
A Framework for Inconsistency Analysis and
Control of Massively Multiplayer Online Games

Zheng Da Wu

Bond University, Gold Coast, Australia
Email: zwu@bond.edu.au

Abstract— Inconsistency is a challenge with many delay-
sensitive Massively Multiplayer Online Games (MMOGs).
In this paper, a framework for inconsistency analysis and
control is proposed. A typical situation, called hot-spot
region, is considered for resolving this problem, since it is
one of major causes of the inconsistency. Stochastic models
are presented to abstract the operations of a MMOG in the
context of our goal, particularly for examining the impact of
various system characteristics and player behaviors on the
inconsistency. A definition of game inconsistency together
with a method for computing inconsistency rate is also
provided. By using our models, we carry out inconsistency
analysis quantitatively and obtain a deep insight into its
behavior. Based on our analysis, we develop a mechanism
for inconsistency control in the context of hot-spot region, so
as to illustrate our approach in this area.

Index Terms—massive multiplayer online games, federated
MMOG p2p architecture, queuing theory and Markov
processes, performance modeling.

I. INTRODUCTION

 IT is recognized that one of the key issues with
Massively Multiplayer Online Games (MMOGs) is the
delay for transmitting and processing an event or state-
update triggered by a player during game-play [1][2][3].
For example, the first person shooter (FPS) games are
thought to be the most delay-sensitive networked games.
The games are fast paced while the players widely move
around shooting and ducking. It would be extremely
frustrating for the players who try to hit a target where
there is an apparent delay between pressing triggers and
weapons firing. The delay also causes another problem,
called game inconsistency. A typical example of the
inconsistency is “a dead man who is able to shoot”
problem [4][5][6]. It is recognized that the inconsistency
becomes one of key challenges for many MMOGs
design. Therefore, the work to be described in this paper
is aimed at the analysis and control for this problem.
During the last five years, significant research has been
reported in the context of this issue. The work dealt with
the design of efficient communication architectures [7]-
[12], interest management group [2][13][14], game-world

partitioning [16][17][18], dead reckoning [19][20],
message aggregation and compression [2][3][13]. The
distinction of our work from the previous publications is
argued as the followings:

1)

2)

A targeted condition: During a game session,
players work on their missions or quests. In order to
achieve their goals, they travel around the virtual world
(or game world) and interact with each other. Their
behaviors are random not only in temporal dimension but
aslo in spatial dimension. It is observed that the
popularity of different parts, called regions or rooms
usually, of the virtual world is not identical for many
games. For example, based on the measurement of well-
known Quake-II’s workload online, it is noticed that
players tended to move between popular “waypoint”
regions in the map and the popularity distribution of
waypoint was “Zipf-like” [12][21]. About 30% of players
gathered in only 1% of popular place. For example, the
players congregate inside one of the buildings. This
special place is often called hop-spot region. In such
condition, the population of players is relatively large and
interaction among them is intensive. Thus, the system
workload for communication and processing is suddenly
increased when a hot-spot region occurs. Consequently,
unexpected delay and inconsistency occur. This paper
will particularly deals with this issue.

Methodology: Most of existing works in the area
of MMOGs deal with the design and implementation of a
small size prototype with fixed network configuration
based on a specific game so as to evaluate the proposed
ideas or deal with the performance evaluation based on
measurements from online game systems. It is relatively
rare in the study of performance modeling and analysis
for MMOGs with arbitrary configuration in terms of
various system parameters. In this paper, stochastic
models are originally presented so as to abstract the
characteristics of a MMOG, particularly for investigating
the impact of various factors on the system inconsistency.
A formal definition of system inconsistency is proposed
together with the mathematical expression derived for
calculating the inconsistency rate. By carrying out
performance analysis using our models, we can obtain a
deeper insight into the behaviors of the inconsistency,
which is further used in the design of our inconsistency
control mechanism.

Manuscript received March 26, 2009; revised August 12, 2009;
accepted September 10, 2009.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 803

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcm.4.10.803-814

3) Control system design: Our strategy for the
inconsistency control is characterized in three aspects: (i)
the control design is aimed at a hot-spot condition, as
discussed before; (ii) the control is dynamically
performed in a real-time manner using online measures;
(iii) the control is realized by performing co-operation
between clients and servers.
 The rest of this paper is organized as follows: In
Section 2 we provide the description of a federated P2P
MMOG architecture. In Section 3, we present the details
of modeling and analysis of the system, including
numerical examples. In Section 4 a mechanism for
inconsistency control is proposed in the context of hot-
spot conditions. The related works are reviewed in
Section 5. Finally, concluding marks are disussed.

II. SYSTEM DESCRIPTIONS

 A typical game world of MMOGs is made up of
landscape (or terrain), player characters (or avatars),
objects, and non-player characters (NPCs). The landscape
consists of all immutable components in the game. As
computer graphics they are generated by the client
software pre-installed. A player experiences a game
world through a game avatar, which represents his/her
character, such as knight, wizard, and prince/princess in
Lineage [24]. The state of a player includes the player’s
position in the virtual world and other attributes, such as
possession, health or strength, intelligence or wisdom.
Mutable objects are weapon, food and various tools. The
NPCs, such as monsters, residents and teleporters, are
computerized characters and controlled by their
algorithms. They can be allies or enemies. During a game
session, a player may take successive actions [9]. For
examples, the player can control the avatar to move
around the virtual world for visiting different rooms or
fields, pick up weapons or armors, kill monsters, and
fight with other players. These actions lead game state to
change.
 We choose a federated peer-to-peer architecture as a
target for our study, since it is a typical and potential
architecture proposed recently and attracting more
attention [8][9][22][25]. It is a hybrid solution of client-
server and peer-to-peer (P2P) technologies as shown in
Fig. 1. Its game world is partitioned into regions based
on the limited sensing capabilities of a player’s avatar.
Each region is associated with an interest management
group, which is composed of all the players within this
region [8][25]. By using a peer-to-peer (P2P)
communication mechanism, the players (or peers)
disseminate their state updates relevant to that region.
When a player moves from one region to another, the
player’s interest group is changed. The system consists of
three kinds of nodes: a central server, region servers, and
peers. The central server (or world server) is responsible
for partitioning a game world into regions and keeps the
mapping between regions and interest groups. It helps
peers (clients or players) to discover their groups and to
receive the game data whenever they log-in the game or
perform transition from one region to another. Thus, the

function of the central server is independent of the nature
of the game as most of game logic is executed at the
clients.

