, frequency stability

I. I NTRODUCTION

An active RF-ID system may use a combination of
frequency diversity and pulse repetition interval diversity;
the former helps to avoid interference problems and the
latter helps to avoid repetitive tag clashes with other tags
in the same area. Whilst pulse repetition interval diver-
sity used in classical active RF-ID architectures reduces
the likelihood of clashing between tags transmitting on
the same carrier frequency, it does not prevent in band
frequency interference from other systems operating in
band from disturbing the narrow band signal transmitted
from the tag to receiver, particularly if the interference
is continuous in nature. This form of interference could
be prevented from harming the reliability of the RF-
ID system by allowing the tags to transmit from burst
to burst at carrier frequencies anywhere within a band
rather than at a fixed frequency. The size of the band
determined by the detection agilty of the receiver and the
chosen frequency stability of the frequency source within
the transmitter. Besides making the RF-ID system less
susceptible to frequency interference, oscillators of low
frequency stability are less expensive than stable fixed
frequency PLL sources and therefore provide a lower
cost if the RF-ID tag was embedded for example in a
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boarding card in an airport. By adopting this approach the
complexity of the system is now referred to the receiver in
comparison to the methods adopted with traditional active
RF-ID systems.

In the proposed system to be investigated, an active
RF-ID tag transmits a BPSK (Binary phase shift keyed)
modulated carrier to a receiver. The tag can transmit at
carrier frequencies anywhere within a wide band of 30
MHz centred on 5.8 GHz but in principle an arbitrarily-
wide band can be accommodated by the receiver. The
synchronisation technique in the receiver estimates the
carrier frequency using the spectral properties of the
received pre-amble in the tag data burst. The carrier fre-
quency estimator used by the synchronisation technique is
implemented using SAW dispersive delay lines. Although,
nowadays almost all the chirp generators and signal pro-
cessors are digital, SAW dispersive delay lines are more
appropriate for the synchronistation technique used in the
RF-ID receiver because these devices can be realized with
small size, low cost, wide band coverage, low power
consumption and have high reliability. More importantly
the complex synchronisation circuits in the receiver can be
economized since these devices use an analog correlation
process to estimate the Fourier transform of the received
signal.

The implementation of an RF-ID reader incorporating
frequency diversity is considered in this paper. The paper
is divided into three parts. The paper begins with a
study of the literature in frequency measurement and
acquisition. Section III then introduces the architecture
of the receiver and the detailed hardware implementation
of the carrier frequency estimator (CFE). The last section
then examines the performance of the carrier frequency
estimator by analysis and simulation for two peak search
algorithms.

II. FREQUENCYMEASUREMENT AND ACQUISITION

Frequency measurement and acquisition can be exam-
ined using the following two areas: detection theory [1]
and sinusoidal parameter estimation [2]. The analysis is
evaluated under the assumption that the modulated carrier
signal at the receiver can be considered to be stationary
and the modulation components have sufficient separation
as to be detected. An unbiased estimator provides a best
estimation of the parameters given the available data
observations. Maximum likelihood estimators for single
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tone and multiple tone parameter estimation from discrete
observations are detailed in [2], [3]. Equation (1) shows
the maximum likelihood (ML) estimator,XML.
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where:xn for n = 0, 1.., N − 1 are the available input
samples andTs is the sampling time. The index with the
maximum amplitude is the chosen frequency.

The Cramer-Rao bound describes the lower bound on
the variance of any unbiased estimator. Equation (2)
shows the Cramer-Rao bound for the maximum likeli-
hood estimator provided there is a single real sinusoidal
signal embedded in white, Gaussian noise, with unknown
frequency, unknown amplitude and unknown phase:

σf =
√

12
2πTs

√

N (N2 − 1) SNR
(2)

where:N is the number of samples and SNR is the signal
to noise power ratio.

