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Abstract—In this paper, we attempt to evaluate the optimal
power and rate distribution choices for secondary users in
order to maintain their quality of service (QoS) in a multi-
channel cognitive radio network (CRN). We assume that
multiple secondary users share a single channel and multiple
channels are simultaneously used by a single secondary
user (SU) to satisfy their rate requirements. Our measures
for QoS include signal to interference plus noise ratio
(SINR)/bit error rate (BER) and minimum rate requirement.
We propose a two-stage optimization framework in order to
solve for the optimal resource management strategy. In the
first stage, we formulate a convex optimization problem to
determine the minimum transmit power that SUs should
employ in order to maintain a certain SINR. At first,
the convex optimization problem is solved in a centralized
manner and then we employ dual decomposition theory to
derive three different distributed solutions. In the second
stage, we formulate the rate distribution problem as a
maximum flow problem in graph theory. We also develop
a heuristic approach to determine the rate distribution.
Simulation results demonstrate that optimal transmit power
follows “reverse water filling” process and rate allocation
follows SINR. We also observe that the distributed solution
converges to the centralized solution and rate distribution
based on our proposed heuristic is close to the graph
theoretic optimal solution.

Index Terms— power allocation, distributed approach, rate
allocation, quality of service

I. INTRODUCTION

A CRN is built on the following principle: a network
of secondary users (users without a license) continuously
sense the use of a spectrum band by primary users and
opportunistically utilize the band when primary users are
absent. Any SU in a CRN performs three main functions
- (1) sensing spectrum to identify absence or presence of
primary user (PU); (2) start transmitting if PU is absent;
(3) maintain QoS through the transmission duration by
adaptively seeking out best transmission strategies (chan-
nel, rate, transmit power etc.).

Researchers have focused on a wide range of issues
related to resource allocation in CRNs. The authors in
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[1] consider a CRN model with one PU and one SU co-
existing in the same channel and develop a cognitive radio
game to find optimal transmit power for the SU with the
goal of minimizing total transmit power. However, QoS is
not guaranteed for the SUs. Additionally, the optimality of
the presented solution is not assured as the formulation is
non-convex. In [2]- [3], the authors consider a CRN model
with one PU and multiple SUs coexisting in the same
channel. Here, the authors propose both centralized and
distributed power allocation strategies without considering
the interference temperature threshold in the underlying
optimization problems. The authors in [4] consider a
system model where multiple SUs coexist in a channel.
They formulate an optimization problem to find optimal
transmit powers with the objective of maximizing the
summation of utilities (function of SINR) of all users. A
lower bound on SINR is used as a QoS constraint for sec-
ondary users. A distributed suboptimal joint coordination
and power control mechanism to allocate transmit powers
to secondary users is also provided in [4]. However [1]-
[4] fail to consider a practical scenario where (1) multiple
channels may be available for opportunistic use, and
(2) rate requirement for SUs may not be satisfied by
employing a single channel per SU. In [5]- [6], joint
allocation of channel and transmit power has been studied.
However, in [5] coexistence of multiple secondary users
in a channel has not been considered. Also, in both [5]
and [6], the QoS requirement of SUs has been ignored.
In [7]- [8], though the authors have considered multiple
channels to start with, only one secondary user is even-
tually assigned to a channel. This assumption may not
be fair to all SUs due to three reasons. Firstly, channels
may be of different quality. Therefore, the SUs assigned
to higher quality channels may hold an advantage over
SUs assigned to the poorer channels. Secondly, when a
PU enters a channel, the corresponding SU has to cease
transmission completely. If a single SU is assigned to
multiple channels, transmission can be continued even if
one or a few channels become unavailable due to PU
arrival. Thirdly, rate requirement of some secondary users
may not be satisfied by assigning one channel to a user.

To summarize, while there has been extensive research
on resource management in CRNs, there is still a lack of
comprehensive robust framework that considers QoS for
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SUs in a fair manner. Our objective in this paper is to take
a step towards such a solution. We distinguish ourselves
from the previous treatments in a number of ways. First,
we assume that multiple channels each with different
quality is available for opportunistic use by multiple SUs.
To maintain fairness, coexistence of multiple SUs in a
channel is assumed and each SU can use multiple chan-
nels to satisfy their rate requirements. Secondly, our mea-
sures for QoS include SINR or BER and minimum rate
requirement. Finally, our overall objective is to determine
the optimal transmit power and rate (modulation order)
that competing SUs need to employ in each channel.
Unlike many of the prior efforts, we maintain convexity
of our formulation to guarantee optimality of resulting
solution.

