
A Secure Mobile Agents Platform
Leila Ismail

College of IT
United Arab Emirates University

P.O.Box 17551, Al-Ain, United Arab Emirates
Email: leila@uaeu.ac.ae

Abstract—Mobile Agents is a new paradigm for dis-
tributed computing where security is very essential to the
acceptance of this paradigm in a large scale distributed en-
vironment. In this paper, we propose protection mechanisms
for mobile agents. In these mechanisms, the authentication of
mobile agents and the access control to the system resources
are controlled by the mobile-agents platform. Each agent
defines its own access control policy with regard to other
agents using an Interface Definition Language (IDL), thus
enforcing modularity and easing programming task. An
evaluation of these mechanisms has been conducted. The
measurements give the overhead involved by the proposed
protection mechanisms to the performance of mobile agents.
An important advantage of our protection mechanisms
are transparency to agents and the portability of non-
secure applications onto a secure environment. A mobile
agent system and the protection mechanisms have been
implemented. Our experiments have shown the feasibility
and the advantages of our mechanisms.

Index Terms—Mobile agents, security, authentication, ac-
cess control

I. INTRODUCTION

Mobile-agents technology has emerged to build dis-
tributed computing over the Internet [1]. A mobile agent
is a process with its own code and data that can migrate in
the network from one node (called agent server) to another
to perform a specific task on behalf of their users. Mobile
agents representing different users on a global network
can meet and interact with other agents while migrating
in the network. A mobile-agents platform is a distributed
middleware that is responsible to create, execute, migrate,
send, receive and destroy mobile agents. It also provides
communication facilities between mobile agents ([2],
[3]).

As mobile agents are intended to be used over large-
scale distributed systems [4], security becomes an essen-
tial issue to resolve. When received over the network by
host servers, a mobile agent must not access resources
which it does not have authorization to. Receiving hosts
need to have the assurance that a received mobile agent is
not malicious. Also, other mobile agents running on the
host servers need to have the assurance of whom they are
communicating with and consequently give appropriate
access rights.

Received by host servers, a mobile agent can invoke
objects exported either by the servers, or by other agents
running on these servers. In this context, protection has
become an extremely important issue: nobody will use

the mobile-agent paradigm if there are no protection
mechanisms which assure the host server and other agents
running on this server that the mobile agent will not
damage information of the server and of the other agents.
Java [5] is probably the best known runtime environment
which provides facilities for implementing mobile-code
based applications and protection mechanisms. The Java
compiler generates a bytecode which is interpreted by the
Java virtual machine, thus enabling code transfer between
heterogeneous hosts. From protection perspectives, the
main advantage of Java is the implementation of a sand-
box [6] which limits the instructions and consequently
the resources used by a mobile code. The Java sandbox
is responsible for protecting a number of resources at
a number of levels: memory, file system and disk. The
memory is protected because the java language is type-
safe, which means that the Java language does not allow
the use of virtual addresses. The file system and the disk
are protected through the use of an access control mech-
anism based on a policy file. However, the language does
not provide mechanisms for mobile agents and servers to
define different rights for different mobile agents based
on authentication, and to allow these rights to evolve
dynamically during communication and execution, and to
move with agents during migration.

To allow dynamic exchange of access rights in a flex-
ible way between cooperating agents, we have proposed
that agents use capabilities for access control ([7], [9]). In
this initial proposal of protection, the mobility character-
istic of an agent was not considered. In particular, when
moving from one server host to another, an agent needs to
carry its capabilities with it and to export them for other
agents running on the destination server. An evaluation
of feasibility and advantages in a real mobile-agents
system was not done. Furthermore, to exchange initial
capabilities, mobile agents must authenticate each others.
An initial capability could include the minimum access
rights to be given to the agent. More capabilities can
be granted dynamically while agents are communicating.
Our recent work on network authentication for a mobile-
agents system [10] authenticates the sender network node
of the mobile agent and does not include fine-grained au-
thentication of mobile agents so that different capabilities
can be granted to different authenticated agents coming
from the same network node.

In this paper, we propose protection mechanisms,
where mobile agents can define and grant different access

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 1

© 2008 ACADEMY PUBLISHER

policies to different authenticated or un-authenticated
agents in a transparent, dynamic, modular, portable and
efficient way. In particular, we propose authentication
mechanisms for mobile agents, based on digital signature,
along with access control mechanisms based on capabili-
ties. In our mechanisms capabilities are then granted dy-
namically to agents upon authentication by an authentica-
tion service. Mutually suspicious agents will then control
the access to their resources based on authentication. To
be able to grant capabilities while moving, agents should
be able to move along with their capabilities. Agents
should be able to export these capabilities and grant them
to eligible users.

The generation of capabilities and their use by mobile
agents, as well as well as the authentication of agents
should be transparent to mobile agents’ programmer.
Indeed, we do not want to include security features
inside the mobile agents’ application code, thus easing
programming. The programmer would then concentrate
on the application’s logic rather than the security issues.

In this paper we conduct an evaluation of these mecha-
nisms through a concrete implementation within a mobile-
agent system that we have implemented and a perfor-
mance measurement. The protection mechanisms have
been implemented on top of Java and integrated into
a simple mobile agent-based distributed system that we
have implemented and that we know the implementations
details. This will allow us to test the feasibility of our
mechanisms on one hand, and to measure the performance
of the security functions used for protection in a basic
mobile-agent platform on the other hand.

The rest of the paper is structured as follows. In section
II we provide a background for this work. In section III,
we present the authentication and access control problems
for mobile agents. Requirements for secure mobile agents
cooperation are discussed in section IV. In section V, we
describe the system architecture supporting our authenti-
cation and access control mechanisms. After an evaluation
of our mechanisms in section section VI, we conclude in
section VII.

II. BACKGROUND

Due to the popular use of Internet applications, new
classes of distributed applications have emerged, such as
information search on the web and electronic commerce
applications ([11], [12]). The use of the Internet as a
platform to execute distributed applications introduced
two major problems: the heterogeneity of machines and
the lack of efficiency of the applications. First, we need to
write programs that execute everywhere on the Internet.
Second, applications slow performance becomes a major
problem, as applications components are distributed over
a large-scale network, and may run on a relatively slow
distributed environment.

Mobile agent based programming [1] is an emerging
paradigm for structuring distributed applications over the
Internet. An agent is a process that can move with its code
and execution context from site to site to perform its task.

Mobile agents are mainly intended to address autonomy
and efficiency problems of applications distributed over
large scale and slow networks. They reduce communi-
cation costs by moving computation to or close to the
host on which the target data reside [4]. Consequently
mobile agents can move to meet and communicate with
each others. In these scenarios, protection becomes an
urgent need.