Indeed the Cramer-Rao bound accurately describes the
frequency error in the ML estimator above a certain
signal to noise threshold. Since the maximum likelihood
estimator is very similar to a Fourier transform, a pos-
sible method for coarse frequency estimation of a single
frequency is the FFT. This provides an estimate evenly
spread over a set of frequency bins based on the number
of samples in the transform. The frequency resolution,
fres, of the FFT is inversely proportional to the data time
length, Tw, as shown in (3). It can also be expressed
in terms of the sampling time,Ts, and the number of
samples in the transform,N , which are taken from the
time domain signal.

fres =
1

Tw

=
1

NTs

(3)

In fact, the FFT estimator can also provide an approxi-
mation to the maximum likelihood estimator for multiple
frequencies separated by more than4

NTs

or four bins as
derived by [3]. The resolution of the FFT estimator can
be improved by adding zeros to the end of the signal.
This achieves a longer FFT length without modifying the
spectral content of signal. Because the zero-padded signal
is longer ( though no new energy has been added ), the
resulting FFT provides a better frequency resolution. The
resolution also determines the maximum error expected
from the estimator which occurs whenever when a tone is
located halfway between bins. If the tone frequencies are
uniformly distributed in± fres

2 then the standard deviation
of the frequency estimate from a non-zero padded FFT is

σcoarse =
1

2
√

3NTs

(4)

[4] highlights an improvement in the FFT accuracy by
using fine frequency estimation and applying windowing
functions to achieve maximum dynamic range in the
resolution bin. However an optimum FFT-based frequency
acquisition is not be required for this application because

as long as a carrier frequency estimate is estimated within
the capture bandwidth of the demodulator and before the
end of the pre-amble of the tag data burst, then there is
no need to perform fine frequency estimation to overcome
truncation from the FFT bins.

Now that frequency measurement has been consid-
ered, previous attempts at frequency acquisition must be
evaulated prior to incorporating carrier synchronisation
into the receiver design. A considerable amount of liter-
ature has been published on carrier synchronization in
the presence of small frequency offsets. These studies
are applied to applications where the frequency offset
varies by no more than a few 100 kHz. For instance, [5]
highlights a method for coarse frequency acquisition for
Nyquist filtered MPSK. The estimation procedure looks
for a small frequency offset when a BPSK modulated
carrier is downconverted to a low pass filtered baseband
signal. The offset in the carrier is estimated from the
spectral components in the bandlimited BPSK signal. In
another example, [6] examines the use of a DFT-based fre-
quency acquisition algorithm for carrier offsets in mobile
satellite receivers. An open loop DFT estimation method
along with feed forward frequency estimation algorithm is
demonstrated with a capture range∆F of only ±5 kHz.
These types of systems operate on very small variations
in the carrier frequency. A more sophisticated receiver
design must be considered for much larger variations in
the carrier frequency.

III. R ECEIVER SYSTEM

The architecture shown in Figure 1 uses the spatial
and frequency domains to detect and estimate the car-
rier frequency of a short pre-amble burst from each
tag transmission. The tag pre-amble consists of alternate
zeros and ones modulated onto the carrier using Binary
phase shift keyed (BPSK) modulation. The pre-amble
therefore contains harmonics that have frequencies at odd
multiples of, R/2 Hz where R is the data rate. The
spectral pair with the largest amplitude are the primary
modulation components which are separated byR Hz.
Thus the carrier frequency is estimated by the CFE using
the arithmetic mean of the primary modulation indices
identified during the duration of the tag pre-amble. The
estimated frequency from the carrier frequency estimator
(CFE) module is then used to set the frequency of a
direct digital synthesiser (DDS). The signal is then down
converted to a well-defined intermediate frequency (IF)
for demodulation by a Costas loop. The design also
contains an AGC the design of which must be carefully
considered since it must not affect the sensitivity of the
carrier frequency estimator (CFE) which performs a two
dimensional search in frequency and amplitude during the
duration of the tag pre-amble.