Figure 1. Federated peer-to-peer architecture

 All-game communications are carried out in a P2P
fashion once a player is connected to his interest group.
Region server is a manager of an interest group
associated with one region. It coordinates all shared
objects or data related to that region. For example, it
plays a role of arbiter for fighting events generated by the
peers. As a root of the group broadcast tree, this server is
responsible for disseminating data of region map and
state-updates. A node of the broadcast tree, except for the
root, is a peer in the region group. A game is a large state
machine [3][25]. The game state must be consistent
among the players of a region. In order to keep state-
updates synchronously among the peers in a region, the
peers send their relevant state changes to the region
server, called events in this paper. The region server
correlates them and then broadcasts state-updates to all
the peers in that region. Once the peers receive the state-
updates, each of them will generate a new scene of the
game accordingly.

III. MODELING AND ANALYSIS

A. Models
 Although the MMOGs support a large number of
concurrent players, a game session is actually performed
based on interest management groups or regions at a
time. The characteristics of timing with each region are
most essential for the whole game system design, since
all events handling and state-updates disseminating are
region-oriented in a federated P2P MMOG. There is no
interaction between any two players, who are located in
different regions at a time. As a result, we consider one
region and its context of the game world as our targeted
system for modeling. This does not loss any generality,
since the implementation of each region follows the same
protocol [22][25]. We abstract the targeted system as an
M[X]/G/1 queuing system [26], as illustrated in Fig. 2.

804 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 2. Batch arrivals and queuing model

In this queuing model customers, representing
messages (or events) generated from clients of the region
and the central sever, arrive in batches in accordance with
a time-homogenous Poisson process with parameter λ .
The batch size X is a random variable, gNX ≤≤1 ,
where is the maximum number of players with a
game. The assumption of the batch arrival is based on the
fact that a game is a finite-state-machine and the game-
state is updated periodically in most game
implementation. During each period, the region server
may receive multiple messages from the players or from
the central server. Assume that the service takes place
singly and that the service time for each customer is a
random variable, denoted by

gN

υ , having a general
distribution with mean µ/1 . In this model, the traffic
intensity is µλρ /][XE= , where 1<ρ . Thus, the
steady-state is reached. Consider a test-customer
regardless of where it comes from and let D be the
sojourn time of the customer in the queuing system. The
delay D , seen by the test-customer, consists of two
independent delays, and . is the delay or
waiting time of the first member to be served of the batch
in which the rest arrives, and is caused by the service
time of the members of this batch that are served prior to
the test-customer. Therefore, . The details for
finding the distribution of sojourn time D and its
expectation in an M

1D 2D 1D

2D

21 DDD +=

][DE [X]/G/1 queuing system are
given in the Appendix. Accordingly, we can obtain

µ
υ

µρ 2
11

][
][][][][][

)1(2
1][

2
2

2

2

⎭
⎬
⎫

⎩
⎨
⎧

−
⎭
⎬
⎫

⎩
⎨
⎧

+
−

−
=

XE
XEEXEXEXEDE (1)

 Since there are two kinds of arrivals in batches, the
batch size X is the sum of two sub-sizes, and ,
where and

1X 2X
nX ≤≤ 11)(1 2 nNMX g −=≤≤ α .

Specifically, n is the number of players who are in the
test-region during a game-period. M is the number of
players in the neighbor-regions of the test-region, and
some of them potentially transit into the test-region as

indicated in Fig. 2. We introduce factor ,α 10 ≤≤α , to
reflect a probability of these “foreign players” who
potentially invade the test-region. In fact, represents
the number of messages generated by the “local players”
in the test-region due to their taking actions. is the
number of messages sent from the central server. This is
because a message is generated by the central server
whenever a foreign player transits into the test-region
during a game period [22][25].

1X

2X

 We assume the sub-size is binomially distributed
and its probability mass function is

1X

11

1
1)1();;(XnX pp

X
n

pnXb −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (2)

Using this distribution, we can adjust the traffic workload
from the clients to the region server by varying the values
of two parameters, and , where , n p p 10 << p ,
represents the probability of each player sending a
message to the region server. In other words,
represents the probability of a player taking an action
(movement or interaction). As a result, the expectation
and variance of are given respectively by

p

1X

 npXE =][1 ,)1(][1 pnpXVar −= and thus,

]1)1[(][][][2
11

2
1 +−=+= pnnpXEXVarXE (3)

 Since the rate, at which a foreign player transits into the
test-region, is not independent of the number of players in
the test-region for most of games. We can model this
transition process as a Markov Modulated Poisson
Process (MMPP) [29], wherein the state of Markov chain
covering the MMPP in one-to-one correspondence with
the number of customers present in the system; that is if
there are i customers (or players) in the system (i.e.,
region) at time t , the Markov chain governing the
MMPP is in state , and the arrival rate (or the transition
rate) to the system is ,

i
iλ },,1,0{ Mi L∈ . Suppose that the

residence times of a player in one region are
exponentially distributed with mean γ . We denote by
the infinitesimal generator for the Markov chain
governing the arrival process. Then, Q has the following
form:

Q

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

−−

−−

0000000
00000

00000

00000
00000

11

22

11

00

L

L

L

MMMMMMMM

L

L

MM

MM

λλ
λλ

λλ
λλ

Q (4)

where ,)(2 iMi −= λλ Mi ≤≤0 , and γλ /12 = represents
the average transition rate. Once is specified, we can
determine the steady-state distribution of the Markov
chain, which is denoted by a vector

Q

),...,,(10 Mπππ=π ,

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 805

© 2009 ACADEMY PUBLISHER

where iπ represents the stationary probability when the
Markov chain have their equilibrium solution by solving
the following equations [26]:

⎩
⎨
⎧

=⋅
=⋅

1eπ
0Qπ

 (5)

where is a column vector with all its elements
equal to unity. Consequently, the distribution of random
variable is equivalent to the distribution of the
Markov chain’s steady-state. Thus,

]1,...,1,1[=e

2X

∑ ⋅=
=

M

i
iiXE

0
2][π (6)

i

M

i
iXE π⋅∑=

=0

22
2][(7)

Since is generated by internal players of the region
and is produced by the central server due to the
foreign players’ mobility, we may assume that and

 are independent with each other. Thus, we can obtain

1X

2X

1X

2X

][][][21 XEXEXE += (8)

