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Abstract— Inconsistency is a challenge with many delay-
sensitive Massively Multiplayer Online Games (MMOGs). 
In this paper, a framework for inconsistency analysis and 
control is proposed. A typical situation, called hot-spot 
region, is considered for resolving this problem, since it is 
one of major causes of the inconsistency. Stochastic models 
are presented to abstract the operations of a MMOG in the 
context of our goal, particularly for examining the impact of 
various system characteristics and player behaviors on the 
inconsistency. A definition of game inconsistency together 
with a method for computing inconsistency rate is also 
provided. By using our models, we carry out inconsistency 
analysis quantitatively and obtain a deep insight into its 
behavior. Based on our analysis, we develop a mechanism 
for inconsistency control in the context of hot-spot region, so 
as to illustrate our approach in this area. 
 
Index Terms—massive multiplayer online games, federated 
MMOG p2p architecture, queuing theory and Markov 
processes, performance modeling.  
 

I.  INTRODUCTION 

    IT is recognized that one of the key issues with 
Massively Multiplayer Online Games (MMOGs) is the 
delay for transmitting and processing an event or state-
update triggered by a player during game-play [1][2][3]. 
For example, the first person shooter (FPS) games are 
thought to be the most delay-sensitive networked games. 
The games are fast paced while the players widely move 
around shooting and ducking. It would be extremely 
frustrating for the players who try to hit a target where 
there is an apparent delay between pressing triggers and 
weapons firing. The delay also causes another problem, 
called game inconsistency. A typical example of the 
inconsistency is “a dead man who is able to shoot” 
problem [4][5][6]. It is recognized that the inconsistency 
becomes one of key challenges for many MMOGs 
design. Therefore,  the work to be described in this paper 
is aimed at the analysis and control for this problem. 
During the last five years, significant research has been 
reported in the context of this issue. The work dealt with 
the design of efficient communication architectures [7]-
[12], interest management group [2][13][14], game-world 

partitioning [16][17][18], dead reckoning [19][20], 
message aggregation and compression [2][3][13]. The 
distinction of our work from the previous publications is 
argued as the followings:                                                                            

1) 

2) 

A targeted condition: During a game session, 
players work on their missions or quests. In order to 
achieve their goals, they travel around the virtual world 
(or game world) and interact with each other. Their 
behaviors are random not only in temporal dimension but 
aslo in spatial dimension. It is observed that the 
popularity of different parts, called regions or rooms 
usually, of the virtual world is not identical for many 
games. For example, based on the measurement of well-
known Quake-II’s workload online, it is noticed that 
players tended to move between popular “waypoint” 
regions in the map and the popularity distribution of 
waypoint was “Zipf-like” [12][21]. About 30% of players 
gathered in only 1% of popular place. For example, the 
players congregate inside one of the buildings. This 
special place is often called hop-spot region. In such 
condition, the population of players is relatively large and 
interaction among them is intensive. Thus, the system 
workload for communication and processing is suddenly 
increased when a hot-spot region occurs. Consequently, 
unexpected delay and inconsistency occur. This paper 
will particularly deals with this issue. 

Methodology: Most of existing works in the area 
of MMOGs deal with the design and implementation of a 
small size prototype with fixed network configuration 
based on a specific game so as to evaluate the proposed 
ideas or deal with the performance evaluation based on 
measurements from online game systems. It is  relatively 
rare in the study of performance modeling and analysis 
for MMOGs with arbitrary configuration in terms of 
various system parameters. In this paper, stochastic 
models are originally presented so as to abstract the 
characteristics of a MMOG, particularly for investigating 
the impact of various factors on the system inconsistency. 
A formal definition of system inconsistency is proposed 
together with the mathematical expression derived for 
calculating the inconsistency rate. By carrying out 
performance analysis using our models, we can obtain a 
deeper insight into the behaviors of the  inconsistency, 
which is further used in the design of our inconsistency 
control mechanism. 
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3) Control system  design: Our strategy for  the 
inconsistency control is characterized in three aspects: (i) 
the control design is aimed at a hot-spot condition, as 
discussed before; (ii) the control is dynamically 
performed in a real-time manner using online measures; 
(iii) the control is realized by performing co-operation 
between clients and servers.  
    The rest of this paper is organized as follows: In 
Section 2 we provide the description of a federated P2P 
MMOG architecture. In Section 3, we present the details 
of modeling and analysis of the system, including 
numerical examples. In Section 4 a mechanism for 
inconsistency control is proposed in the context of hot-
spot conditions. The related works are reviewed in 
Section 5. Finally, concluding marks are disussed. 