By way of an example consider a tag data burst that is
received with a random carrier frequency,fc within the
detection bandwidth,∆fb, centred on a convenient first
intermediate frequency stage. The tag signal bandwidth,
∆fs, is chosen as 1 MHz which means the random carrier
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Figure 1. Tag reader receiver architecture
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frequency must be resolved to a frequency resolution,
fres, of 125 kHz ( here a resolution of 1/8 of the data rate,
R, has been chosen ). To accommodate this frequency
resolution the pre-amble of the received signal must be
measured for 8µs. The duration of the tag pre-amble,Tw,
is usually set greater than 8µs to account for any latency
encountered in the synchronisation procedure. A simple
peak search algorithm is then able to detect the primary
modulation components and distinguish them from even
high-level noise or other interference, thus estimating its
frequency to a precision of± 62.5 kHz. The DDS is then
set to the estimated frequency,fc±fres but with an offset
equal to the desired final IF frequency,fc ± fres − fIF

and then down-converts the signal to its final IF frequency,
fIF . Since the signal bandwidth,∆fs, is around 1 MHz
it is now an easy matter to demodulate by standard
techniques, such as a Costas loop, which will acquire
lock within a further couple of bit periods, well before
the end of the pre-amble. For ac

no

of 2 × 107 (quite
low), and an acceptable phase jitter of 7◦ rms, the loop
natural frequency of the Costas loop should be 100 kHz.
This should give fast tuning (around 2µs) of the Costas
loop, provided the initial frequency offset is no more than
around 200 kHz - say 2 FFT resolution cells [7].

For the 30 MHz detection bandwidth,∆fb, considered
in this design and an intermediate first stage frequency of
100 MHz, a 80 MHz bandpass sampler is sufficient in an
FFT implementation of the carrier frequency estimator.
The corresponding FFT size,N , can be calculated in
the following manner. By rearranging (3) the FFT size
is equal to Tw

Ts

. Since the sample time,Ts, from the 80
MHz ADC is equal to 12.5 ns andTw was calculated as
8 µs, the FFT size,N is equal to 640 points. A high end
dedicated DSP chip or an FPGA with a DSP core could
perform an FFT of this size with a short latency of a few
microseconds. The disadvantage of both approaches is the
high purchase cost and additionally for the FPGA chip the
development of a multilayer PCB board for the BGA chip
interface. A viable alternative to an all digital CFE is an
analog method that estimates the Fourier transform using
surface acoustic wave (SAW) linear dispersive delay lines.
This approach also remove the need for a 80 MHz ADC
used in the digital implementations and the sliding Fourier
transform estimate can be performed at a relatively high
intermediate frequencies.

A. Implementation of the carrier frequency estimator

Chirp filters are commonly used in pulse compression
radar systems. A second application of these devices is
the compressive receiver which is a system for frequency
measurement [8]. This system takes advantage of the lin-
ear dispersion delay with frequency property of the chirp
filter in the measurement of the Fourier transform of the
received signal. The chirp filters, which are also known
as linear dispersive delay lines, have an impulse response
with an instantaneous frequency that varies linearly as a
function of time. The impulse response of the chirp filter

can be shown for a constant chirp rate,µ(t), as follows

g(t) = a(t) cos(wct + πµt2 + φo) (5)

where the chirp signal has lengthTc, centre frequencywc

at time t = 0 so thata(t) = 0 for |t| > Tc

2 , the envelope
is flat so thata(t) is constant for|t| ≤ Tc

2 and φo is a
constant.

This response is utilised in the SAW chirp-Z-transform
to form the power spectrum of the received signal,

F (2πµτ2) = e−jπµτ2

+∞
∫

−∞

(

x(t)ejπµt2
)

ej2πµ(τ−t)2 (6)

The process can be described as the multiplication of the
input signal by a chirp waveform, followed by convolution
with a chirp filter; the post multiplication with a third
chirp waveform is used to correct the phase of the output
waveform and is not needed if the power spectrum is
desired. The power spectrum can therefore be found using
a pair of chirp filters with opposing chirp directions.
This method of frequency analysis is used quite widely
in radio astronomy and microwave remote sensing [9],
[10]. A schematic of the compressive receiver is shown
in a M(long)-C(short) scheme in Figure 2. The impulse
response of the expander is longer than the compressor, to
ensure that the bandwidth of the signal can be completely
compressed and provide an accurate spectrum estimate.
As before the input signal x(t) is mixed with a linear
downchirp waveform (expander) followed directly by a
convolution in a linear upchirp filter (compressor). It can
be shown that the output signal v(t) is a sliding Fourier
transform [8].