The research in the area of mobile agents programming
is highly active. Several projects, such as Telescript [13],
D’Agents [14], Aglets ([15], [16]), Mole [17], MOA
[18], Voyager [19], JADE [20] have developed execution
environments for mobile agents. In these platforms, the
security has been only partially addressed. In particular
a modular, transparent, dynamic and portable protection
mechanisms were not handled by these systems.

Throughout this paper, we call a client agent the agent
that initiates a communication with another agent, called
the server agent. As an example of protection mechanisms
of mobile-agents-based systems, if a mobile client agent
A wishes to obtain a service from a mobile server agent B,
then agent B should ensure that agent A is not malicious
i.e. agent A is the one who is claiming to be so that
access rights can be granted. The protection mechanisms
here consist then of two major security services:

• Authentication. Authentication refers to the ability to
associate an identity with each agent and to verify
that this identity belongs to the one claiming to own
this identity. The identity of an agent may be the
identity of its creator (the program writer or the ven-
dor of the software agents), or its users or its group
of users (the agent’s owner). The agent’s dispatcher
node is a network node which has ran the agent and
dispatches it to its next hop of its itinerary. This
dispatching node should be also made responsible
for the agent’s behavior on its receiving node. Once
an agent is executed by an agent server, it could
have been corrupted by a malicious agent server. An
agent server executing an agent has full control over
the agent’s code and state. Many research works are
being done in the domain of protecting a mobile
agent from a malicious agent server ([21]–[26]).
However, no satisfactory solution is found till the
moment we wrote the paper. An agent must not
be able to masquerade another agent by steeling its
identity. Solutions have been introduced to detect
tampering afterward.

• Access Control. Access Control is the definition of
the policy that determines the rights given by an
agent to other agents. For this purpose, an agent must
be able to export object references while controlling
the access rights it provides. The protection policy
determines when and how these rights are exported.
An incoming agent may be provided with an initial
protection environment based on its authentication
by the receiving host server. This protection envi-
ronment can evolve dynamically according to the
agent’s execution.

2 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

In Telescript, an agent is authenticated using its author-
ity. An authority is associated to an agent on its creation.
It is an encrypted message that is associated to an agent,
and can be the agent’s signature which is built using
the agent’s owner information. In the public version of
Telescript that we have tested, the encrypted message is
generated automatically by the telescript engine. An agent
has to deliver its authority and proves that it knows the
private key which generated that signature based on RSA
public key authentication. The protection mechanisms do
not authenticate the agent’s writer, neither its dispatching.
Furthermore, there are few experiments with measure-
ments and evaluations that have been conducted for these
mechanisms. In Telescript, access control mechanisms are
divided into 3 categories: securing agents’ objects, context
switching during communication, and the permit-based
access control. Exporting a reference to an object means
that all the public methods for that object can be called,
including the method which can modify the object. By
declaring an object reference as protected, the object can
be accessed on read only. As an example, a mobile agent
can move to get a list of flights for its owner to a specific
destination. The server agent providing the list of flights
grant read-only access to that list.

getFlight: op() Dictionary[String, Flight, Equal]
= if sponsor.name == *.name.authorityflights else
flights.protect()@ ;

In the above code, the server agent (called place by
telescript) verifies whether the client agent has the same
authority as the place, i.e. the client agent and the place
belong to the same owner. In that case, a reference flights
to the list of flights is granted, otherwise, a protected
reference to the list of flights is granted, by calling the
method protect() on the reference flights. Context switch-
ing allows a server agent to implement its own access
control for file access for instance. It also allows to define
the ownership of objects created during cooperation. By
declaring a method as sponsored, the server agent will
own all the created objects during cooperation. If the
client agent move, the objects created during cooperation
will not move with it. The third category of access control
mechanisms protect the host resources, such as CPU
and memory. It is also used to grant some agent the
rights to execute system operations. Telescript, access
control is managed by the agent’s application code, which
makes the programming of agents difficult. We argue that
programmers would rather concentrate on the application
logic rather than on the programming efforts of security
services that ought to be provided by the system. There
are no mechanisms to define different policies for read
or write accesses on objects. In D’Agents [32], the au-
thentication is based on PGP (Pretty Good Privacy) [19].
However, the digital signature is also used as follows. On
creation, mobile agents should register to a running agent
server. Before sending a registration request agent begin,
the agent encrypts that request with its owner private
key, and then encrypts the result with the agent server
public key. On reception of this registration message,

the agent server can authenticate the agent’s owner. On
migration, the agent is signed by its dispatcher node.
The authentication of the agent is then based on the
authentication of its dispatcher node. This is limitative, as
it is sufficient for an agent to go through by an unknown
dispatcher node to be considered untrusted. Different
agents applications may want to consider different access
policies depending on the authentication of the agents’
writer or owners as well. PGP is known for its perfor-
mance drawback. In addition, D’Agents does not include
indications about digital certificates and keys distribution
and manipulation. Concerning access control, D’Agents
does not allow sharing data and relies on message passing
for communication between agents. On reception of a
message by an agent, access control should be coded
by the agent’s application code. Each message passed
between authenticated agents is signed and authenticated
which introduces a major performance problem. Aglets
provides basic authentication approach where agents are
separated into 2 types: trusted and untrusted . For an agent
server, trusted agents are those which are dispatched from
agents servers within the same domain of the receiver.
Agents servers are within the same domain if they share
a secret key. In this approach, there must be a setup of
the domain before any exchange between agent servers.
In addition, each user of an agent server within a domain
must obtain this key signed with the user password. This
approach has scalability and usability problems, whereas
each new connecting agent server over the Internet must
communicate with a system administrator and obtain the
secret key to join the domain and that each user must
obtain its encrypted secret key. Concerning access control,
agents can define in a policy file read/write access rights
to local files and the rights to execute system operations.
Aglets, like D’Agents does not allow objects sharing and
relies on message passing for communication between
agents. Furthermore, to our knowledge, very little work
has been done to investigate the effectiveness of security
components and their usability in a distributed environ-
ment. [27], as well as JADE [20] uses digital signature
for authenticating users. In JADE, all agents are owned
by an authenticated user. It uses a policy file to protect
host resources from an agent by specifying permissions
to host resources and system operations in the same way
as Aglets do.

When designing our agent protection mechanisms, we
consider the following requirements:

• Transparency in achieving protection via transpar-
ent implementation of security services. The mobile
agents’ authentication as well as the enforcement of
access control must be transparent to mobile-agents’
applications.