II.  SYSTEM DESCRIPTIONS 

    A typical game world of MMOGs is made up of 
landscape (or terrain), player characters (or avatars), 
objects, and non-player characters (NPCs). The landscape 
consists of all immutable components in the game. As 
computer graphics they are generated by the client 
software pre-installed. A player experiences a game 
world through a game avatar, which represents his/her 
character, such as knight, wizard, and prince/princess in 
Lineage [24]. The state of a player includes the player’s 
position in the virtual world and other attributes, such as 
possession, health or strength, intelligence or wisdom. 
Mutable objects are weapon, food and various tools. The 
NPCs, such as monsters, residents and teleporters, are 
computerized characters and controlled by their 
algorithms. They can be allies or enemies. During a game 
session, a player may take successive actions [9]. For 
examples, the player can control the avatar to move 
around the virtual world for visiting different rooms or 
fields, pick up weapons or armors, kill monsters, and 
fight with other players. These actions lead game state to 
change. 
    We choose a federated peer-to-peer architecture as a 
target for our study, since it is a typical and potential 
architecture proposed recently and attracting more 
attention [8][9][22][25]. It is a hybrid solution of client-
server and peer-to-peer (P2P) technologies as shown in 
Fig. 1.  Its game world is partitioned into regions based 
on the limited sensing capabilities of a player’s avatar. 
Each region is associated with an interest management 
group, which is composed of all the players within this 
region [8][25]. By using a peer-to-peer (P2P) 
communication mechanism, the players (or peers) 
disseminate their state updates relevant to that region. 
When a player moves from one region to another, the 
player’s interest group is changed. The system consists of 
three kinds of nodes: a central server, region servers, and 
peers. The central server (or world server) is responsible 
for partitioning a game world into regions and keeps the 
mapping between regions and interest groups. It helps 
peers  (clients or players) to discover their groups and to 
receive the game data whenever they log-in the game or 
perform transition from one region to another. Thus, the 

function of the central server is independent of the nature 
of the game as most of game logic is executed at the 
clients. 
 

 
 

Figure 1.  Federated peer-to-peer architecture 
 

   All-game communications are carried out in a P2P 
fashion once a player is connected to his interest group. 
Region server is a manager of an interest group 
associated with one region. It coordinates all shared 
objects or data related to that region. For example, it 
plays a role of arbiter for fighting events generated by the 
peers. As a root of the group broadcast tree, this server is 
responsible for disseminating data of region map and 
state-updates. A node of the broadcast tree, except for the 
root, is a peer in the region group. A game is a large state 
machine [3][25]. The game state must be consistent 
among the players of a region. In order to keep state-
updates synchronously among the peers in a region, the 
peers send their relevant state changes to the region 
server, called events in this paper. The region server 
correlates them and then broadcasts state-updates to all 
the peers in that region. Once the peers receive the state-
updates, each of them will generate a new scene of the 
game accordingly. 

III.  MODELING AND ANALYSIS 

A.  Models 
    Although the MMOGs support a large number of 
concurrent players, a game session is actually performed 
based on interest management groups or regions at a 
time. The characteristics of timing with each region are 
most essential for the whole game system design, since 
all events handling and state-updates disseminating are 
region-oriented in a federated P2P MMOG. There is no 
interaction between any two players, who are located in 
different regions at a time. As a result, we consider one 
region and its context of the game world as our targeted 
system for modeling.  This does not loss any generality,  
since the implementation of each region follows the same 
protocol [22][25]. We abstract the targeted system as an 
M[X]/G/1 queuing system [26], as illustrated in Fig. 2. 
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Figure 2.  Batch arrivals and queuing model 
 

In this queuing model customers, representing 
messages (or events) generated from clients of the region 
and the central sever, arrive in batches in accordance with 
a time-homogenous Poisson process with parameter λ .  
The batch size X  is a random variable, gNX ≤≤1 , 
where is the maximum number of players with a 
game. The assumption of the batch arrival is based on the 
fact that a game is a finite-state-machine and the game-
state is updated periodically in most game 
implementation. During each period, the region server 
may receive multiple messages from the players or from 
the central server. Assume that the service takes place 
singly and that the service time for each customer is a 
random variable, denoted by 

gN

υ  , having a general 
distribution with mean µ/1 . In this model, the traffic 
intensity is µλρ /][XE= , where 1<ρ . Thus, the 
steady-state is reached. Consider a test-customer 
regardless of where it comes from and let D be the 
sojourn time of the customer in the queuing system. The 
delay D , seen by the test-customer, consists of two 
independent delays,  and .  is the delay or 
waiting time of the first member to be served of the batch 
in which the rest arrives, and  is caused by the service 
time of the members of this batch that are served prior to 
the test-customer. Therefore, . The details for 
finding the distribution of sojourn time D and its 
expectation in an M

1D 2D 1D

2D

21 DDD +=

][DE [X]/G/1 queuing system are 
given in the Appendix.  Accordingly, we can obtain 
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    Since there are two kinds of arrivals in batches, the 
batch size X  is the sum of two sub-sizes,  and , 
where  and 

1X 2X
nX ≤≤ 11 )(1 2 nNMX g −=≤≤ α . 

Specifically, n is the number of players who are in the 
test-region during a game-period.  M  is the number of 
players in the neighbor-regions of the test-region, and 
some of them potentially transit into the test-region as 

indicated in Fig. 2. We introduce factor ,α  10 ≤≤α , to 
reflect a probability of these “foreign players” who 
potentially invade the test-region. In fact,  represents 
the number of messages generated by the “local players” 
in the test-region due to their taking actions.  is the 
number of messages sent from the central server. This is 
because a message is generated by the central server 
whenever a foreign player transits into the test-region 
during a game period [22][25].  