][][2][][][21
2
2

2
1

2 XEXEXEXEXE ++= (9)

According to additive property of Poisson processes [26],
we can have

][][][2211 XEXEXE λλλ += (10)

as shown in Fig. 2. Using equations (1)-(10), we can now
evaluate the average sojourn time of a customer in the
queuing system , once][DE ρ , γ , µ , , and gN ,n p α
are specified. Using Little’s Law [28], we can also obtain
the expected number of customers in the system by

][][DENE λ= (11)

B. Inconsistency

 We denote system latency by T . It is identified that the
latency T includes the following delays: - the elapsed
time between an event-message being emitted from a
peer and received by the region server; - the delay
incurred by the event-message waiting and processing in
the region server; It is noted that a state-update is
generated by the server at the end of this time interval;

- the elapsed time between the update-state message
being issued by the region server and received by the
peer; - the latency over which the peer processes the
update-state and displays a new scene on the screen.
Thus, we obtain . In this paper, we define the
concept of inconsistency in terms of two metrics as
follows:

1d

2d

3d

4d

∑= =
4

1i idT

 1). - the time interval between two successive
actions taken by a player. Since there may be a sequence
of actions triggered by other players during interval ,

we can express it by , where k represents the
number of actions happened during interval and is
the average inter-arrival time of the event-messages.

hT

hT

1−= λkTh

hT 1−λ
λ is

also shown in Fig. 2. By this definition, we can interpret
 as thinking-time of a player, which is proportional to

k, once
hT

λ is given.
 2). T - the system latency as analyzed above. Recall
(11) and apply Little’s law, we can get the expected
number of customers (or messages) departed from the
region server during period T and by hT TNT λ= and

hTh TN λ= , respectively. If , it means that the
player is able to see what happens on his screen in time
whenever he triggers an event. In this case, there is no
scene or display lost in the game progress, since the game
state-update caused by his action can be completed before
he takes next action. Otherwise, in the case of ,
the player will miss (

ThTN N≤

hNN ΤΤ >

ThT NN −) state-updates triggered by
other players and thus, his decision for next action is
actually based on uncompleted state-update. As a
consequence, the player may experience a wrong
outcome during game play. We call such scenario as
consistency loss or inconsistency. Depending on the
degree of user tolerance and game logic design, there
may be different way to evaluate consistency loss rate. In
this paper we estimate the inconsistency rate by lossC

⎪⎩

⎪
⎨
⎧

>
−

=
otherwise

NNif
N

NN
C ThT

T

ThT

loss

,0

, (18)

Since TNT λ= , hTh TN λ= and , the
inconsistency rate can be simply expressed by

1−= λkTh

⎪⎩

⎪
⎨
⎧ ⋅<

⋅
−=

otherwise

Tkif
T

k
Closs

0

1 λ
λ (19)

C. Analysis

 It is recognized that the system delay is one of key
causes for consistency loss during game-play [2][4][6].
This is quantitatively reflected in (19). Recall equation

, we can express it as , where ∑= =
4

1i idT 21 TTT +=

][1 DET = represents the average queuing delay,
including service time at region server, and the rest of
network delay. As discussed before, the delay depends
on the service rate

2T

1T
µ/1 and the traffic workload][XEλ ,

which is further determined by the number of players
within the region, the number of players around the
region, their mobility behavior, and the intensity of their
interaction, which have been reflected in our modeling. In
contrast with , is caused by the network and local
computer a player chooses for a game play. It is noted
that such facilities are independent of the game world
design and player behaviors.

1T 2T

In what follows, we present numerical examples to
evaluate the system delay and inconsistency rate in terms

806 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

of the game system characteristics based on our models
above. It means that we ignore the impact of , since it
is independent of the game design and player’s behavior.
We assume that the distribution of the service time in
M

2T

[X]/G/1 queuing system is exponential with mean µ/1 .
Accordingly, under the same other assumptions as given
in Section 3.A, we can first compute the average sojourn
time of a customer in the system, based on (1), by

⎭
⎬
⎫

⎩
⎨
⎧ +

−
=

][2
][][

)1(
][

2

XE
XEXEDE

ρλ
ρ (20)

Then, we evaluate inconsistency rate using (19),
where . We employ the queuing model to
investigate inconsistency in the context of game-design
and players-behavior, excluding the facilities players
choose. Fig. 3 shows the impact of traffic intensity

lossC
][DET =

ρ on
the system delay T with different value of , the
number of players in the region, where we specify

,

n

36=gN 1.0=α , , 4.0=p 001.0/1 =µ s, 10=γ s and
 . Fig. 4 demonstrates the feature of inconsistency

rate under the same assumptions as given in Fig. 3.
From Fig. 4, we identify that (i) when

4=k
lossC

ρ is small, say
6.0≤ρ , no inconsistency occurs; (ii) the inconsistency

rate is increasing when the value of n is getting large

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

traffic workload ρ

de
la

y T
 (s

)

n=4
n=8
n=16

Figure 3. Delay analysis with varying against n ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

traffic workload ρ

in
co

ns
is

te
nc

y
ra

te
 C

lo
ss

n=4
n=8
n=16

Figure 4. Inconsistency analysis with varying against n ρ

under the same traffic intensity. Fig. 5 presents the
performance of T via ρ with varying the value of α ,
where we fix 36=gN , , , 4=n 4.0=p 001.0/1 =µ s,

10=γ s and 4=k . Fig. 6 illustrates the behavior of
inconsistency under the same assumptions as given in
Fig. 5. From Fig. 6 we note that whenα , the probability
of foreign players moving to the region, is increased,
is also increased significantly.

lossC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

traffic workload ρ

de
la

y T
 (s

)

α=0.2
α=0.5
α=0.8

Figure 5. Delay analysis with varying α against ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

traffic workload ρ

in
co

ns
is

te
nc

y
ra

te
 C

lo
ss

α=0.2
α=0.5
α=0.8

Figure 6. Inconsistency analysis with varying α against ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

traffic workload ρ

de
la

y T
 (s

)

p=0.2
p=0.5
p=0.8

Figure 7. Delay analysis with varying p against ρ

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 807

© 2009 ACADEMY PUBLISHER

Fig. 7 demonstrates the impact of on the system delay p
T , where , , 36=gN 6=n 1.0=α , 001.0/1 =µ s, 10=γ s
and . Recall that is the probability of a player
triggers an event caused by his movement or interaction.