• Dynamic exchange and evolution of access rights.
Access rights must be dynamically exchanged be-
tween cooperating agents. Rights must dynamically
evolve during execution and cooperation.

• Modularity. The implementation of protection for
mobile agents must be separate from the agents’ ap-

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 3

© 2008 ACADEMY PUBLISHER

plications code. Agents must not implement security
services in their application code.

• Portability of the agents’ applications. The imple-
mentation of the protection mechanisms must not use
language-specific features. It must be ported to any
mobile-agents platform.

• Non-repudiation by agents. The agents must not be
able to deny an action afterward. The mechanisms
must provide assurance of origin or delivery of
objects exchanged between a sender and a receiver.

• Efficiency. The authentication and access control
mechanisms for mobile agents must be devised in
a way to minimize the protection overhead.

Existing mobile agents systems propose partial solu-
tions to the above problems. To ensure communication
among mobile agents while controlling access to agents
resources, the system must include proper authentica-
tion, naming service, and access control mechanisms. As
mobile-agents systems are interesting in large-scale dis-
tributed environments like the Internet, efficiency should
be considered while designing these mechanisms.

The mechanisms we propose take into consideration the
above requirements. These mechanisms provide agents in
a transparent fashion the ability to cooperate and enforce
protection.

III. MOBILE AGENTS AUTHENTICATION AND
ACCESS CONTROL PROBLEMS

The following issues motivate our design choices for
the authentication and access control mechanisms of
mobile agents:

• Transparency. The authentication and access con-
trol mechanisms should be transparent to agents’
applications. The applications should not include
security-related instructions. Transparency enhances
the usability issues of nowadays user-level complex
security solutions.

• Usability. The security mechanisms should not be
too much time-consuming or difficult to use. This
decreases the productivity of the users who want to
use protection and the protection mechanisms end up
by being abandoned or used haphazardly introducing
security holes to systems.

• Assurance. The authentication mechanisms should
meet the non-repudiation security requirements. The
sender and the receiver of the mobile agents should
not be able to deny sending or receiving agents.
Digital-signature-based authentication mechanisms
offer non-repudiation services to both cooperating
agents.

• Modularity. The authentication and access control
mechanisms should be implemented in a separate
layer from the agent’s application code. Therefore,
the programmer would concentrate on the application
programming logic rather than on protection issues.

• Portability. The authentication and access control
mechanisms should be general and applicable to all
mobile agents systems. The mechanisms should not

include features that are operating-system-dependent
or language-dependent so that they can be ported to
any mobile agent system.

• Efficiency. The authentication and protection mech-
anisms should be efficient. For instance, the mech-
anisms should not introduce significant overhead on
the mobile agent messaging system.

• Mutual suspiciousness. The agents must be equal
with regard to protection. The authentication and ac-
cess control mechanisms should impose no hierarchy
among cooperating agents.

• Autonomy. One of the important characteristics of
mobile agents is autonomy. At the moment of writing
the agent’s application code, the programmer does
not know which agent servers would make part of
the agent’s itinerary. Therefore, it impossible for the
programmer to register access control policies in a
centralized protection server. Each agent should be
responsible to define its own access control policy
which should move with the agent during its execu-
tion.

IV. REQUIREMENTS FOR SECURE MOBILE
AGENTS COOPERATION

When designing our mechanisms for secure agent co-
operation, the following issues have been considered.

• Authentication of local cooperating agents. Coop-
erating agents within the same site must be au-
thenticated before communication takes place. A
server agent granting access rights must have the
assurance that the client agent requesting access is
not malicious. We distinguish two possible scenarios.

– Authentication of a client agent created by the
local agent server. In this scenario, a client agent
has been created locally within an agent server
and wishes to communicate with another server
agent within the same site.

– Authentication of a visitor client agent. In this
scenario, a client agent agent has not been
created locally by the agent server. It is a
visitor agent and wishes to communicate with
a server agent within the same site. This visitor
agent represents its owner, has been sent by a
dispatching agent server and its code/behavior
has been written by a third party programmer.
To solve the first problem, two techniques have
been used in the literature of mobile agents: the
trust model technique, and the explicit request
technique. In the trust model technique, every
client agent created by the local agent server
is considered trusted and therefore no authen-
tication is taking place by the server. Aglets
[16] uses this technique by considering agents
created within the same domain as trusted and
therefore an authentication is not needed. How-
ever, in Aglets an explicit setup of the domain is
necessary by a system administrator for all users
and agent servers in the same domain to share a

4 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

secret key. The main drawback is in the manual
domain set up by a system administrator making
the system difficult to administer. The authenti-
cation technique, used by D’Agents [28], con-
sists of authenticating the client agent’s owner
during agent’s registration with the local agent
server. The local agent server then intercepts ev-
ery message exchanged between the client agent
and the server agent to verify that the message
belongs to a registered communication channel
by an authenticated agent. This algorithm has
a performance drawback as every message has
to be verified. In the explicit request technique,
a server agent application has to explicitly re-
quests the agent server whether the agent has
been created locally. The main drawback of this
algorithm, used by Telescript, is the lack of
transparency to agents applications.
To solve the second problem, two techniques
have been used in the literature of mobile agents:
the trust model technique, and the explicit re-
quest technique. The trust model technique,
used by Aglets, limits the agent itinerary to a
trusted domain, and therefore no authentication
is needed. The main drawback of this technique
is the limitation imposed on agents itinerary
for mobility. In the explicit technique request,
agents applications should include a code which
verifies whether visiting agents have been au-
thenticated. D’Agents and Telescript use this
technique. The main drawback of this technique
is the lack of transparency to agents applica-
tions. As stated earlier, this is restrictive in
a dynamic environment where communication
with potential, a priori unknown agents, could
take place.

• Authentication of remote cooperating agents. In the
literature of mobile agents, the client agent is au-
thenticated on every message exchanged between the
client and the server. This algorithm has performance
drawback as client is authenticated on every message
passing.

• Specifications and mobility of access rights. When
an agent moves, the access rights which are used
for access control must move with the agent. This
gives the agent the possibility to cooperate with other
agents on the visiting sites by granting access rights.
In the literature of mobile agents, access control lists
are used to specify access rights. Two approaches are
used to specify and use the lists: in the first approach,
as in Aglets and D’Agents, access control list takes
the form of a policy file on a destination. The policy
file specifies access policies for mobile agents on the
local host resources. As stated earlier, this approach
is not appropriate for a dynamic environment like the
mobile agents. We argue that an agent server cannot
predict all the possible cooperations which would
take place among cooperating visiting agents. In

Fig. 1. Overall Architecture of a Secure Mobile Agent Platform

the second approach, as in Telescript, access control
lists are coded in the agents applications. The main
problem of this approach is that agents applications
are forced to handle access control mechanisms at
the application level.