1X

2X

    We assume the sub-size  is binomially distributed 
and its probability mass function is  

1X
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⎛
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Using this distribution, we can adjust the traffic workload 
from the clients to the region server by varying the values 
of two parameters,  and , where  , n p p 10 << p , 
represents the probability of each player sending a 
message to the region server. In other words,  
represents the probability of a player taking an action 
(movement or interaction). As a result, the expectation 
and variance of  are given respectively by  

p

1X

    npXE =][ 1 , )1(][ 1 pnpXVar −=  and thus,  

]1)1[(][][][ 2
11

2
1 +−=+= pnnpXEXVarXE                (3) 

   Since the rate, at which a foreign player transits into the 
test-region, is not independent of the number of players in 
the test-region for most of games. We can model this 
transition process as a Markov Modulated Poisson 
Process (MMPP) [29], wherein the state of Markov chain 
covering the MMPP in one-to-one correspondence with 
the number of customers present in the system; that is if 
there are i  customers (or players) in the system (i.e., 
region) at time t , the Markov chain governing the 
MMPP is in state , and the arrival rate (or the transition 
rate) to the system is , 

i
iλ },,1,0{ Mi L∈ . Suppose that the 

residence times of a player in one region are 
exponentially distributed with mean γ .  We denote by  
the infinitesimal generator for the Markov chain 
governing the arrival process. Then, Q  has the following 
form: 

Q
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where , )(2 iMi −= λλ Mi ≤≤0 , and γλ /12 =  represents 
the average transition rate. Once  is specified, we can 
determine the steady-state distribution of the Markov 
chain, which is denoted by a vector 

Q

),...,,( 10 Mπππ=π , 
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where iπ  represents the stationary probability when the 
Markov chain have their equilibrium solution by solving 
the following equations [26]: 

⎩
⎨
⎧

=⋅
=⋅

1eπ
0Qπ

                                                     (5) 

where  is a column vector with all its elements 
equal to unity. Consequently, the distribution of random 
variable  is equivalent to the distribution of the 
Markov chain’s steady-state. Thus,  

]1,...,1,1[=e

2X

∑ ⋅=
=

M

i
iiXE

0
2 ][ π                                            (6) 

i

M

i
iXE π⋅∑=

=0

22
2 ][                                          (7) 

Since  is generated by internal players of the region 
and  is produced by the central server due to the 
foreign players’ mobility, we may assume that  and 

 are independent with each other. Thus, we can obtain 

1X

2X

1X

2X

][][][ 21 XEXEXE +=                                 (8) 

][][2][][][ 21
2
2

2
1

2 XEXEXEXEXE ++=      (9) 

According to additive property of Poisson processes [26], 
we can have 

][][][ 2211 XEXEXE λλλ +=                        (10) 

as shown in Fig. 2. Using equations (1)-(10), we can now 
evaluate the average sojourn time of a customer in the 
queuing system , once][DE ρ , γ , µ , ,   and gN ,n p α  
are specified. Using Little’s Law [28], we can also obtain 
the expected number of customers in the system by 
 
         ][][ DENE λ=                                  (11) 

B. Inconsistency 
 
   We denote system latency by T . It is identified that the 
latency T  includes the following delays:  - the elapsed 
time between an event-message being emitted from a 
peer and received by the region server; - the delay 
incurred by the event-message waiting and processing in 
the region server; It is noted that a state-update is 
generated by the server at the end of this time interval; 

- the elapsed time between the update-state message 
being issued by the region server and received by the 
peer; - the latency over which the peer processes the 
update-state and displays a new scene on the screen. 
Thus, we obtain . In this paper, we define the 
concept of inconsistency in terms of two metrics as 
follows:  

1d

2d

3d

4d

∑= =
4

1i idT

    1).  - the time interval between two successive 
actions taken by a player. Since there may be a sequence 
of actions triggered by other players during interval , 

we can express it by , where k represents the 
number of actions happened during interval  and is 
the average inter-arrival time of the event-messages. 

hT

hT

1−= λkTh

hT 1−λ
λ  is 

also shown in Fig. 2. By this definition, we can interpret 
 as thinking-time of a player, which is proportional to 

k, once 
hT

λ  is given. 
    2). T - the system latency as analyzed above. Recall 
(11) and apply Little’s law, we can get the expected 
number of customers (or messages) departed from the 
region server during period T  and  by hT TNT λ=  and 

hTh TN λ= , respectively. If , it means that the 
player is able to see what happens on his screen in time 
whenever he triggers an event. In this case, there is no 
scene or display lost in the game progress, since the game 
state-update caused by his action can be completed before 
he takes next action. Otherwise, in the case of , 
the player will miss (

ThTN N≤

hNN ΤΤ >

ThT NN − ) state-updates triggered by 
other players and thus,  his decision for next action  is 
actually based on uncompleted state-update. As a 
consequence, the player may experience a wrong 
outcome during game play. We call such scenario as 
consistency loss or inconsistency. Depending on the 
degree of user tolerance and game logic design, there 
may be different way to evaluate consistency loss rate. In 
this paper we estimate the inconsistency rate  by lossC
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Since TNT λ= , hTh TN λ=  and , the 
inconsistency rate can be simply expressed by 
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C.  Analysis 
 