f

x(t)

he(t)

t

hc(t)

v(t)

f

t

Figure 2. Schematic of the compressive receiver

The duty cycle is an important parameter when consid-
ering the compressive receiver as a frequency estimator
because a carrier frequency estimate is required after
each pre-amble duration,Tw, so that the DDS can be
set to the correct frequency to allow the Costas loop to
demodulate the data transmission. The repetition time of
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the CFE module cannot be shorter than the compressor
duration to avoid time-frequency ambiguity. One module
will therefore only have a 50% duty cycle and so two
modules are required in push-pull mode to obtain a 100
% duty cycle as seen in the SAW CFE architecture shown
in Figure 3. In this architecture, the input signal is passed
to both Fourier transform modules operating in alternate
fashion. The modules are switched at the appropriate
times using the timing generator and RF switches. In each
cycle the input signal is multiplied in a linear mixer with
a linear expanding chirp waveform with a flat spectrum.
This flatness is achieved with a saturating amplifier. On
post multiplication the convolution is followed by suitable
IF amplification. The power spectrum is assessed using
a square law detector via additional low pass filtering
and amplification. The output of the detector is sampled
throughout theTw period by an ADC and these samples
are sent to a microcontroller. If there is sufficient time
these samples could then be passed to an acquistion
and integration circuit to improve the accuracy of the
amplitude estimates.

The parameter bounds of the time dispersion,Te, Tc,
and the bandwidth,Be, Bc, of the SAW chirp filters for
the design are chosen to be well within those described
by [11]. In general TB (time-bandwidth) products up to
about 10,000 are possible. In this example, the compressor
centre frequency is chosen as 100 MHz and a corre-
sponding bandwidth,Bc, of 30 MHz. Working backwards,
the expander must then mix down the RX signal to
a band centred at the compressor centre frequency. In
addition to ensure the frequency band of the compressor
impulse response completely overlaps the signal band the
expander bandwidth,Be, must be chosen to be twice the
compressor bandwidth,Bc, because the literature shows
an optimum expander/compressor chirp length ratio of
2 to achieve a rectangular transform window [10], [11].
Assuming the input RX signal is chosen for convenience
at a common IF of 200 MHz and has a bandwidth of± 15
MHz then the expander centre frequency must therefore
be chosen as 100 MHz with a bandwidth,Be, of 60
MHz. The frequency resolution of the system is equal
to the reciprocal of the length of the compressor impulse
response,Tc. Hence for a desired frequency resolution,
fres, of 125 kHz (so as to be well within the Costas
loop capture range),Tc, must be equal to 8µs. This
is equivalent to 240 resolvable points – either byTeBe

4
or alternately the compressor bandwidthBc divided by
the desired frequency resolution,fres. Consequently if
we retain the same chirp rateµ for both chirp filters the
expander impulse response,Te, is equal to 16µs.

The dynamic range of the CFE will be reduced by
not taking account of side lobe weighting to remove
spectral leakage as a result of the finite Fourier transform
estimation window,Tc. The performance for non-bin
centre frequencies could be improved by as much as 0.82
dB using a Hamming window method. However at high
SNR there should only be a small effect on the quality
of the power spectrum estimate. An additional source of

error is manufacturing tolerances. Quartz material which
is used to make the filters have a surface wave velocity
which can be controlled to within 50 parts per million
or better. At 100 MHz this is only 5 kHz error per tag
transmission. This represents a negligible amount of error.

IV. A NALYSING THE PERFORMANCE OF THE CARRIER

FREQUENCY ESTIMATOR

Before analysing the performance of the two peak search
algorithms used in the carrier frequency estimator we
model the received signal using the discrete FFT imple-
mentation in which the carrier signal is downconverted
from a 100±15 MHz first IF band down to a 20±15
MHz frequency band as a result of undersampling by an
ADC.

A. Received signal model

We begin the analysis of the estimator by showing that
the baseband BPSK signal can be written as

S(t) =
∞
∑

n=−∞

anp(t − Tb) (7)

where: p(t) is the baseband NRZ pulse limited toTb

seconds andan is the pre-amble periodic sequence of
alternating ones and minus ones representing binary ones
and zeros.

Applying Fourier analysis toS(t) using an FFT of size,
N , we find that frequency content in each FFT bin,S(k),
shown in Equation 8 is a weighted sum of harmonics that
have frequencies at odd multiples of12Tb

Hz.