4=k p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

traffic workload ρ

in
co

ns
is

te
nc

y
ra

te
 C

lo
ss

p=0.2
p=0.5
p=0.8

Figure 8. Inconsistency analysis with varying p against

Fig. 8 illustrates the feature of consistency loss under the
same assumption as given in Fig. 7. We find that is
increased with increment of . This means that the
activity of a player, such as his movement or interaction,
is one of important factors to affect the value of .

lossC
p

lossC

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

thinking length k

in
co

ns
is

te
nc

y
ra

te
 C

lo
ss

ρ=02.
ρ=0.5
ρ=0.8

Figure 9. Inconsistency analysis with varying ρ against k

Finally, we investigate the relationship between
and , the length of thinking-time, under different traffic
intensity. It is shown in Fig. 9, where we set

lossC
k

36=gN ,
, 10=n 001.0/1 =µ s, 10=γ s, and 4.0== pα . We

recognize that (i) the inconsistency rate is decreased with
increasing the thinking-time; (ii) the inconsistency rate is
high when the traffic intensity is heavy.

IV. INCONSISTENCY CONTROL

A. Control System Design

 In order to perform inconsistency control, we first need
a mechanism for detecting an inconsistency risk timely
during game-play. Recall the definition of consistency-
loss and (18) for calculating the inconsistency rate ,
we find only if or , since

lossC

0>lossC 0>− ThT NN 0>− hTT
λTNT = and . We assume that each client

can take measure for and during game-play. The
measures, as part of data in the packets together with
original information generated by client , are sent to
the region server whenever the player takes an action.
Similar to the definitions of

λhTh TN = ic

iT h
iT

ic

T and , is the
response-time experienced by client and represents
“thinking-time” of client . As a result, we can define

as a risk indicator. If

hT iT

ic h
iT

ic
h

ii TT −=1δ 01 >δ , it indicates that
an inconsistency occurs. Since is determined by
player’s behavior, we cannot control it from the system
designer’s point of view. Recall the system delay

h
iT

21 TTT += presented in section 3.C, where represents
the average queuing delay and is the network delay.
This leads us to consider inconsistency control in
different ways for the two cases. In this paper, we only
concentrate on the inconsistency control due to queuing
delay, especially for a hot-spot region. In such situation,
the population of players is relatively large and
interaction among them is intensive. Therefore, it leads to
a heavy workload for the region server. Consequently,
unexpected delay and inconsistency occurs.

1T

2T

We propose a mechanism, called local-division handling,
which can approximately reduce the queuing delay to a
half in the context of a hot-spot region. We define 2δ as
another indicator to show when the local-division
handling is applied during game-play. Specifically, we
define

⎪⎩

⎪
⎨
⎧ ≤−=

−

otherwise

TQTif h
ii

,0
2
1,1 1

2
λδ (21)

where λ and are the average arrival rate and the
average queuing length for a certain period respectively,
which can be estimated by online measures. They will be
addressed in detail soon. The control is realized by
performing co-operation between clients and region
servers. The control mechanism at each region server is
illustrated in Fig. 10.

Q

808 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 10. Framework flow of the control system

Since a hot-spot region occurs randomly and it is of
temporary nature, we apply the control only if 12 =δ , i.e.,

h
ii TQT ≤− −1

2
1 λ . It means that in such situation the

queuing delay is dominant in the system delay1T T ,
comparing to the network delay . It is obvious that
only reducing queuing delay cannot resolve the
inconsistency problem completely, especially when the
queuing delays do not play a key role in the cause of
unexpected system delay. In other words, the unexpected
delay may be mainly caused by heterogeneous
environment. Therefore, we need to apply for some delay
compensation technique, which is beyond our scope in
this paper. We are currently working on this solution.

2T

B. Online Measures
In order to handle the messages from clients and

coordinate these data at region server, each region server
maintains a data structure or table which contains the
state-information for its players [8]. We extend the data
structure to including some online measures associated
with inconsistency control. The extended online
measures are illustrated in Table 1.

 In this table, we still use client IDs, , , as
indices for searching its data. represents the round-
trip-delay between client and the region server. The
value of can be measured whenever player (or client)

 joins the region. By finding ,

ic ni ,...,2,1=

ih

ic

ih

ic }min{*
ihh = ni ,...,2,1= ,

the region server can always find a client ,
, which has the minimum delay to it.

Client will be employed as an assistant region server
when a hot-spot condition occurs, which will be
discussed in the next subsection. represents the
frequency of messages generated by client to the
region server, which can be determined by recording the
number of messages, , issued by client during a
period

*c
},,,{ 21

*
ncccc L∈ *h

*c

if

ic

im ic
τ . For a game design, a popular measure of how

fast an animation progress is frames per second (FPS).
The desired 100 FPS imply that each iteration of the
game animation loop should take 10ms. Thus, we may set

, where is an integer, say 1)(−= FPSaτ a 10=a .
Accordingly, τ/ii mf = , which indicates the average
arrival rate of the messages from for period ic τ . In
addition, the region server estimates the total arrival rate
of messages λ and the average queue length Q for each
period τ by calculating and
respectively, where is the number of waiting
messages in the queue when message is received by the
server.

∑≈ =
n
i if1λ 1)]/([1=

λτ
iq +∑≈ λτiQ

iq
i

C. Control Algorithms

 Given the online measures in Table 1, the region
server can execute the algorithm for local-division
handling, as indicated in Fig. 10, which is further
described as below.

Control Algorithm at Region Server

1. Whenever 12 =δ occurs
2. Save the current value of λ and as Q λ

~ and
Q
~ respectively

3. Put message into the queue for processing im
4. Call local division procedure, as indicated in

Fig.10 TABLE I.
EXTENDED ONLINE MEASURES

Clients,
i i i ic

Distance,
h

Total
frequency
of events,

 if

Thinking-
time, hT

Response-
time, T

1c 1h 1f hT1 1T

2c 2h 2f kT2 2T

M M M M M
nc nh nf h

nT nT

5. Two region servers and start for
managing the region in parallel

1S 2S

6. For (or) 1S 2S
7. Initialize 0=i
8. check status flag 2δ immediately after a
 message is processed
9. If 02 =δ
10. Then 1+= ii
11. Repeat line 8-10 Until 10=i
12. Call local mergence procedure

The local division procedure called in the algorithm

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 809

© 2009 ACADEMY PUBLISHER

above is further illustrated in Fig. 11, where a hot-
spot region is originally managed by server as
shown in the case of (a). When an inconsistency risk

1S

Figure 11. Region division and mergence

occurs (due to 01 >δ) and the queuing delay needs to
be reduced to a half (due to 12 =δ), the region is
divided into “two virtual regions” as indicated in the
of case (b), where an assistant server is
appointed. It is noted that the two regions actually
share the same part of the game world based on its
original partitioning scheme. In other words, the two
virtual regions play the same role in the region
management. The only difference is that each region
server has only a half of the number of players from
the original region and they work collaboratively so
as to improve the efficiency of messages processing
and delivery during game-play. The specific
procedure for the division is presented as the follows:

2S

• Server selects one of its clients in the region

as an additional server such that
, where was

defined as before. This rule makes
communication between the two servers with the
shortest delay.