    It is recognized that the system delay is one of key 
causes for consistency loss during game-play [2][4][6]. 
This is quantitatively reflected in (19).  Recall equation 

, we can express it as , where ∑= =
4

1i idT 21 TTT +=

][1 DET =  represents the average queuing delay, 
including service time at region server, and the rest of 
network delay. As discussed before, the delay  depends 
on the service rate 

2T

1T
µ/1  and the traffic workload ][XEλ , 

which is further determined by the number of players 
within the region, the number of players around the 
region, their mobility behavior, and the intensity of their 
interaction, which have been reflected in our modeling. In 
contrast with ,  is caused by the network and local 
computer a player chooses for a game play. It is noted 
that such facilities are independent of the game world 
design and player behaviors.  

1T 2T

In what follows, we present numerical examples to 
evaluate the system delay and inconsistency rate in terms 
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of the game system characteristics based on our models 
above. It means that we ignore the impact of , since it 
is independent of the game design and player’s behavior. 
We assume that the distribution of the service time in 
M

2T

[X]/G/1 queuing system is exponential with mean µ/1 .  
Accordingly, under the same other assumptions as given 
in Section 3.A, we can first compute the average sojourn 
time of a customer in the system, based on (1),   by 
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Then, we evaluate inconsistency rate  using (19), 
where . We employ the queuing model to 
investigate inconsistency in the context of game-design 
and players-behavior, excluding the facilities players 
choose. Fig. 3 shows the impact of traffic intensity 

lossC
][DET =

ρ  on 
the system delay T  with different value of  , the 
number of players in the region, where we specify 

, 

n

36=gN 1.0=α , , 4.0=p 001.0/1 =µ s,  10=γ s and 
 . Fig. 4 demonstrates the feature of inconsistency 

rate  under the same assumptions as given in Fig. 3. 
From Fig. 4, we identify that (i) when 

4=k
lossC

ρ  is small, say 
6.0≤ρ , no inconsistency occurs; (ii) the inconsistency 

rate is increasing when the value of n  is getting large 
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Figure 3.  Delay analysis with varying against n ρ  
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Figure 4.  Inconsistency analysis with varying against n ρ  

 
under the same traffic intensity. Fig. 5 presents the 
performance of T via ρ  with varying the value of α , 
where we fix 36=gN , , , 4=n 4.0=p 001.0/1 =µ s, 

10=γ s and 4=k . Fig. 6 illustrates the behavior of 
inconsistency under the same assumptions as given in 
Fig. 5. From Fig. 6 we note that whenα , the probability 
of foreign players moving to the region, is increased,  
is also increased significantly.   
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Figure 5.  Delay analysis with varying α  against ρ  
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Figure 6.  Inconsistency analysis with varying α  against ρ  
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Figure 7.  Delay analysis with varying p against ρ  
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Fig. 7 demonstrates the impact of  on the system delay p
T , where , , 36=gN 6=n 1.0=α , 001.0/1 =µ s, 10=γ s 
and . Recall that   is the probability of a player 
triggers an event caused by his movement or interaction.  

4=k p
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Figure 8.  Inconsistency analysis with varying p against 

 
Fig. 8 illustrates the feature of consistency loss under the 
same assumption as given in Fig. 7. We find that  is 
increased with increment of . This means that the 
activity of a player, such as his movement or interaction, 
is one of important factors to affect the value of .  
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Figure 9.  Inconsistency analysis with varying ρ against  k

 
Finally, we investigate the relationship between  
and  , the length of thinking-time, under different traffic 
intensity. It is shown in Fig. 9, where we set 

lossC
k

36=gN , 
, 10=n 001.0/1 =µ s, 10=γ s, and 4.0== pα .  We 

recognize that (i) the inconsistency rate is decreased with 
increasing the thinking-time; (ii) the inconsistency rate is 
high when the traffic intensity is heavy. 

IV.  INCONSISTENCY CONTROL 

A.  Control System Design 

    In order to perform inconsistency control, we first need 
a mechanism for detecting an inconsistency risk timely 
during game-play. Recall the definition of consistency-
loss and (18) for calculating the inconsistency rate , 
we find  only if  or , since 

lossC

0>lossC 0>− ThT NN 0>− hTT
λTNT =  and . We assume that each client  

can take measure for  and  during game-play. The 
measures, as part of data in the packets together with 
original information generated by client , are sent to 
the region server whenever the player takes an action. 
Similar to the definitions of 

λhTh TN = ic

iT h
iT

ic

T  and  ,  is the 
response-time experienced by client  and  represents 
“thinking-time” of client . As a result, we can define 

as a risk indicator. If 

hT iT

ic h
iT

ic
h

ii TT −=1δ 01 >δ , it indicates that  
an inconsistency occurs.  Since  is determined by 
player’s behavior, we cannot control it from the system 
designer’s point of view. Recall the system delay 

h
iT

21 TTT +=  presented in section 3.C, where  represents 
the average queuing delay and  is the network delay. 
This leads us to consider inconsistency control in 
different ways for the two cases. In this paper, we only 
concentrate on the inconsistency control due to queuing 
delay, especially for a hot-spot region.  In such situation, 
the population of players is relatively large and 
interaction among them is intensive. Therefore, it leads to 
a heavy workload for the region server. Consequently, 
unexpected delay and inconsistency occurs.  