V. ARCHITECTURE

In this section, we present our proposed architecture to
protect mobile agents in a mobile agent system.

A. Overall Architecture

A secure mobile agent platform includes the following
components as shown in Figure 1:

• Agent. An agent is a mobile object which can move
from site to site under its own control to achieve
tasks on these sites. In general, in order to move to
a site, an agent must explicitly invoke a move(site)
message. An agent is composed of its code, its
execution thread, and its data which correspond to
the values of the agent global variables. When an
agent moves from one site to another, it continues
its execution on the destination site at the instruction
which immediately follows the invocation of the
move operation. To communicate with other agents,
agents invoke a method which are translated into a
message by the underlying messaging system.

• Agent Server. Each site, as part of the mobile agent
platform, runs an execution environment, the agent
server. This execution environment implements fa-
cilities for creating agents, executing them concur-
rently, suspending them, destroying them, etc.

• Messaging System. A messaging system is part of an
agent execution environment. It provides facilities for
agents to communicate both locally and remotely. It
establishes communication links between communi-
cating agents.

• Certification Authority (CA). It is a trusted third
party which provides a pair of private/public keys
and digital certificates for mobile agents owners,
writers, and agents servers. All digital certificates are
digitally signed by the CA for further verification
of their authenticity and validity. Each agent server
joining the system will obtain its pair of keys auto-
matically by contacting the CA. We assume to have
a centralized CA. The distribution of public keys
among agent servers is not our focus in this work.

• Keystore. Each agent server has a keystore [15]. The
keystore is used to store and manage private keys

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 5

© 2008 ACADEMY PUBLISHER

along with their corresponding digital certificates.
The agent server’s private key and its corresponding
digital certificate are created by the agent server’s
administrator by sending requests to a trusted certi-
fication authority (CA). A keystore is automatically
created for each agent server in the system. The agent
owner, writer, and agent server digital certificates are
digitally signed by the CA.

• Secure Naming Server. A secure naming server is
associated to each agent server. It exports an interface
to mobile agents to communicate by using symbolic
names. Server agents can export initial capabilities
to client agents using the secure naming server.
An initial capability is transparently obtained when
the client agent consults a naming server which
associates an agent human-friendly symbolic name
to access capabilities which are to be granted to
different users. A capability will then gives au-
thorization for access to the server agent’s objects
through authorized methods calls. Before grating an
initial capability, the naming server verifies whether
the client agent has been authenticated. It enforces
the access control policies defined by mobile agents.
The naming server can be called locally or remotely.
For a client agent calling the naming server locally,
authentication is not required as the client agent has
already been authenticated upon reception by the
agent server. However, a remote call to the naming
server requires authentication.

• Capability generator. Our access control mechanisms
are based on capabilities. An agent specifies the
capabilities to be granted to other agents using an
Interface Definition Language (IDL) in a transparent
way to the agent application code. A capability gen-
erator is associated to each agent server. It generates
capabilities as specified in the IDL. The capabilities
then move with the agent for granting access to other
agents at runtime upon authentication.

B. Authentication Mechanisms

In mobile agents systems, agents must present proper
identities to the agent server that receives them. The
agent server will have then the assurance that the received
agent is not malicious and can be trusted. When agents
are authenticated, then different access rights can be
granted to different agents by the servers and other agents
exporting services within the agent server. Therefore,
authentication is an essential step toward the protection
of the agent server resources including other agents and
servers running within the agent server. The authentication
algorithm that we have implemented and integrated within
our mobile-agents platform is based on digital signature (
[29]–[31]). The digital signature is an electronic signature
that is used to authenticate the identity of an object sender
and to ensure that the object has not been modified since it
has been signed. The digital signature involves the public
key cryptography which relies on a pair of keys (a public
and a private key) associated with an entity. The advantage

of digital signatures is that they allow the non-repudiation
which is one of our objectives.

The execution of the digital signature within the plat-
form is transparent to the agent. A mobile agent has to
be authenticated in the following cases: when received
by an agent server after migration and when requesting
cooperation with another agent via the secure naming
server.

C. Authentication Algorithm on Mobility

MOVE(agent)
1 state ←serialize(agent)
2 � Get stored owner signature
3 sigo ←getSigo()
4 PrivateKs ←retrieve(keystore)
5 sigs ←sign(state, code, PrivateKs)
6 sigw ←getSigw()
7 send(code, state, sigo, sigs, sigw, certo, certs, certw)

When a mobile agent calls a method to move to a
destination agent server, then the sender agent server, on
which the agent is running, signs the agent digitally. The
sender agent server produces a signature object which
uses a hash algorithm and the private key of the sender
agent server. The sender agent server retrieves the private
key from the keystore. The agent (state and code) along
with its signature by the agent server, its owner identity
and signature, as well as the writer(vendor) identity and
signature are sent to the destination site. The owner
signature is produced only once at the home agent server
as the private key will be no more available when the
agent leaves its home. The writer signature is downloaded
by the home agent server when downloading an agent
from a third party agents writer. On reception of the
signed agent, the receiver agent server (the visited host)
verifies the identity the mobile agent platform which sends
the agent. The receiver agent server then decides whether
to accept or reject the reception of the agent based on the
level of trust that the receiver has in the sender, owner,
and writer.

6 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

RECAG(code, state, sigo, sigs, sigw, certo, certs, certw)
1 � Retrieve Public Key of CA from keystore
2 PKCA←retrieve(keystore)
3 � Retrieve Public Key of authorities from keystore
4 PKo ←retrieve(keystore)
5 PKs ←retrieve(keystore)
6 PKw ←retrieve(keystore)
7 vo ←isValidSign(certo, PKCA, PKo, sigo)
8 vs ←isValidSign(certs, PKCA, PKs, sigs)
9 vw ←isValidSign(certw, PKCA, PKw, sigw)

10 � If all authorities must be authenticated
11 if enableHostAll
12 then if vo falseor vs falseor vw false
13 then sendAuthInvalid(client)
14 else � Can run the agent
15 adClient(client, certo, vo, certs, vs, certw, vw)
16 elseif
17 � Owner authentication required?
18 hostOwnerAuth
19 then
20 if vo false
21 then sendAuthInvalid(client)
22 elseif
23 hostSenderAuth
24 then
25 if vs false
26 then sendAuthInvalid(client)
27 elseif
28 hostWAuth
29 then
30 if vw false
31 then sendAuthInvalid(client)
32 else addClient(client, certo, vo, certs, vs, certw, vw)

On reception of the message (see algorithm above)
by the destination agent server, the receiver agent server
retrieves the digital certificates from the message, and ver-
ifies whether the certificates are valid (expired or not) and
issued by a trusted CA. The verification procedure needs
the CA’s public key which is retrieved from the receiver
agent server’s keystore. After successful verification of
the digital certificates, the signatures are verified using
the corresponding public keys which are retrieved from
keystore. We assume that public keys have already been
distributed among agent servers. The agent server keeps a
record on the agent’s authentication status, as well as the
identities of its authorities (sender, owner and writer). The
authentication mechanisms are based on our assumption
that the level of trust that a receiver agent server attributes
for an incoming agent depends on the level of trust that
the receiver agent server had in the sender agent server,
the agent owner, and the agent program writer, which can
be configured by an administrator.