S(k) =
N−1
∑

n=0

S(n)exp(
−j2πkn

N
) = A





sin
(

π(f−fc)
R

)

(

π(f−fc)
R

)





(8)
The amplitude and separation of the two largest spectral
pairs are illustrated in Figure 4 whenever the BPSK binary
modulation is superimposed on a carrier signal.
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Figure 4. Theoretical spectra for a BPSK modulate carrier

Since the signal is located somewhere within the 5 -
35 MHz frequency band as a result of undersampling by
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the ADC, the output of undersampling by the ADC can
modelled as

s(t) = Am(t) cos 2πfct + η(t) 0 ≤ t ≤ Tb (9)

where:A is an amplitude constant,m(t) = +1 or -1,fc is
the unknown carrier frequency,Tb is the symbol duration
of 1 µs, η(t) is a white Gaussian noise process with
a mean of zero in a sampling bandwidth,fsb

2 , of 40 MHz.

The signal to noise power ratio of the signal received at
the Costas loop can be set by appropriate voltage scaling
of a white Gaussian noise process. The Gaussian white
noise process has a probability density function that is
uniformly distributed as illustrated in Figure 5.

P(x)

x

1

2V

- V + V

Figure 5. Probability density function of a white Gaussian noise process

The variance of the noise process can be given by

σ2 =
∫ +V

−V

x2P (x)

=
1

2V

[

x3

3

]V

−V

=
V 2

3
(10)

The standard deviation,σ, of the noise process is therefore
equal to

σ =
V√
3

The scaling constant,V , is adjusted to set a desired noise

spectral density,ηo, in the sampling bandwidth,
fsb

2
. The

noise spectral density in the sampling bandwidth can now
be described as

ηo =

Vnsc

2
√

3
fsb

2

=
V 2

nsc

6fsb

V2Hz−1 (11)

rearranging the variables the scaling constant is found as

Vnsc =
√

6fsbηo (12)

Since the noise power spectral density is set for a
particular c

no

, which is the carrier power to the noise
power density ratio in units of dBHz at the input to the
Costas loop demodulator, and the received carrier power
c is set to 1V2, the noise spectral density can be found
from c / ( c

ηo

) and therefore the scaling constantVnsc can
be set in the model.

Having described a method of setting the rms noise level

in each FFT bin relative to a received carrier power,
c, of 1 V2 we must then determine the absolute levels
of the primary and secondary modulation spectral pair
within the signal. First using (9) the amplitude,A, of
the carrier is known to be equal to

√
2c = 1.41. The

amplitude of the sidebands can then be calculated using
(8), the first pair of sidebands have amplitude denoted
0.636A and frequency separation1

Tb

Hz; the second
pair of sidebands have amplitude denoted0.212A and
frequency separation3

Tb

Hz.

B. Frequency estimation considerations

A number of factors must be evaluated before considering
the accuracy of any potential peak search algorithm. The
larger the number of cycles of data that is processed by
the FFT then the greater is the likelihood of a successful
peak search at low signal to noise power ratios. Since we
can never have access to an infinite data record, a short
time window must then be used to compute the FFT. This
can lead to spectral leakage if the FFT is performed over
a non-integer number of cycles of the input frequencies.
This could lead to false detections by algorithms which
use the two highest peaks as representing the primary
spectral pair ; for example if the two amplitudes reflect
the same modulation position i.e. two samples on the
same crest. Another problem occurs whenever the data
window is not a power of two, in which case the FFT
algorithm will append zeros to the data for the desired
FFT window size and the frequency impulses in the
spectrum will become a non-desirable sinc shaped. This
can be explained by imagining the addition ofd zeros
is processed by the FFT in similar manner to taking a
sinusoid and multiplying it with a rectangular box of
length d. The multiplication of the box and a sinusoid
in the time domain results in the convolution of a sinc
with impulses in the frequency domain.