1T

2T

We propose a mechanism, called local-division handling, 
which can approximately reduce the queuing delay to a 
half in the context of a hot-spot region. We define 2δ  as 
another indicator to show when the local-division 
handling is applied during game-play. Specifically, we 
define  

⎪⎩

⎪
⎨
⎧ ≤−=

−

otherwise

TQTif h
ii

,0
2
1,1 1

2
λδ                 (21) 

 
where λ  and  are the average arrival rate and the 
average queuing length for a certain period respectively, 
which can be estimated by online measures. They will be 
addressed in detail soon. The control is realized by 
performing co-operation between clients and region 
servers. The control mechanism at each region server is 
illustrated in Fig. 10. 

Q
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Figure 10.  Framework flow of the control system 
 
Since a hot-spot region occurs randomly and it is of 
temporary nature, we apply the control only if 12 =δ , i.e., 

h
ii TQT ≤− −1

2
1 λ . It means that in such situation the 

queuing delay  is dominant in the system delay1T T , 
comparing to the network delay .  It is obvious that 
only reducing queuing delay cannot resolve the 
inconsistency problem completely, especially when the 
queuing delays do not play a key role in the cause of 
unexpected system delay. In other words, the unexpected 
delay may be mainly caused by heterogeneous 
environment. Therefore, we need to apply for some delay 
compensation technique, which is beyond our scope in 
this paper. We are currently working on this solution. 

2T

B.  Online Measures 
In order to handle the messages from clients and 

coordinate these data at region server, each region server 
maintains a data structure or table which contains the 
state-information for its players [8]. We extend the data 
structure to including some online measures associated 
with inconsistency control.  The extended online 
measures are illustrated in Table 1.   

    In this table, we still use client IDs, , , as 
indices for searching its data.  represents the round-
trip-delay between client  and the region server. The 
value of  can be measured whenever player (or client) 

 joins the region. By finding , 

ic ni ,...,2,1=

ih

ic

ih

ic }min{*
ihh = ni ,...,2,1= , 

the region server can always find a client , 
, which has the minimum delay  to it. 

Client  will be employed as an assistant region server 
when a hot-spot condition occurs, which will be 
discussed in the next subsection.  represents the 
frequency of messages generated by client  to the 
region server, which can be determined by recording the 
number of messages, ,  issued by client during a 
period 

*c
},,,{ 21

*
ncccc L∈ *h

*c

if

ic

im ic
τ . For a game design, a popular measure of how 

fast an animation progress is frames per second (FPS). 
The desired 100 FPS imply that each iteration of the 
game animation loop should take 10ms. Thus, we may set 

, where  is an integer, say 1)( −= FPSaτ a 10=a . 
Accordingly, τ/ii mf = , which indicates the average 
arrival rate of the messages from  for period ic τ . In 
addition, the region server estimates the total arrival rate 
of messages λ  and the average queue length Q  for each 
period τ  by calculating and  
respectively, where   is the number of waiting 
messages in the queue when message  is received by the 
server.  

∑≈ =
n
i if1λ 1)]/([ 1=

λτ
iq +∑≈ λτiQ

iq
i

 

C.  Control Algorithms 

     Given the online measures in Table 1, the region 
server can execute the algorithm for local-division 
handling, as indicated in Fig. 10, which is further 
described as below.  

 
Control Algorithm at Region Server 

1. Whenever 12 =δ  occurs 
2. Save the current value of  λ  and  as Q λ

~   and 
Q
~ respectively 

3. Put message  into the queue for processing im
4. Call local  division procedure, as indicated in 

Fig.10 TABLE I.   
EXTENDED ONLINE MEASURES 

Clients, 
i i i ic  

Distance, 
h  

Total 
frequency 
of events, 

 if

Thinking-
time,  hT

Response-
time, T  

1c  1h  1f  hT1  1T  

2c  2h  2f  kT2  2T  

M  M  M  M  M  
nc  nh  nf  h

nT  nT  

5. Two region servers  and  start for 
managing the region in parallel 

1S 2S

6.  For   (or ) 1S 2S
7.         Initialize 0=i                      
8.         check status flag 2δ  immediately  after a   
                message is processed 
9.           If 02 =δ  
10.                   Then 1+= ii   
11.                    Repeat line 8-10          Until 10=i  
12.  Call local mergence procedure 
 
The local division procedure called in the algorithm 
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above is further illustrated in Fig. 11, where a hot-
spot region is originally managed by server  as 
shown  in the case of (a). When an inconsistency risk 

1S

 

 
Figure 11. Region division and mergence 

 
occurs (due to 01 >δ ) and the queuing delay needs to 
be reduced to a half (due to 12 =δ ), the region is 
divided into “two virtual regions” as indicated in  the 
of case (b), where an assistant server  is 
appointed. It is noted that the two regions actually 
share the same part of the game world based on its 
original partitioning scheme. In other words, the two 
virtual regions play the same role in the region 
management. The only difference is that each region 
server has only a half of the number of players from 
the original region and they work collaboratively so 
as to improve the efficiency of messages processing 
and delivery during game-play. The specific 
procedure for the division is presented as the follows: 

2S

 
• Server  selects one of its clients in the region 

as an additional server  such that 
, where  was 

defined as before. This rule makes 
communication between the two servers with the 
shortest delay. 