D. Authentication Algorithm on Cooperation Request

RREQ(destHost, destAg, sigo, sigs, sigw, certo, certs, certw)
1 � Retrieve Public Key of CA
2 � from keystore
3 PKCA←retrieve(keystore)
4 � Retrieve Public Key
5 � of authorities from keystore
6 PKo ←retrieve(keystore)
7 PKs ←retrieve(keystore)
8 PKw ←retrieve(keystore)
9 vo ←isValidSign(certo, PKCA, PKo, sigo)

10 vs ←isValidSign(certs, PKCA, PKs, sigs)
11 vw ←isValidSign(certw, PKCA, PKw, sigw)
12 � If all authorities must be authenticated
13 if enableHostAll and enableAgentAll
14 then if vo falseor vs falseor vw false
15 then sendAuthInvalid(client)
16 else adClient(client, certo, vo, certs, vs, certw, vw)
17 � Return a capability
18 capa ← getCapa(destA, client)
19 elseif
20 � Owner authentication required?
21 hostOwnerAuth or destAgOwnerAuth
22 then
23 if vo false
24 then sendAuthInvalid(client)
25 elseif
26 hostSenderAuth or destAgSenderAuth
27 then
28 if vs false
29 then sendAuthInvalid(client)
30 elseif
31 hostWAuth or destAgWAuth
32 then
33 if vw false
34 then sendAuthInvalid(client)
35 else adClient(client, certo, vo, certs, vs, certw, vw)
36 � Return a capability
37 capa ← getCapa(destAg, client)

LOCALREQ(destAg)
1 � Already authenticated?
2 trusted ←getAuthClient(client)
3 � If all the authority actors must be authenticated,

� then reject if any actor is not authenticated
4 if trusted isTRUE
5 then
6 � Returns a capability
7 capability ←getCapa(destAg, client)
8 else then sendAuthInvalid(client)
9

As stated previously, mobile agents start cooperating by
consulting a secure naming server. When the client agent
consults the naming service for cooperating with a server
agent, the naming server authenticates the client, verifies
whether access rights have been exported for the client by
the server agent, and establishes a secure communication

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 7

© 2008 ACADEMY PUBLISHER

channel with the client agent. As stated previously the
requirements for authentication differ according to the
location of the client agent. We distinguish the following
cases:

• Client agent is remote. On cooperation request (see
above algorithm), the agent server on which the
client is running sends to the destination naming
server, the cooperation request along with the dig-
ital signature of the agent’s authority which is the
signatures of its (owner, sender agent server, writer).
The agent’s owner and writer digital signatures are
part of the agent’s state. As agent is mobile, the
agent does not have the private keys, once left its
home, and therefore the signatures must move with
the agent. For the sake of the performance, the agent
only keeps the signature of its home and its last
dispatcher. Keeping the signatures of the itinerary
nodes is beneficial for tracing purposes if needed.
However, this will increase the agent’s size with each
migration.
Upon authentication of the client, the secure naming
server grants only initial capabilities to the client
according to the server agent access control policy,
over a secure communication channel. For the sake
of performance, further communications can be done
using these capabilities without further authentica-
tion if the communications pursue on the same se-
cure encrypted channel. We argue that authenticating
a client agent on every communication with a server
agent is costly. Therefore, we opted for one-time
authentication over a secure communication channel.
However, if the channel is broken due the server
agent mobility for instance, then an authentication
is required, as capabilities may have been passed
to another client agent or have been stolen, it is
then necessary to verify authentication on the next
establishment of a communication channel.

• Client agent is created locally. The behavior as in
the local request algorithm (see algorithm above).
If the client agent has been created locally by the
agent server, then the agent is considered trusted. The
reference to the agent is only known locally by the
execution context of the agent server. This reference
and other information concerning the owner and
the writer of the agent are added to a table of
authenticated agents by the local agent server.

• Client agent is a visitor. The behavior as in the local
request algorithm (see algorithm above). If the client
agent is a visitor agent, then the agent has already
been authenticated upon its reception by the agent
server. On cooperation request, the secure naming
server responsible to authenticate agent lookups its
table of authenticated agents to verify that the agent
has been already authenticated.

E. Access Control Mechanisms

Our access control mechanisms are based on capabil-
ities. Agents can control accesses to their own objects

Fig. 2. Definition of a Capability

(resources) by use of capabilities. A capability is a token
that identifies an object and contains access rights, i.e.
the subset of the object’s methods whose invocation is
allowed. An agent is represented by a graph of objects,
where a global unique name is generated for the root
object and a relative name is generated for each internal
object. In order to access an object, an agent must own a
capability to that object with the required access rights
(Figure 2). When an object is created, a capability is
returned to the creator that usually contains all rights on
the object. The capability can thus be used to access the
object, but can also be copied and passed to another agent,
providing it with access rights on that object. When a
capability is copied, the rights associated with the copy
can be restricted, in order to limit the rights given to
the receiving agent. Agent move with their capabilities.
Those capabilities must be protected against the man in
the middle attacks. Capability protection is not our focus
in this paper.

Capabilities are generated automatically by our system
from the semantic definitions of access control policies
by our security generator. When an agent migrates, it
moves with its policy code in a transparent way agent’s
application. Each agent defines in a semantic way its own
policy using an interface definition language (IDL) that
we have defined (Figure 3). The purpose of the IDL is
to separate the definition of protection from the agent’s
application code. The language defines the capabilities to
be exchanged between cooperating agents. The semantic
consists of the following terminology:

• policy. A policy is the definition of the set of methods
to be accessed. It is the view that the agent is willing
to export to other cooperating agents.

• disallow. It identifies unauthorized method call. A
security violation message will be sent by the system
informing the caller of security violation.