1S

2S

},...,2,1,|{ *
2 nihhcS ii === *h

• Sort the list of current frequencies in Table 1

in descendant order and obtain
if

nfff
~~~

21 ≥≥≥ L . 
Divide the clients into two groups using the 
sorted list, denoted by  and , such that 1G 2G

nifccG iii ,...,5,3,1,
~

|{1 ===  or , where 
index  must be an odd numbers and 

}1−n
i

nifccG iii ,...,6,4,2,
~

|{2 ===  or , where 
index  must be an even number. This 
separation is fair for the two new regions in 
terms of the number of players and workload for 
each region.  

}1−n
i

•  sends the current state-information and Table 
1 to , including 

1S

2S λ
~   and Q

~ , which will be 
used for local mergence procedure late. 

•    notifies the address of   to the central 
server and all the clients in . Then,  starts 

working with its members as a new group in a 
normal way. 

1S 2S

2G 2S

•    Each time when  (or ) generates a state-
update, it sends the update to  (or ) at first 
and then broadcasts its members. Once  (or 

) receives an update, it coordinates its  state 
information for keeping all the states consistent 
in the two servers, since they still share the same 
part of the game-world. 

1S 2S

2S 1S

2S

1S

•    Whenever a foreign player moves in this hot-
spot region, the central server notifies the new 
member to  and  alternatively so as to 
achieve fair workload for each server. 

1S 2S

 
    The algorithm can support the local division procedure 
recursively in principle. However, it will rarely happen in 
practice, as the risk indicator can notify the inconsistency 
risk timely.  
     Since a hot-spot region is of temporary nature, the two 
virtual regions may be merged late. This is because that 
(i) some players are killed; (ii) some players move away 
from the current region; (iii) the intensity of interaction 
between players is relieved due to (i) and (ii). Therefore, 
a procedure for local mergence is included in the 
algorithm. In order to distinguish the online measures for 
the two servers, we now denote the messages arrival rate 
λ  as 1Sλ (or 2Sλ ) and the queue length Q  as (or ) 
for server (or ) respectively. Also, we define an 
indicator

1SQ 2SQ

1S 2S
β , }1,0{∈β  to show when the local mergence 

procedure is invoked during game-play. β  can be 
evaluated by two flags, 1β  and 2β , which are expressed 
by 

⎪⎩

⎪
⎨
⎧ ≤+=

otherwise

if SS

,0

~
2
1,1 21

1
λλλβ   and   

⎪⎩

⎪
⎨
⎧ ≤+=

otherwise

QQQif SS

,0

~
2
1,1 21

2β  

where, λ~ and Q
~ represent the message arrival rate and 

the queue length for a hot-spot region server just before it 
is divided, respectively.  If 121 =∩= βββ , the mergence 
procedure will be triggered. This condition is quite 
conservative. Also, the operations prior to calling the 
mergence procedure are proposed in line 7-11 of the 
control algorithm at each region server. Therefore, we 
can ensure that there will be no possibility for the hot-
spot region to take place again in a short time. 
 
 Local Mergence Procedure 
 

1. For server  (or ) 1S 2S
2. Send the current measures 1Sλ (or 2Sλ ) and 

(or ) to (or ) carried by state-update 
messages 

1SQ 2SQ 2S 1S

3. Server   (or ) receives the measures and 2S 1S

 

810 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER



calculates β  
4.  If 1=β  , Then server  (or ) transfers its 

leadership to server (or ) 
2S 1S

1S 2S
 

    It is noted that the leadership transfer can be achieved 
in the same way as one region server transits to other 
region [8]. Therefore, no additional protocol is needed 
here. 

This control algorithm significantly reduces the 
inconsistency rate by using parallel computation and 
communication with two region servers for a hot-spot 
region. It can be verified using our numerical results in 
the last section. As indicated in Fig. 5, when ,7.0=ρ  we 
find that , , and 

.  In Fig.7, when 
24.0)4( ≈=nCloss 44.0)8( ≈=nCloss

61.0)16( ≈=nCloss ,6.0=ρ  we recognize 
that 22.0)2.0( ≈=αlossC , 65.0)5.0( ≈=αlossC , and 

78.0)8.0( ≈=αlossC . In addition, the enhanced mechanism 
only operates when an inconsistency risk occurs without 
affecting the original design and implementation of a 
game. However, the algorithm produces overhead in data 
processing and communication. This is worth for users to 
enjoy their game-play by avoiding inconsistency 
occurrence.  

V.  RELATED WORK 

    John C.S Lui and M. F. Chan [16] propose an efficient 
partitioning algorithm for Distributed Virtual 
Environments (DVEs). In this paper the authors discussed 
major challenges in designing a scalable, cost-effective, 
and high performance DVE system, formulated a number 
of functions for the avatar’s workload to the system 
computational cost, in order to carry out the system 
performance evaluation and obtain their optimal 
partitioning algorithms. Daniel Bauer et al. [25] propose a 
very general model for evaluating the scalability of 
massive multi-player games with three communication 
architectures: client-server, peer-to-peer and federated 
peer-to-peer. They define the cost of operations on input 
processing resource and network processing resource. 
This is the first paper that gives a quantitative assessment 
of these architectures by using analytical models. E. 
Rhalibi and M. Merabti [22] propose a fully distributed, 
peer-to-peer architecture for MMOGs. The authors 
specify the architecture by using agent-based modeling 
technique. However, quantitative performance evaluation 
is not given in the paper. In the paper [18] by Li Zou et 
al, the authors propose their static and dynamic 
simulation models for the performance evaluation of 
game state dissemination with cell-based and entity-based 
strategies. In the paper some basic concepts for 
distributed games, such as entity, player, cell, vision 
domain, player area and interaction group, are well 
discussed. M. Ye and L. Cheng [20] present a method for 
modeling MMORPGs (massively multiplayer online role-
playing games) system performance and applied it in the 