1S

2S

},...,2,1,|{ *
2 nihhcS ii === *h

• Sort the list of current frequencies in Table 1 

in descendant order and obtain 
if

nfff
~~~

21 ≥≥≥ L . 
Divide the clients into two groups using the 
sorted list, denoted by  and , such that 1G 2G

nifccG iii ,...,5,3,1,
~

|{1 ===  or , where 
index  must be an odd numbers and 

}1−n
i

nifccG iii ,...,6,4,2,
~

|{2 ===  or , where 
index  must be an even number. This 
separation is fair for the two new regions in 
terms of the number of players and workload for 
each region.  

}1−n
i

•  sends the current state-information and Table 
1 to , including 

1S

2S λ
~   and Q

~ , which will be 
used for local mergence procedure late. 

•    notifies the address of   to the central 
server and all the clients in . Then,  starts 

working with its members as a new group in a 
normal way. 

1S 2S

2G 2S

•    Each time when  (or ) generates a state-
update, it sends the update to  (or ) at first 
and then broadcasts its members. Once  (or 

) receives an update, it coordinates its  state 
information for keeping all the states consistent 
in the two servers, since they still share the same 
part of the game-world. 

1S 2S

2S 1S

2S

1S

•    Whenever a foreign player moves in this hot-
spot region, the central server notifies the new 
member to  and  alternatively so as to 
achieve fair workload for each server. 

1S 2S

 
    The algorithm can support the local division procedure 
recursively in principle. However, it will rarely happen in 
practice, as the risk indicator can notify the inconsistency 
risk timely.  
     Since a hot-spot region is of temporary nature, the two 
virtual regions may be merged late. This is because that 
(i) some players are killed; (ii) some players move away 
from the current region; (iii) the intensity of interaction 
between players is relieved due to (i) and (ii). Therefore, 
a procedure for local mergence is included in the 
algorithm. In order to distinguish the online measures for 
the two servers, we now denote the messages arrival rate 
λ  as 1Sλ (or 2Sλ ) and the queue length Q  as (or ) 
for server (or ) respectively. Also, we define an 
indicator

1SQ 2SQ

1S 2S
β , }1,0{∈β  to show when the local mergence 

procedure is invoked during game-play. β  can be 
evaluated by two flags, 1β  and 2β , which are expressed 
by 

⎪⎩

⎪
⎨
⎧ ≤+=

otherwise

if SS

,0

~
2
1,1 21

1
λλλβ   and   

⎪⎩

⎪
⎨
⎧ ≤+=

otherwise

QQQif SS

,0

~
2
1,1 21

2β  

where, λ~ and Q
~ represent the message arrival rate and 

the queue length for a hot-spot region server just before it 
is divided, respectively.  If 121 =∩= βββ , the mergence 
procedure will be triggered. This condition is quite 
conservative. Also, the operations prior to calling the 
mergence procedure are proposed in line 7-11 of the 
control algorithm at each region server. Therefore, we 
can ensure that there will be no possibility for the hot-
spot region to take place again in a short time. 
 
 Local Mergence Procedure 
 

1. For server  (or ) 1S 2S
2. Send the current measures 1Sλ (or 2Sλ ) and 

(or ) to (or ) carried by state-update 
messages 

1SQ 2SQ 2S 1S

3. Server   (or ) receives the measures and 2S 1S
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calculates β  
4.  If 1=β  , Then server  (or ) transfers its 

leadership to server (or ) 
2S 1S

1S 2S
 

    It is noted that the leadership transfer can be achieved 
in the same way as one region server transits to other 
region [8]. Therefore, no additional protocol is needed 
here. 

This control algorithm significantly reduces the 
inconsistency rate by using parallel computation and 
communication with two region servers for a hot-spot 
region. It can be verified using our numerical results in 
the last section. As indicated in Fig. 5, when ,7.0=ρ  we 
find that , , and 

.  In Fig.7, when 
24.0)4( ≈=nCloss 44.0)8( ≈=nCloss

61.0)16( ≈=nCloss ,6.0=ρ  we recognize 
that 22.0)2.0( ≈=αlossC , 65.0)5.0( ≈=αlossC , and 

78.0)8.0( ≈=αlossC . In addition, the enhanced mechanism 
only operates when an inconsistency risk occurs without 
affecting the original design and implementation of a 
game. However, the algorithm produces overhead in data 
processing and communication. This is worth for users to 
enjoy their game-play by avoiding inconsistency 
occurrence.  

V.  RELATED WORK 

    John C.S Lui and M. F. Chan [16] propose an efficient 
partitioning algorithm for Distributed Virtual 
Environments (DVEs). In this paper the authors discussed 
major challenges in designing a scalable, cost-effective, 
and high performance DVE system, formulated a number 
of functions for the avatar’s workload to the system 
computational cost, in order to carry out the system 
performance evaluation and obtain their optimal 
partitioning algorithms. Daniel Bauer et al. [25] propose a 
very general model for evaluating the scalability of 
massive multi-player games with three communication 
architectures: client-server, peer-to-peer and federated 
peer-to-peer. They define the cost of operations on input 
processing resource and network processing resource. 
This is the first paper that gives a quantitative assessment 
of these architectures by using analytical models. E. 
Rhalibi and M. Merabti [22] propose a fully distributed, 
peer-to-peer architecture for MMOGs. The authors 
specify the architecture by using agent-based modeling 
technique. However, quantitative performance evaluation 
is not given in the paper. In the paper [18] by Li Zou et 