In light of the above discussion, the data is processed by
the carrier frequency estimator in the following manner in
order to obtain the best possible fit between the modeled
and the simulated results for the peak search algorithms.
First, the FFT window is maximized to obtain as high a
resolution as possible considering technology, time con-
straints and the capture range of the demodulator. Second,
the time window,Tw, is sampled with an FFT size,N ,
which is a power of 2. This results in no appended zeros
and therefore no sidelobes due to ’sincing’. Third, the
number of symbol cycles,Ncycles, which is calculated
from Tw

Tb

, is chosen to be an integer value so that there will
be no spectral leakage. Provided the rules are followed
the simulated and modeled results of the peak search
algorithms discussed next should match consistently.

C. Analysis of the peak search algorithms

The performance of the two peak search algorithms will
be measured using the probability that the FFT search
algorithm fails to estimate the carrier frequency with error
no greater than the FFT resolution. The analysis of the al-
gorithms will be based on the assumption that the received
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Figure 6. Illustration of the peak-search algorithms for a BPSK modulated carrier signal when c
no

= 3 × 106

carrier frequency and the modulation components are
separated by even multiples of the frequency resolution,
i.e. on a bin centre. This is a first order approximation
to a real situation where the carrier and its modulation
components can be non-bin centred. In practise there is
a fixed error associated with randomly received signal
frequencies because they can be situated anywhere within
the resolution bandwidth of± fres

2 . For instance if the
carrier and its modulation components are located midway
between bins, the magnitude of the FFT estimation at
each of the bins drops to 0.64 of its maximum value and
this reduces the probability of detection of the primary
modulation components at low SNR.

Algorithm I: This algorithm which is illustrated in
Figure 6(a) takes the average index value from the two
indiceski=1,2 corresponding to the two largest peaks in
the FFT of the received signal,S(k), with the magnitude
described as

Pk = |S(k)| , k = 0 to N (13)

and forms a frequency estimatêfc of the carrier
frequency fc. It may be examined experimentally by
simulation and also by analysis which extends the work
of [2].

The output of the FFT for a signal containing modulation
harmonics and noise can be modeled in the following
manner. The magnitudePk is a random variable whenever
there are signals and noise present. In this analysis we
neglect the condition of the signal frequency being half
the sampling frequency for zero bias. The noise samples
remain independent, normal and have zero mean with
varianceσ2. Each non-tone bin can be shown to be a
Rayleigh distribution denoted by a distributionCn(Pk)
and each tone bin has a Rician distribution ; for the
first spectral pair it is denotedCn(Pr1) for tones with
indicesk = r1a,r1b, and for the second spectral pair it
is denotedCn(Pr2) for tones with indicesk = r2a,r2b.
The other modulation components are neglected and are
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modeled as non-tone bins.

Cm1(Pr1) =
Pr1

σ2
exp

(

−
(

P 2
r1 + b2

)

2σ2

)

·I0

(

bPr1

σ2

)

, Pr1 ≥ 0 (14)

Cm2(Pr2) =
Pr2

σ2
exp

(

−
(

P 2
r2 + c2

)

2σ2

)

·I0

(

cPr2

σ2

)

, Pr2 ≥ 0 (15)

Cn(Pk) =
Pk

σ2
exp

(−P 2
k

2σ2

)

,

Pk ≥ 0, k 6= r1a, r1b, r2a, r2b

(16)

where:σ is the rms noise power in each FFT bin,b is
the peak primary modulation amplitude, andc is the
peak secondary modulation amplitude.

Having defined the probability distributions we can
now develop the analytic probability of failure for
algorithm I. The probability that one of the two primary
tone indicesr1a r1b has the largest amplitude among all
other bins is expressed as

Ps = [Pr {all Cn < Cm1} ∩ Pr {both Cm2 < Cm1}]
(17)

This be further expanded as

Ps =
∫

x

Pr {all Cn < Cm1|Cm1 = x}

·





x
∫

0

Pr {both Cm2 < Cm1|Cm1 = y} dy





·Pr {Cm1 = x} dx (18)

This can be expanded by the multiplicative probability of
the independent pdf distributions within each FFT bin.
This is formed using the cdf of the Rayleigh distributions
for the non-tone bins – that can be expressed analytically
and the cdf of the Rician distributions for the second
pair of spectral components – that can only be expressed
numerically. Equation (19) shows the final evaluated
function with substituted distributions pdf and cdf.