analysis of two real MMORPGs. The results show that a 
strong linear relationship exists between performance 
metrics at server side and the number of currently players 

online. The performance model can be used for resource 
allocation at runtime. E. Lety et al [17] propose an 
approach at the transport layer, using multiple multicast 
groups and multiple agents, to achieve dynamic partition 
optimally for large-scale virtual environment. They use a 
method based on the theory of planner point processes for 
performance analysis of their system design.  
   One of key differences from the existing works as 
mentioned before is that in our paper the MMPP and 
M[X]/G/1 stochastic models are used for the analysis of 
system delay and inconsistency, rather than using the cost 
of system resources consumed as performance metrics.  
   S. Rooney et al [8] present a federated P2P network 
game architecture, including detailed discussion for the 
design of multicast reflectors, one kind of region servers, 
and transport protocols, in order to improve the system 
performance in terms of synchronization, delay and loss. 
B. Knutsson et al [9] present an excellent paper in the 
topic of P2P support for MMOGs. The design and 
implementation of their prototype, SimMud game, is 
introduced. In addition, the basic concepts for MMOGs 
together with the issues for P2P infrastructure games are 
well discussed in this paper. A. Bharambe et al [12] 
present the design, implementation and evaluation of 
Colyseus, a distributed architecture for interactive 
multiplayer games, which takes advantages of a game 
tolerance, for weakly consistent state and predictable 
workload to meet the tight latency constraint of game-
play and maintain scalable communication cost.  

   We benefit the works from the last three papers for 
studying inconsistency issue in the context of their 
communication architectures. The work presented in our 
paper is to enhance the existing architectures for solving 
the inconsistency problem caused by the two conditions 
without modifying their original design and 
implementation.  

VI.  CONCLUSIONS 

    We have proposed a framework for inconsistency 
analysis and control in the context of a hot-spot region. 
Compared to the existing works in this area, our new 
contributions are: (i) we originally presented analytical 
models to abstract the operations of a federated P2P 
MMOG so as to perform the system delay and 
inconsistency analysis quantitatively; (ii) we proposed a 
definition for the concept of inconsistency together with 
an expression for computing inconsistency rate in terms 
of the system characteristics and players activities; (iii) 
based on our models and the numerical results , we 
proved the fact that the longer delay a game system 
experiences, the higher risk consistency-loss occurs. 
Especially, we identified that three factors, the number of 
players in a region n , the mobility pattern factor α , and 
the activity of players in the region , directly impact on 
the system delay and consistency-loss; (iv) our strategy 
for the design of inconsistency control is based on 
dynamically monitoring the inconsistency status by using 
our derived formulas with online measures. The strategy 
keeps the original design and implementation of a game 

p

 

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 811

© 2009 ACADEMY PUBLISHER



and thus, the control algorithms are only operated as 
enhanced mechanisms. 
    As analyzed in this paper, unexpected delay may be 
caused by heterogeneous environment. This problem has 
to be resolved by delay compensation technique. We are 
currently working on this solution as our future outcome 
in this area. 

APPENDIX:  THE  MODEL WITH BULK ARRIVAL 1//][ GM X

 
     This appendix presents the details for finding the 
distribution of sojourn time D  in an  
queuing system and determining its expectation . 

1//][ GM X

][DE
 
A. The number in the system at departure epochs in 

steady state (Pollaczek- Khinchin formula) 
 
    Assume that the arrival epochs occur in accordance 
with a Poisson process with rate λ  and the number of 
arrivals at each epoch is given by a random variable (RV) 
X having distribution  and the probability 

generation function (PGF) 
),Pr( jXa j ==

  
j

j
j sasA ∑=)(   and                (1)         aAjaXE j =′=∑= )1()(

}{ ja  is the batch size distribution. 

    The total arrivals A  constitute a compound Poisson 
process having PGF )]}(1[exp{ sA−−λ . Suppose that N is 
the total number of arrivals during the service time of a 
customer. Then the PGF of N is given by 
 

)]([)(][ * sABsKsE N λλ −==                                        (2)                                                
 
where it is assumed that the service times are independent 
and identically-distributed RV having a general 
distribution with the probability density function (PPDF ) 

 and mean ()(tB µ/1 ). Thus,  is its 
Laplace-Stieltjes-Transform (LST), then .  

)()( 0
* tdBesB st∫= ∞ −

µ/1)0()1*( =−B
   The traffic intensity is µλµλρ //)( aXE == . Assume 
that 1<ρ  so that the steady state is reached. Since we can 
have the Pollaczek- Khinchin (P-K) for  as the 
follows: 

1// GM

 

ssB
sBssV

−−
−−−

=
)(

)()1)(1()( *

*

λλ
λλρ                                       (3)          

where  is the PGF of the number of customers leaves 
behind in the system when  a customer is departing. The 
(P-K) formula can now be extended for  by 

                                    

)(sV

1//][ GM X

 

ssAB
sABssV

−−
−−−

=
))((

))(()1)(1()( *

*

λλ
λλρ                                   (4)                           

 
In other words,  is the PGF of the number of 
customers in the  system at departure epochs in 
steady state.  In particular case when , 

)(sV
1//][ GM X

11 =a 0=ja , 

, we get 1>j ssA =)(  and , then we 
have an  queue. 

)()( * sBsK λλ −=
1// GM

 
B. Waiting –time distribution 

 
Burke [27] obtained the waiting-time distribution in an 