al, the authors propose their static and dynamic 
simulation models for the performance evaluation of 
game state dissemination with cell-based and entity-based 
strategies. In the paper some basic concepts for 
distributed games, such as entity, player, cell, vision 
domain, player area and interaction group, are well 
discussed. M. Ye and L. Cheng [20] present a method for 
modeling MMORPGs (massively multiplayer online role-
playing games) system performance and applied it in the 
analysis of two real MMORPGs. The results show that a 
strong linear relationship exists between performance 
metrics at server side and the number of currently players 

online. The performance model can be used for resource 
allocation at runtime. E. Lety et al [17] propose an 
approach at the transport layer, using multiple multicast 
groups and multiple agents, to achieve dynamic partition 
optimally for large-scale virtual environment. They use a 
method based on the theory of planner point processes for 
performance analysis of their system design.  
   One of key differences from the existing works as 
mentioned before is that in our paper the MMPP and 
M[X]/G/1 stochastic models are used for the analysis of 
system delay and inconsistency, rather than using the cost 
of system resources consumed as performance metrics.  
   S. Rooney et al [8] present a federated P2P network 
game architecture, including detailed discussion for the 
design of multicast reflectors, one kind of region servers, 
and transport protocols, in order to improve the system 
performance in terms of synchronization, delay and loss. 
B. Knutsson et al [9] present an excellent paper in the 
topic of P2P support for MMOGs. The design and 
implementation of their prototype, SimMud game, is 
introduced. In addition, the basic concepts for MMOGs 
together with the issues for P2P infrastructure games are 
well discussed in this paper. A. Bharambe et al [12] 
present the design, implementation and evaluation of 
Colyseus, a distributed architecture for interactive 
multiplayer games, which takes advantages of a game 
tolerance, for weakly consistent state and predictable 
workload to meet the tight latency constraint of game-
play and maintain scalable communication cost.  

   We benefit the works from the last three papers for 
studying inconsistency issue in the context of their 
communication architectures. The work presented in our 
paper is to enhance the existing architectures for solving 
the inconsistency problem caused by the two conditions 
without modifying their original design and 
implementation.  

VI.  CONCLUSIONS 

    We have proposed a framework for inconsistency 
analysis and control in the context of a hot-spot region. 
Compared to the existing works in this area, our new 
contributions are: (i) we originally presented analytical 
models to abstract the operations of a federated P2P 
MMOG so as to perform the system delay and 
inconsistency analysis quantitatively; (ii) we proposed a 
definition for the concept of inconsistency together with 
an expression for computing inconsistency rate in terms 
of the system characteristics and players activities; (iii) 
based on our models and the numerical results , we 
proved the fact that the longer delay a game system 
experiences, the higher risk consistency-loss occurs. 
Especially, we identified that three factors, the number of 
players in a region n , the mobility pattern factor α , and 
the activity of players in the region , directly impact on 
the system delay and consistency-loss; (iv) our strategy 
for the design of inconsistency control is based on 
dynamically monitoring the inconsistency status by using 
our derived formulas with online measures. The strategy 
keeps the original design and implementation of a game 

p
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and thus, the control algorithms are only operated as 
enhanced mechanisms. 
    As analyzed in this paper, unexpected delay may be 
caused by heterogeneous environment. This problem has 
to be resolved by delay compensation technique. We are 
currently working on this solution as our future outcome 
in this area. 

APPENDIX:  THE  MODEL WITH BULK ARRIVAL 1//][ GM X

 
     This appendix presents the details for finding the 
distribution of sojourn time D  in an  
queuing system and determining its expectation . 

1//][ GM X

][DE
 
A. The number in the system at departure epochs in 

steady state (Pollaczek- Khinchin formula) 
 
    Assume that the arrival epochs occur in accordance 
with a Poisson process with rate λ  and the number of 
arrivals at each epoch is given by a random variable (RV) 
X having distribution  and the probability 

generation function (PGF) 
),Pr( jXa j ==

  
j

j
j sasA ∑=)(   and                (1)         aAjaXE j =′=∑= )1()(

}{ ja  is the batch size distribution. 

    The total arrivals A  constitute a compound Poisson 
process having PGF )]}(1[exp{ sA−−λ . Suppose that N is 
the total number of arrivals during the service time of a 
customer. Then the PGF of N is given by 
 

)]([)(][ * sABsKsE N λλ −==                                        (2)                                                
 
where it is assumed that the service times are independent 
and identically-distributed RV having a general 
distribution with the probability density function (PPDF ) 

 and mean ()(tB µ/1 ). Thus,  is its 
Laplace-Stieltjes-Transform (LST), then .  

)()( 0
* tdBesB st∫= ∞ −

µ/1)0()1*( =−B
   The traffic intensity is µλµλρ //)( aXE == . Assume 