Ps =

∞
∫

0

[

1 − exp
(−x2

2σ2

)]N−4

·





x
∫

0

y

σ2
exp

(

−
(

y2 + c2
)

2σ2

)

I0

( cy

σ2

)

dy





2

·
[

x

σ2
exp

(

−
(

x2 + b2
)

2σ2

)

I0

(

bx

σ2

)

]

dx

(19)

The probability of failure is the probability that two
primary tone bins fail to be the highest two values. Since

both primary tone bins have probability distributions
which are independent, the probability of both being the
highest two values isPs

2. Therefore the probability of
FFT failure is Pfailure = 1 − Ps

2. The accuracy of the
analysis is demonstrated first for the probability of failure
for a FFT of size 512 when compared to a monte carlo
simulation with 3000 trials as shown in Figure 8(a). The
accuracy of the model is repeatable for other FFT sizes
as shown in Figures 7(a) and 7(b) which show that the
modeled and simulated results for algorithm I closely
match each other.
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(a) Simulated probability of failure using algorithm I
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(b) Analytic probability of FFT failure using algorithm I

Figure 7. Probability of FFT failure using algorithm I for FFT
sizes of 256, 512 and 1024
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Algorithm II: This algorithm which is illustrated in
Figure 6(b) takes the largest spectral peak with index
ki=1 and assumes it to be one of the primary tones. It
then takes the second largest spectral peak with index,
ki=2 from a 2R Hz bandwidth centred on the index of
the first spectral peak and then assumes this to be the
second primary tone. The algorithm is successful provided
the first spectral peak happens to coincide with one of
the primary tone indices and the other primary tone has
the highest amplitude in a bandwidth 2R centred on
the index of the first spectral peak. The analysis of the
algorithm can be approximated by the following method.
The probability of FFT success is the probability that one
of the two primary tone indicesr1a and r1b happens to
have the largest amplitude among all other bins and the
other tone bin happens to have highest amplitude among
all other bins in a 2R Hz band surrounding the first located
tone bin. The analysis of probability then proceeds in a
similar manner to Algorithm I. First, the probability that
the largest peak has an index equal to one of the primary
modulation pair isPs1. This will occur if one the primary
tone bins happens to be the highest among all other bins.

Ps1 =

∞
∫

0

[

1 − exp
(−x2

2σ2

)]N−4

·





x
∫

0
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−
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)

2σ2

)
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σ2
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dz
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

·


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∫

0

y

σ2
exp

(

−
(
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)

2σ2

)
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( cy

σ2

)

dy





2

·
[

x

σ2
exp

(

−
(

x2 + b2
)

2σ2

)

I0

(

bx

σ2

)

]

dx

(20)

The probability that the second primary tone is highest in
a 2R Hz band centred on the first tone isPs2.

Ps2 =

∞
∫

0

[

1 − exp
(−x2

2σ2

)]2R−3

·





x
∫

0

y

σ2
exp

(

−
(

y2 + c2
)

2σ2

)

I0

( cy
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)

dy





·
[

x

σ2
exp

(

−
(

x2 + b2
)

2σ2

)

I0

(

bx

σ2

)

]

dx

(21)

The probability of an FFT success is equal to the probabil-
ity of index combinations (r1a, r1b) and (r1b, r1a). The
probability of FFT failure is therefore equal toPfailure =
1−2Ps1Ps2. The accuracy of the analysis is demonstrated
first for the probability of failure for an FFT of length
512 when compared to a monte carlo simulation with
3000 trials as shown in Figure 8(b). The performance of
algorithm II can then be compared with algorithm I as
seen in the results in Figures 9(a) and 9(b) for N = 512.