 queuing system in 1975. What follows is 
based on his approach. 

1//][ GM X

 
Consider a test unit and let D be the total waiting time of 
the unit in queue. Namely, D is the queuing time of an 
arbitrary test unit. The delay D is seen by the test unit to 
consist of two independent delays,  and .  is the 
delay (or waiting time) of the first member to be served 
of the batch in which the test unit arrives, and  is the 
delay caused by the service times of the members of this 
batch that are served prior to the test unit. In other 
words,

1D 2D 1D

2D

21 DDD += . Let W and  be the PDF of D 

and , 
iW

iD 2,1=i , respectively, and let  and  be 
the LST of W and , respectively.  Let  be the 
service-time distribution and  = LST of the PDF of 
the total service time of all customers belonging to the 
same arrival group. Then 

)(* sW )(* sWi

iW )(tB

)(* tB

 

)]([)]([)( **

1

* sBAsBas k

k
k =∑=

∞

=
β                                    (5)                           

To find the delay , consider a batch as a whole as a 
single super customer. Then the LST of the waiting time 
of the first customer of the batch in which the test unit 
arrives can be obtained from the corresponding 
expression of an  system with  replaced 
by . That is, if 

1D

1// GM )(* sB
)(* sβ 1/ <= µλρ a , then replacing  

by , we get  
)(* sB

)(* sβ
 

=*
1W  LST of the delay  = 1D

))]((1[
)1(

* sBAs
s
−−
−

λ
ρ       (6) 

 
Let  be the probability that the test customer arrives in 
a batch of size of i. Let K be significantly large number. 
Then in the first K batches of arrivals, the number of 
batches with i arrivals will be approximately  , 

ip

Kai

L,2,1=i  and the total number of customers arriving in 
batch of size  will be approximately . Thus, the 
total number of arrivals in K batches is 

i Kiai

 

Kia
i

i∑
∞

=1
 

 
and the proportion of those arriving in batches of size i is  
 

a
ia

ia
ia

Kia
Kia

i i

i

i
i

i =
∑

=
∑

 

 
where )(XEa = . Thus, for large K,   
 

 

812 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER



       
a

ia
p i

i =  .                                                            (7)                                            

Assume now that the test customer arrives in a batch of 
size . Assume further that service within members of 
any batch is in random order. Then the probability that 
the test customer chosen in the jth in the batch of  is 

, , i. Again, if he/she is the jth customer to 
be taken for service, his/her delay(or waiting time in the 
queue) will be equal to the service time of 

customers of the batch (of size ) in which he/she 
arrives and who are served prior to him/her. Now 
conditioning on the size of the batch i on which the test 
customer arrives, we get 

                     

i

i
i/1 L,2,1=j

)1( −j i

 

       he arrives in a batch 

of size  

|Pr{)()(
1

22 tdelaytWtDP
i
∑ ≤==≤
∞

=

ipi}

                                     i
i

i

j

j p
t

tB∑ ⎥⎦
⎤

⎢⎣
⎡
∑=

∞

= =

−

1 1

*)1( 1)(        (8)                         

where *kB  is the k-fold convolution of B with itself. 
Thus,  
 
             LST of  =)(*

2 sW )(2 tW

                         ∑∑=
=

∞

=

i

ji

i

i
p

11
{ LST of  )}(*)1( tB j−

                         })]([{
1 1

1*∑ ∑=
∞

= =

−

i

i

j

ji sB
ia
ia  

                         
)(1
)]([1

*

*

1 sB
sB

a
a i

i

i

−
−

∑=
∞

=
 

                          
)](1[
)]([1

*

*

sBa
tBA

−
−

= ,                                     (9)                                    

    Since , the LST of the total delay D or 
waiting time in the queue of the test customer that has the 
LST given by 

21 DDD +=

 
               )()()( *

2
*

1
* sWsWsW =

                         
)](1[
)]([1

)]([
)1(

*

*

* sBa
sBA

sBAs
s

−
−

+−
−

=
λλ
ρ .    (10)             

 
The waiting time in the system or response time of the 
test unit is given by υ+= DWs , where υ  is the service 
time. Thus, the LST  of , the response time, is 
given by 

)(* sWs sW

 
              . )()()( *** sBsWsWs =

 
C. Moments of  for  21 DDD += 1//][ GM X

 
We can have 
 
             and )()()( 21 DEDEDE +=

            0*0
*

11 )]([
)1(|)()( == +−

−
−=−= ss sBAs

s
ds
dsW

ds
dDE

λλ
ρ  

                       

02*

***

)]}([{

)}())((1{))((
)1( =+−

′+−+−
−−= ssBAs

sB
ds
dsBAssBAs

λλ

λλλ
ρ  

 
(which is of the form ). Using L’Hopital’s  rule and 
simplifying, we get 

0/0

 

          0
*

2

2

21 |)]([
)1(2
)1()( =−

−
= ssBA

ds
dDE

ρ
ρλ  

 
where  is the second moment of the 
supercustomer’s service time. On simplification, we get 

)]([)/( *22 sBAdsd

 

0
*

2

2
*

2
**

1 )()]([)()]}([{
)1(2

)( =′+⎥⎦
⎤

⎢⎣
⎡′′

−
= ssB

ds
dsBAsB

ds
dsBADE

ρ
λ

 

           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−′′

−
= 2

2

2

)1(1)1(
)1(2

µ
µρ

λ AA  

 
where . Writing , we get 

 
)( i

i E υµ = )( 2)2( XEa =

.)()()1( )2(2 aaXEXEA −=−=′′
Thus, 
 

⎥
⎦

⎤
⎢
⎣

⎡
+

−
−

= 22

)2(

1 )1(2
)( µ

µρ
λ aaaDE .                             (11) 

 
Again, 
 

0
*

22 )( =−= sW
ds
dDE  or 

 

0*

*

2 )](1[
)]([1)( =−

−
−= ssB

sBA
ds
dDaE  

              02*

*****

)](1[

)()]}([1{)](1)}[()]([{
=−

−−−′
= ssB

sB
ds
dsBAsBsB

ds
dsBA

 

 
(which is of  the form ). Using L’Hopital’s  rule and 
simplifying, we get 

0/0

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1

2
1)(

)2(

2 a
aDE

µ
                                              (12) 

 
Thus, 
 

µ
µ

µρ 2
11

)1(2
1)(

)2(

22

)2(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−

=
a

aaaaDE         (13) 

 
It is noted that equation (13) above is directly used for 
determining E[D] with  model, which is 
equation (1) in our submitted paper [26][28]. 

1//][ GM X

ACKNOWLEDGMENT 

 

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009 813

© 2009 ACADEMY PUBLISHER



The work was supported by the Australian DEST 
research funds and the Vice-Chancellor’s Research 
Scheme 2008 of Bond University. 

REFERENCES 