• users. It identifies the list of authorities that must
be authenticated before capabilities are granted. As
stated previously an agent runs under the authority of
its owner, sender agent server, and writer principles.
The authorities are AND/ORed according to authenti-
cation requirements of the agent. ANDed authorities
must be all authenticated before an agent can get
access.

• grant. It is used to grant different access rights to
different agents if they have been authenticated as
required.

As an example, consider a distributed agenda applica-
tion using mobile agents. The agents organize a meeting
between their corresponding owners (Figure 3). A mobile
agent migrates from the agent server of its owner to the
other owners’ agent servers to decide on a meeting time.
Each agent should be able to read the agenda maintained

8 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

Fig. 3. Agent Access Control Policy

Fig. 4. Dynamic Exchange of Capabilities

by the other agent in order to determine a free common
slot. An agent must not tamper with another agent agenda.
An agent will then disallow other agents to call the init()
method, which can be called only by the administrator
agent. However, other agents can call the access() method
to read the agenda.

F. Exchanging Capabilities

Agents communicate and exchange capabilities in a
transparent way to the agents applications code through
the messaging system (Figure 4). The messaging system
is similar to the Java Remote Invocation (RMI) [32]. Each
agent defines semantically its own access control policy
using the IDL. This definition includes the agent’s view
of protection and the authorized users. Then, based on
this definition, stub and skeleton classes are generated
by a pre-processor (that we have implemented). Those
classes include security modules which implement the
defined policies. Instances of those stubs and skeletons
classes are then inserted by the mobile-agents platform
to protect the agent. The stubs and skeletons ensures
that only authorized capabilities are exchanged among
agents. The capabilities are constructed and exchanged
dynamically through the security modules in a flexible
way. When a client agent communicates with a server
agent, the client stub sends a message along with the
capability for access (1). Based on the received capability
(2), the server agent skeleton grants access to the client
and a reply message is sent. The server agent can send
with the reply message a capability (3) which increments
the client access rights for future communication.

VI. EVALUATION

In order to evaluate the impact of our protection mecha-
nisms on the performance of a mobile agent platform, we

have developed the digital-based authentication mecha-
nisms and the capability-based access control mechanisms
and integrated them within a mobile agent platform that
we have implemented and which we know the imple-
mentation details. This allows us to identify the Java
mechanisms involved in the implementation of a secure
mobile agent platform and to measure the cost of these
mechanisms. Our system is composed of 2 distributed
machines which run the secure mobile agent platform. We
first measure the cost of the Java mechanisms involved
in the implementation of security in our experimental
environment. This gives us an idea about elementary
costs for protection. Then, we compare the operation of
the platform (agent migration) with security and without
security. This gives us an information about the actual
penalty on the performance of agents migrations.

In this section we describe the implementation of our
secure mobile agent platform, and identify the main
Java mechanisms involved in the implementation of the
protection. We then present both a qualitative as well as
a quantitative evaluation of the main components of the
security mechanisms and the impact of those components
on agent execution.

A. Experimental Environment

Our mobile agent platform is implemented in Java. The
following Java characteristics are used in our experiment:

• Code mobility. Java allows classes to be dynamically
loaded from remote nodes. Code portability is pro-
vided by interpretation of byte code.

• Object serialization and de-serialization. The java
language provides an object serialization and de-
serialization features [33], which allow instances to
be exchanged between different execution environ-
ments. Serialization feature provides a means for
translating Java objects into a stream of bytes which
can be sent as a message over the network or written
on a file disk. De-serialization is the reverse process,
where a graph of objects can be reconstructed from
the byte stream which includes the serialized graph.

• Polymorphism. Another important aspect of Java
that we used is polymorphism. Polymorphism refers
to the ability to define Interfaces (or types) and
classes separately. An interface can therefore be
implemented by several classes. It is possible to
declare a variable whose type is an interface and
which can reference objects from different classes
that implement the same interface.

• Dynamic binding. Java also implements dynamic
binding, which is crucial to mobile code. Dynamic
binding means the ability to determine at run-time
the code to be executed for a method invocation.
Since Java allows classes to be dynamically loaded,
a variable of an interface type can be assigned to a
reference that points to an object, whose class was
loaded dynamically. Java postpones the binding of
the code (of this variable) until invocation time, thus
allowing dynamically loaded classes to be executed.

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 9

© 2008 ACADEMY PUBLISHER

• Digital signature. Java provides mechanisms [34] for
digitally signing an object using a Digital Signature
Algorithm (DSA) for digital signature [35], and
using SHA-1 [?] for hashing. It provides mechanisms
for signature verification. The java language provides
the Sun Java Cryptography, an implementation for
encryption and digital signature.

• Keys and Digital Certificates. The Java environment
provides a feature for the management of keys and
their associated X509 digital certificates [15]. In
particular, it provides an interface to a keystore
repository to manage private keys and their associ-
ated X.509 digital certificates.

B. Agent Authentication

The agent migration consists of the following steps.

a) Serialization of the agent state.
b) Retrieval of the sender agent server’s private key

and digital certificate, and the digital certificates
of owner and writer from the local keystore.

c) Creation of an object signature to be used to
sign the agent.

d) Initialization of the signature object with the
server private key.

e) Updating the signature object using the agent’s
state for encoding.

f) Production of the signature of the mobile agent
using the signature object from step d).

g) Construction of a message which includes the
agent’s state, code, signature and the (owner,
sender, writer)’s digital certificates and sending
of the above message to the destination agent
server using a TCP/IP connection.

h) Destruction of the agent in the origin agent
server.

i) Reception of the message in the destination
agent server and creation of a new thread for
the execution of the agent.

j) De-serialization of the agent’s state.
k) Checking the digital certificates validity (valid or

expired) of the (owner, sender, writer)’s digital
signatures.

l) Retrieval of the (owner, sender, writer)’s public
keys from a local keystore.

m) Verification of the (owner, sender, writer) ’s
digital certificate using the CA’s public key from
step k). This step verifies whether the (owner,
sender, writer)’s certificates have been issued by
a trusted CA.

n) Initialization of the signature object used to
verify the agent’s signatures.

o) Verification of the agent’s signatures.
p) Run the agent if agent authorities are authen-

ticated according to the receiving host security
policy.

C. Hardware and Software Environment

Our hardware environment is described in Table I.
The two servers Agent Server1 and Agent Server2 are
connected by a local area network of 100Mbits/sec.

TABLE I
HARDWARE CONFIGURATION

Server 1 Server2

Nb of Cpus 1 proc, 2 core 1 proc

Cpu Type Intel T2500 Pentium M

Cpu Mhz 2000 1800

Memory 1GB 512MB

OS WindowsXP WindowsXP

We used the JDK 1.5.0 09 for all the experiments
described in this paper. The security mechanisms imple-
mented within our mobile-agents platform use the Sun
Java Cryptography mechanisms [27].