The results indicate that, as expected, Algorithm II has
superior performance to Algorithm I at low signal to noise
ratios. Both methods determine the carrier frequency with
a low probability of error above 10 dB SNR in 1 MHz
signal bandwidth for an FFT of length 512.
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(a) Simulated and analytic probability of failure using Algorithm I
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(b) Simulated and analytic probability of failure using algorithm II

Figure 8. Simulated and analytic probability of failure using
algorithms I and II for an FFT of size 512
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(a) A comparison of the analytic probability of failure for algorithms
I and II for an FFT
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(b) A comparison of the simulated probability of failure for algorithms
I and II

Figure 9. A comparison of the probability of failure for algorithms I and II for an FFT size of 512

It should be noted that algorithm I provides a simpler
implementation when used in the architecture shown in
Figure 3 because it computes the frequency estimate in
less steps than algorithm II. In fact Algorithm I could
be implemented in the microcontroller by continuously
updating the address pointers to the indices with the
largest and second largest magnitudes every time a sample
enters the microcontroller. This can be easily achieved as
long the speed of the processor is faster than the delay be-
tween samples entering the microcontroller. Significantly,
the estimation of the carrier frequency would take no
more than a couple ofµs after the last sample of the
power spectrum has entered the processor. The DDS can
then be set to the correct frequency before the end of
the pre-amble duration,tw, to allow the Costas loop to
demodulate the data transmission.

A slower, complicated but yet more accurate approach
can implemented using algorithm II. Algorithm II requires
that the second peak chosen must be the largest in a 2R

Hz band centred on the index of the largest peak chosen
from step one. This implies that the samples in this band
must be ordered into descending numerical order. The
sorting of these samples is not trivial and can only be
performed after the last sample has entered the microcon-
troller. The number of operations for the simplest slowest
sorting algorithms haveO(n2) and the fastest algorithms
haveO(n log n). Whilst a discussion of these algorithms
is beyound the scope of this work, lets consider a slow
sorting algorithm operating on on the samples in the band
using a 16 MHz ATmega microcontroller. The number of
samples in the band is dependent on the data rate and
frequency resolution, if the data rate,R, is 1 MHz and
fres is 125 kHz, then the number of samples in the band

is 16. Applying an algorithm complexity ofO(n2) to
sort these samples would take approximately 16µs. This
is in addition to the time of 8µs taken to analyse the
signal during the pre-amble duration,tw, as well as any
other latency caused by the settling times of the DDS and
Costas loop used in the receiver design.

A much longer tag pre-amble duration must be accom-
modated when using algorithm II in the carrier frequency
estimator. The length of the pre-amble duration could be
reduced by operating algorithm II using a faster processor
which causes additional cost or reducing the frequency
resolution which causes a higher probability that the
algorithms would fail at low SNR. Moreover increasing
the pre-amble length implies that the data burst will be
much longer and thus the number of the RF-ID tags that
can be accommodated reliably for a given mean update
time will also be lower. These factors must be considered
carefully before the implementation of algorithm II in the
carrier frequency estimator.

V. CONCLUSIONS

A novel RF-ID receiver architecture incorporating fre-
quency diversity was presented. The architecture allows
RF-ID tags with oscillators of low frequency stability
to be accommodated within the same RFID cell. In the
prototype design, the RFID tags can transmit at carrier fre-
quencies anywhere within a wide band of 30 MHz centred
on 5.8 GHz but in principle an arbitrarily-wide band can
be accommodated. The synchronisation technique used
by the receiver has a carrier frequency estimator which
is implemented here with SAW dispersive delay chirp
filters as an alternative to a conventional FPGA or DSP
implementation. The synchronisation technique contained
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in the receiver uses the spectral properties of a short pre-
amble at the beginning of the received pulse to estimate
the carrier frequency and then immediately directs a DDS-
based LO to the appropriate frequency. The performance
of the carrier frequency estimator has been examined
using two peak search algorithms. The results indicate that
Algorithm II has superior performance to Algorithm I at
low signal to noise ratios, although the implementation of
Algorithm I leads to lower latency in the estimation of the
carrier frequency because algorithm II uses an additional
unavoidable step involving the sequencing of the data
samples.

The validity of the architecture presented in the paper
has been established using analytical models and monte
carlo simulation of the carrier frequency estimator but
could be enhanced further using a more detailed be-
havioral model of the proposed design that includes the
desired specifications of latency, frequency resolution and
reliability. The use of wide band synchronisation in an ac-
tive RF-ID system provides a considerable improvement
in the robustness of the active RF-ID system to frequency
interference from other systems but equally important
this approach also allows for a highly-geared trade-off
between extra reader cost and consequential tag savings.
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