[1] Tristan Henderson, The effects of relative delays in 
networked games, PhD thesis, Department of Computer 
Science, University College London, February 2003. 

[2] G. Armitage, M. Claypool, and P. Branch, Networking and 
Online Game –Understanding and Engineering Multiplayer 
Internet Games , (John Wiley & Sons, 2006). 

[3] A. Davison, Killer Game Programming in Java, (O’Reilly, 
2005).  

[4] Martin Mauve, How to keep a dead man from shooting, 
Proceedings of the 7th International Workshop on 
Interactive Distributed Multimedia Systems and 
Telecommunication Services, pp.199-204, October 17-20, 
2000.  

[5] J. D. Pellegrino & C.  Dovrolis, Bandwidth requirement 
and state consistensy in three multiplayer game 
architectures, ACM Proc. of NetGames, Redwood City, 
CA, 2003, 52-59. 

[6] W. Palant, C. Griwodz, and P. Halvorsen, Consistency 
requirements in Multiplayer Online games, Proceedings of 
ACM Netgames’06, October 30-31, 2006. 

[7] D. Bauer, S. Rooney and P. Scotton, Network infrastructre 
for massively distributed games, Proc. of NetGames 2002 
Conference, Braunschwig, Germany, 2002, 3-9. 

[8] S. Rooney, D. Bauer & Rudy Deydier, A Federation peer-
to-peer network game architecture, Research Report, IBM 
Zurich Research Laboratory, RZ 3528 (#99542), 2004. 

[9] B. Knutsson, H. Lu, W. Xu & B. Hopkins, Peer-to-peer 
support for massively multiplayer games,  Proc. of IEEE 
INFOCOM, Hong Kong, 2004, 96-107. 

[10] S. Fiedler, M. Wallner & M. Weber, A Communication 
architecture for massive multiplayer games, ACM Proc. of 
NetGames, Braunschweig, 2002, 14-22.  

[11] M. Castro, P.  Druschel, A.  Kermarrec & A. Rowstron, A 
large-scale and decentralized application-level multicast 
infrastructure, IEEE Journal on Selected Areas in 
communications (JSAC), 20(8), 2002. 

[12] A. Bharambe, J. Pang, and S. Seshan, Colyseus: A 
Distributed Architecture for Online Multiplayer Games, 
Proceedings of the 3rd Symposium on Networked Systems 
Design & Implementation, pp. 155-168, 2006. 

[13] J. Smed, T. Kaukoranta & H. Hakonen, A review on 
networking and multiplayer computer games, Technical 
Report No 454, (Turku Centre for Computer Science, April 
2002). 

[14] J. Boulander, J. Kienzle, and C. Verbrugge, Comparing 
Interest Management Algorithms for Massively 
Multiplayer games, , Proceedings of ACM Netgames’06, 
October 30-31, 2006. 

[15] T. Limura, H. Hazeyama, Y. Kadobayashi, Zoned 
federation of game servers: a peer-to-peer approach to 
scalable multi-player online games, ACM SGCOMM’04 
Workshops, Portland, Oregon, USA, 2004. 

[16] J. C.S. Lui & M. F. Chan, An efficient partitioning 
algorithm for distributed virtual environment systems, 
IEEE Trans. On Parrallel and Distributed Systems, 13(1), 
2002, 1-19. 

[17] E. Lety, T. Turletti, and E. baccelli, SCORE: A Scalable 
Communication Protocol for Large-Scale Virtual 

Environments, IEEE/ACM Transactions on Networking, 
April 2004 Volume 12, No. 2. 

[18] L. Zou, M. H. Ammar & C. Diot, An evaluation of 
grouping techniques for state dissemination in networked 
multi-user games, Proc. of 9th International Symposium on 
Modelling, Analysis, and Simulation of Computer and 
Telecommunication System (MASCOTS), 1999, 33-40.  

[19] S. Aggarwal, H. Banavar, S. Mukherjee, and S. 
Rangarajan, Fairness in Dead-Reckoning based Distributed 
Muli-Player games, Proceedings of the 4th ACM network 
and System Support for Games, Hawthorne, NY, USA, 
October 2005. 

[20] Y. Zhang, L. Chen, and G. Chen, Globally Synchronized 
Dead-Reckoning with Local lag for Continuous Distributed 
Multiplayer games, Proceedings of ACM Netgames’06, 
October 30-31, 2006.  

[21] F. C. Wu, F. Chang, W. Feng & J. Wapole, A traffic 
characterization of popular online games, IEEE/ACM 
transactions on Networking, 13(3),  2005, 488-500.  

[22] E. Rhalibi & M. Merabti, Agent-based modeling for a 
peer-to-peer MMOG architecture, ACM Computer in 
Entertainment, 3(2), Article 3B, 2005. 

[23] H. Fujinoki, On the Support for heterogeneity in 
Networked Virtual Environment, Proceedings of ACM 
Netgames’06, October 30-31, 2006. 

[24] LINEAGE © Ncsoft. http://www.lineage.com/nic 
[25] D. Bauer, I. Iliadis, S. Rooney & P. Scotton, 

Communication architectures for massive multiplayer 
games, J. Multimedia Tools and Applications, 23,  Kluwer 
Academic Publishers, 2004, 47-66. 

[26] J. Medhi, Stochastic models in queuing theory, (Second 
Edition, Academic Press, 2003). 

[27] P.G. Burke, Delays in single server queues with batch 
input, Operations Research, 14, 33-40. 

[28]  L. Kleinrok, Queuing systems, volume 1, theory, (Wiley, 
1975). 

[29] J.  N. Daigle and M. N. Magalhaes, Analysis of Packet 
Networks Having Contention-based Reservation with 
Application to GPRS, IEEE/ACM Transactions on 
Networking, August 2003 Volume 11, No. 4, pp. 602-615. 

[30] Z.D. Wu, Performance modelling of multicast groups for 
multiplayer games in peer-to-peer networks, Proc. of 9th 
IEEE International Symposium on Distributed Simulation 
and Real-Time Applications, Montreal, Canada, 2005, 105-
122. 

[31] C. E. Palazzi, S. Ferretti, S. Cacciaguerra & M. Roccetti, 
Interactivity-Loss Avoidance in Event Delivery 
Synchronization for Mirrored Game Architectures, IEEE 
Transactions on Multimedia, Vol. 8, No. 4, August 2006, 
874-879. 

 
 
Zheng Da Wu received the Master degree of computer 
technology in the Graduate School of University of Science and 
Technology of China, Beijing, from the Chinese Academy of 
Sciences in 1981, and the PhD degree in computer science from 
University of Kent at Canterbury, U.K., in 1987. He is currently 
an associate professor of computer science in the School of 
Information Technology, Bond University, Gold Coast, 
Australia. His current research is in the area of mobile 
computing, multimedia communications and massive 
multiplayer networked games. He is a member of the IEEE.  

 
 

 
 

 

814 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

http://www.lineage.com/nic