D. Experiments

We measure the average cost of elementary functions
used for protection. We program a minimal agent which
iterates a pingpong between Agent Server1 and Agent
Server2 100 times.

In an experiment, we measure the average total cost
of a one-way trip for an agent. We increase the agent
size for each experiment. The agent sizes are 1.8Kbytes
(a minimal agent), 100Kbytes, 500Kbytes, 1000Kbytes,
1500Kbytes and 2000Kbytes respectively. The experi-
ments are repeated in two environments: with protection
and without protection.

E. Protection Cost

The cost of the elementary protection mechanisms that
are used in our environment is presented in the Table II.
This gives us the basic elementary cost of these mecha-
nisms in our environment under experiment during plat-
form operation. Mainly these components are relative to
authentication services. For the implementation of access
control, we used the fact that Java object references are
capabilities and that to invoke an object, the invoker needs
that capability. These elementary components correspond
to the following security operations as described in the
authentication process of the agent (VI-B)

• Private Key and agent server digital certificate re-
trieval. This phase corresponds to step b) in the
description of the agent authentication.

• Agent signature initialization. This phase corre-
sponds to step c), d) and e) in the description of
the agent authentication.

• Agent signature production. This phase corresponds
to step f) in the in the description of the agent
authentication.

10 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

Fig. 5. Comparison between Agent Migration with Protection and
without Protection

• Digital Certificate validation. This phase corresponds
to step k) in the description of the agent authentica-
tion.

• Public keys retrieval. This phase corresponds to step
l) in the description of the agent authentication.

• Digital Certificate verification. This phase corre-
sponds to step m) in the description of the agent
authentication.

• Signature verification initialization. This phase cor-
responds to step n) in the description of the agent
authentication.

• Signature verification. This phase corresponds to step
o) in the description of the agent authentication.

TABLE II
SECURITY ELEMENTARY COSTS OF OUR EXPERIMENTAL

ENVIRONMENT

Protection Component µs µs

Private Key, Certificates retrieval 3.42 4.35

Agent signature init 0.11 0.11

Agent signature 7.70 7.82

Certificates validation 0.33 0.36

Public keys retrieval 1.77 2.04

Digital Certificates verification 0.03 0.03

Signatures verification init 0.69 1.13

Signatures verification 40.8 47.79

The measurements in Table II represent the execution
time of the Java methods dealing with digital signature
manipulation and keystore access. We observe that the
signature verification is the most expensive operation. The
verification algorithm, as implemented by the Java Sun
security provider, uses the signature and the public key
of the signer to verify that the signature has been produced
by a corresponding private key.

As shown in Figure 5, the protection overhead is
important in case of migration of a minimal agent. We
observed an overhead of 412% on a minimal agent
migration performance when protection is used. The cost
of a minimal agent migration did not compensate the
protection overhead which is mainly due to security
function used for protection. As the agent size increases,
the overhead decreases to 45%. It is obvious that secure

mobile agent platform is interesting for mobile agents
deployed in large-scaled environments. The protection
overhead would compensate the agents migration and
local cooperation can take place securely.

VII. CONCLUSION AND PERSPECTIVES

Many researchers have investigated the development
of protection mechanisms in a mobile agent platform.
However, the protection mechanisms provided focused
on protecting host resources from malicious agents. In
these works suspicious cooperating agents have to include
protection mechanisms at the application level, which
makes the programming of agents a difficult task. In this
paper, we proposed the use of semantics for agents to
define protection policies using an Interface Definition
Language (IDL) that we have defined. Consequently, the
agent application code and the definition of protection
policies can be done separately, thus enhancing modular-
ity, and easing programming task. The authentication of
agents and the enforcement of their access control policies
are done in a transparent way to the agents applications
by our messaging system.

An agent has to be signed every time it is sent, and
at a request for cooperation. By this way the verification
of the integrity of the agent and the non-repudiation are
met. Therefore, it is easier to identify a malicious agent
authority that owns, sends or fabricates a malicious agent.
We introduced a secure naming service which ensures
authentication for initiating cooperation among agents.
Our mechanisms are transparent to the agents’ application
codes. Available mobile agents applications can use our
secure platform without any change to their code. The
experiments showed the feasibility and usability of the
implemented protection mechanisms.

The performance evaluation that we have conducted
shows the impact of the protection on the operation of the
platform. The significance of this impact depends largely
on the underlying implementation and the performance
of the encryption/decryption algorithms by the security
service providers. We measured the cost of the elementary
methods used for protection in our implementation.

The work presented in this paper continues. In partic-
ular, we are extending our platform to implement and
evaluate a dynamic digital certificates and public key
distribution among agent servers, and its impact on the
performance and the usability of the system.

VIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their detailed and valuable comments.

REFERENCES

[1] D. Chess, C. Harrison, and A. Kershenbaum. ”Mobile Agents:
Are They a Good Idea?”. IBM Research Division, T. J. Waston
Research Center, Yorktown Heights, New York, March 1995, URL:
http://www.cs.dartmouth.edu/?agent/papers/chapter.ps.Z

[2] International Business Machines Corporation: ”Mobile Agent Facil-
ity Specification”. OMG TC Document cf/96-08-01, August 1996.
URL: http://www.trl.ibm.co.jp/aglets/maf.ps

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008 11

© 2008 ACADEMY PUBLISHER

[3] OMG. ”Mobile Agent Facility Specification”. January, 2000.
http://www.omg.org/docs/formal/

[4] Leila Ismail and Daniel Hagimont. ”A Performance Evaluation
of the Mobile Agents Paradigm”. In Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications OOPSLA’99. ISBN = ”1-58113-238-7, 0-201-
48561-3 (Addison Wesley Longman)”, pp. 306-313

[5] J. Gosling and H. McGilton. ”The Java Language Environ-
ment: a White Paper”. Sun Microsystems Inc., 1996. URL:
http://java.sun.com/docs/white/langenv

[6] Scott Oaks. ”Java Security”. O’Reilly
[7] Christian Jensen and Leila Ismail. ”Capability Based Protection for

Hosting Mobile Code”. In ERSADS’97, March 17-21, 1997.
[8] Daniel Hagimont and Leila Ismail. ”A Protection Scheme for

Mobile Agents on Java”. In the 3rd ACM/IEEE International
Conference on Mobile Computing and Networking, pp: 215-222,
Budapest, Hungary, September 1997

[9] Volker Roth and Mehrdad Jalali-Sohi. ”Access Control and Key
Management for Mobile Agents”. Elevier Preprint, November 2001