that 1<ρ  so that the steady state is reached. Since we can 
have the Pollaczek- Khinchin (P-K) for  as the 
follows: 

1// GM

 

ssB
sBssV

−−
−−−

=
)(

)()1)(1()( *

*

λλ
λλρ                                       (3)          

where  is the PGF of the number of customers leaves 
behind in the system when  a customer is departing. The 
(P-K) formula can now be extended for  by 

                                    

)(sV

1//][ GM X

 

ssAB
sABssV

−−
−−−

=
))((

))(()1)(1()( *

*

λλ
λλρ                                   (4)                           

 
In other words,  is the PGF of the number of 
customers in the  system at departure epochs in 
steady state.  In particular case when , 

)(sV
1//][ GM X

11 =a 0=ja , 

, we get 1>j ssA =)(  and , then we 
have an  queue. 

)()( * sBsK λλ −=
1// GM

 
B. Waiting –time distribution 

 
Burke [27] obtained the waiting-time distribution in an 

 queuing system in 1975. What follows is 
based on his approach. 

1//][ GM X

 
Consider a test unit and let D be the total waiting time of 
the unit in queue. Namely, D is the queuing time of an 
arbitrary test unit. The delay D is seen by the test unit to 
consist of two independent delays,  and .  is the 
delay (or waiting time) of the first member to be served 
of the batch in which the test unit arrives, and  is the 
delay caused by the service times of the members of this 
batch that are served prior to the test unit. In other 
words,

1D 2D 1D

2D

21 DDD += . Let W and  be the PDF of D 

and , 
iW

iD 2,1=i , respectively, and let  and  be 
the LST of W and , respectively.  Let  be the 
service-time distribution and  = LST of the PDF of 
the total service time of all customers belonging to the 
same arrival group. Then 

)(* sW )(* sWi

iW )(tB

)(* tB

 

)]([)]([)( **

1

* sBAsBas k

k
k =∑=

∞

=
β                                    (5)                           

To find the delay , consider a batch as a whole as a 
single super customer. Then the LST of the waiting time 
of the first customer of the batch in which the test unit 
arrives can be obtained from the corresponding 
expression of an  system with  replaced 
by . That is, if 

1D

1// GM )(* sB
)(* sβ 1/ <= µλρ a , then replacing  

by , we get  
)(* sB

)(* sβ
 

=*
1W  LST of the delay  = 1D

))]((1[
)1(

* sBAs
s
−−
−

λ
ρ       (6) 

 
Let  be the probability that the test customer arrives in 
a batch of size of i. Let K be significantly large number. 
Then in the first K batches of arrivals, the number of 
batches with i arrivals will be approximately  , 

ip

Kai

L,2,1=i  and the total number of customers arriving in 
batch of size  will be approximately . Thus, the 
total number of arrivals in K batches is 

i Kiai

 

Kia
i

i∑
∞

=1
 

 
and the proportion of those arriving in batches of size i is  
 

a
ia

ia
ia

Kia
Kia

i i

i

i
i

i =
∑

=
∑

 

 
where )(XEa = . Thus, for large K,   
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a

ia
p i

i =  .                                                            (7)                                            

Assume now that the test customer arrives in a batch of 
size . Assume further that service within members of 
any batch is in random order. Then the probability that 
the test customer chosen in the jth in the batch of  is 

, , i. Again, if he/she is the jth customer to 
be taken for service, his/her delay(or waiting time in the 
queue) will be equal to the service time of 

customers of the batch (of size ) in which he/she 
arrives and who are served prior to him/her. Now 
conditioning on the size of the batch i on which the test 
customer arrives, we get 

                     

i

i
i/1 L,2,1=j

)1( −j i
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where *kB  is the k-fold convolution of B with itself. 
Thus,  
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    Since , the LST of the total delay D or 
waiting time in the queue of the test customer that has the 
LST given by 

21 DDD +=

 
               )()()( *

2
*

1
* sWsWsW =

                         
)](1[
)]([1

)]([
)1(

*

*
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sBA

sBAs
s

−
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−

=
λλ
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The waiting time in the system or response time of the 
test unit is given by υ+= DWs , where υ  is the service 
time. Thus, the LST  of , the response time, is 
given by 

)(* sWs sW

 
              . )()()( *** sBsWsWs =

 
C. Moments of  for  21 DDD += 1//][ GM X

 
We can have 
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(which is of the form ). Using L’Hopital’s  rule and 
simplifying, we get 

0/0
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where  is the second moment of the 
supercustomer’s service time. On simplification, we get 
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where . Writing , we get 
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Again, 
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(which is of  the form ). Using L’Hopital’s  rule and 
simplifying, we get 

0/0

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1

2
1)(

)2(

2 a
aDE

µ
                                              (12) 

 
Thus, 
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It is noted that equation (13) above is directly used for 
determining E[D] with  model, which is 
equation (1) in our submitted paper [26][28]. 

1//][ GM X
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