[10] Leila Ismail. ’Evaluation of Authentication Mechanisms for Mo-
bile Agents on top of Java”. icis, pp. 663-668, 6th IEEE/ACIS
International Conference on Computer and Information Science
(ICIS 2007), 2007

[11] Ozgur Koray Sahingoz and Nadia Erdogan. ”A Two-Leveled
Mobile Agent System for E-commerce with Constraint-Based
Filtering”. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg. Vol.3036/2004, ISBN: 978-3-540-22114-2,
2004

[12] C. Badica, M. Ganzha, and M. Paprzycki. Mobile agents in a
multi-agent e-commerce system. Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing,
2005. SYNASC, ISBN: 0-7695-2453-2, pp: 8, 2005

[13] J. E. White. ”Telescript Technology: The Foundation for the
Electronic Market Place”. General Magic Inc., Mountain View, CA

[14] Robert S. Gray, George Cybenko, David Kotz, and Daniela Rus.
”Agent Tcl. Itinerant Agents: Explanations and Examples with
CDROM”. William Cockayne and Michael Zypa (editors), Manning
Publishing and Prentice Hall, 1997

[15] D. Lange and O. Mitsuru. ”Programming and Deploying Java
Mobile Agents with Aglets. Addison-Wesley Pub Co, ISBM: 0-
201-32582-9, August 1998

[16] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono.
Aglets Specifications 1.1 Draft 0.65. September 1998.
http://www.trl.ibm.com/aglets/spec11.htm

[17] J. Baiumann, F. Hohl, K. Rothermel, and M. Straer. ”Mole,
Concepts of a MobileAgents System”. World Wide Web, vol. 1,
No. 3, pp. 123-137, 1998.

[18] D. S. Milojici, W. LaForge, and D. Chauhan. ”Mobile Objects and
Agents, Design, Implementation and Lessons Learned”. Distributed
systems Engineering IEEE, pp. 1-14, 1998.

[19] G. Glass. ”Object Space Voyager - The Agent ORB for Java”.
Lecture Notes in Computer Science, no.1368, pp. 38-55, 1998.

[20] JADE Board. ”JADE Security Guide”. February, 2004.
http://jade.tilab.com/

[21] G. Vigna. ”Protecting Mobile Agents through Tracing”. Proceed-
ings of the Third Workshop on Mobile Object Systems. Finland,
June, 1997

[22] Tomas Sander and Christian F. Tschudin. ”Protecting Mobile
Agents Against Malicious Hosts”. Springer Lecture Notes in Com-
puter Science 1419. Springer-Verlag, 1998

[23] Tomas Sander and Christian F. Tschudin. ”Towards Mobile Cryp-
tography”. Proceedings of the IEEE Symposium on Security and
Privacy. 1998

[24] G. Karjoth, N. Asokan, and C. Glc. ”Protecting the computation
results of free-roaming agents”, Second International Workshop on
Mobile Agents (MA’98), Lecture Notes in Computer Science 1477,
pages 195-207. Springer-Verlag, 1998

[25] C. Cachin, J. Camenisch, J. Kilian, and J. Mller. One-Round
Secure Computation and Secure Autonomous Mobile Agents. In
Proc. 27th Colloquium on Automata, Languages and Programming
(ICALP), Geneva, Lecture Notes in Computer Science, Springer-
Verlag, 2000

[26] John Zachary. ”Protecting Mobile Code in the Wild”. IEEE Com-
puter Society. March/April 2003 (Vol. 7, No. 2) pp 78 - 82

[27] A. Puliafito and O. Tomarchio. ”Design and development of a
practical security model for a mobile agent system”. Proceedings

of the Seventh International Symposium on Computers and Com-
munications (ISCC02), vol. 02, pp. 1530-1346.

[28] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus.
”D’Agents: Security in a multiple-language, mobile-agent system”.
In Mobile Agents and Security, Giovanni Vigna (Editor), Lecture
Notes in Computer Science, Springer Verlag, pp. 154-187, 1998

[29] Matt Bishop. ”Computer Security Art and Science”. Pearson
Education, Inc. ISBN 0-201-44099-7

[30] W. Stalling. ”Cryptography and Network Security”. Third Edition.
Upper Saddle River, NJ: Prentice Hall. 2003

[31] Charles P. Pfleeger and Shari Lawrence Pfleeger. ”Security in Com-
puting”. ISBN-10: 0-13-035548-8; ISBN-13: 978-0-13-035548-5.
Prentice Hall. Published: 02 December 2002. Upper Saddle River,
NJ: Prentice Hall

[32] A. Wollrath, R. Riggs, and J. Waldo. ”A Distributed Object Model
for the Java System”. Computing Systems, vol. 9, no. 4, pp. 291-
312, 1996.

[33] R. Riggs, J. Waldo, A. Wolrath, and K. Bharat. ”Pickling State
in the Java System”. Computing Systems, 9(4), pp. 313-329, Fall
1996

[34] Pankaj Kumar. ”J2EE Security for Servlets, EJBs, and Web
Services. ISBN-10: 0-13-140264-1; ISBN-13: 978-0-13-140264-5;
Prentice Hall. Published: 04 September, 2003

[35] Federal Information Processing Standards (FIPS). ”Announcing
the Standard for Digital Signature Standard (DSS)”. Publication
186, 19 May 1994

[36] Sun Microsystems. ”JDK 5.0 Documentation”. Sun Microsystems,
2004. URL: http://java.sun.com/j2se/1.5.0/docs

Leila Ismail got her Ph.D. in Computer Sci-
ence from the National Polytechnic Institute
of Grenoble (INPG), France, in September
2000 with very honorable degree. During her
Ph.D., she conducted her research work in
distributed systems and security at the French
National Institute for Research in Computer

Science and Control (INRIA). Before joining the United Arab
Emirates University, UAE, in 2005-2006, as an Assistant Pro-
fessor in Computer Science, she was working for Sun Microsys-
tems Research and Development Center. She was also a visiting
professor in the American University of Beirut, Lebanon, during
2004-2005. She participated to the deposit of a US patent in
the domain of networking while working for Sun Microsys-
tems. Her current research interests include security in mobile-
agents systems, Grid computing, high performance computing,
autonomous computing, and parallel processing programming
models. She is currently leading the Grid and High Performance
Computing laboratory at the United Arab Emirates University.
She won the IBM Shared University Award in 2007 and the
IBM Faculty Award in 2008. She is actively participating in
international journals and conferences programs committees.

12 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 2, APRIL 2008

© 2008 ACADEMY PUBLISHER

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