In this paper, we propose a two-stage optimization
framework to allocate power and rate to secondary users
in a CRN. Our objective is to determine the optimal
distribution of power and rate that a secondary user has
to employ across the channels that it uses in order to (1)
minimize total power consumption; (2) maximize rate,
and (3) maintain QoS. In the first stage, we design a
convex optimization problem to determine optimal choice
for transmit power that SUs should employ in order to
maintain a certain SINR. Then, with the help of dual
decomposition theory [9], we also develop user-based
distributed approach to solve the proposed optimization
problem. Using power/SINR result from stage 1, the
optimal distribution of bits/channel is determined in the
second stage. At first, the rate distribution is formulated
as a maximum flow problem in graph theory. Then, we
propose a simple heuristic to perform the rate distribution.
Simulation results illustrate that optimal transmit power
follows “reverse water filling” process and allocation of
rate follows SINR. We also observe that the solution
from distributed implementation of stage 1 optimization
problem converges to the centralized solution. We show
that the rate distribution across users provided from our
proposed heuristic is close to the optimal graph theoretic
solution.

The rest of the paper is organized as follows. In Section
II, along with the system model, we state all of our
assumptions and notations used in the rest of the paper.
Section III describes the proposed two-stage optimization
framework in detail along with the distributed implemen-
tation of the first stage. Numerical results are presented
in Section IV.

II. SYSTEM MODEL

We consider a CRN with M secondary users, each
equipped with spectrum sensing capability device. L free
channels are detected for use. We assume that multiple
secondary users may coexist in a channel and a single
secondary user can use several channels at the same
time. We consider (1) SINR or BER and minimum
rate requirement as measures to indicate QoS of SUs,
(2) M-ary QAM modulation scheme with an adaptable
modulation order for all SUs, (3) simple path loss model
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for channel; and (4) a rate constraint for each chan-
nel. In order to enable mathematical tractability of the
optimization framework, we assume that there exists a
central cognitive network controller that has the knowl-
edge about QoS requirements, power and rate limitations;
Channel State Information (CSI) of all active SUs in
the network. We enforce an interference temperature
threshold to protect possible primary user transmission on
any channel. Though Federal communications committee
has removed the interference temperature limit as the
quantifying metric for characterizing interference [10]
but we feel that there is value to having this limit in
place especially during the transition stages. That is, the
interference threshold will ensure that when a PU enters
a channel used by SUs, there is a certain limit to the
interference that it experiences before the SUs vacate the
channel. Finally, at each time instant for optimization,
an estimate of the number of secondary users that may
be demanding access to each of the channels denoted
by Ng(k) where k = 1, 2,---, L is assumed to be
known using forecasting tool developed by the authors
and presented in [11].

Under this system model, we propose a two-stage
optimization framework where we find transmit power
and rate separately. It is important to note that we use the
terms rate and bits/channel use interchangeably through-
out the paper. One can also visualize the bits/channel use
measure to indicate the modulation order employed by
the SU in a channel. Table I defines most of the relevant
terms used throughout the paper.

III. PROPOSED OPTIMIZATION FRAMEWORK

In this section, we present a detailed discussion of
the optimization framework that we use to determine the
best strategies for SUs from a resource utilization and
QoS standpoint. We assume that the central controller
has prior knowledge (based on traffic models and our
proposed forecasting method in [11]) on which users are
currently occupying each of the available channels. We
decompose the minimization of total transmit power and
maximization of total rate of SUs into two separate stages.

A. Stage 1: Optimal Transmit Power

In first stage, our objective is to determine the best
choice for SU transmit powers in each channel such that
the overall power consumed is minimized and QoS (de-
fined in terms of SINR) is maintained. The mathematical
description of first stage corresponds to:

Determine P
To Minimize

subject to
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TABLE 1.
NOTATIONS

N (k) Predicted number of users for k-th channel
a2 (k) Noise variance in k-th channel
Pii Orthogonality factor between users 7 and ¢
hi (k) Power gain from ¢-th transmitter to s-th receiver in k-th channel
him (k) Power gain from ¢-th transmitter at location m in k-th channel
pi (k) Transmit power per bit of i-th user in k-th channel
p*e* (k) Maximum transmit power per bit of i-th user in k-th channel
Iy (k) Interference temperature constraint in k-th channel
b; (k) Rate of ¢-th user in k-th channel
b7 (k) Maximum rate of :-th user in k-th channel
RY, (k) Maximum rate supported by k-th channel
Ré Minimum required rate for i-th user
De,i (k) BER for ¢-th user in k-th channel
pg‘l BER threshold at receiver for ¢-th user in any channel
~: (k) SINR per bit for i-th user in k-th channel
7 (k) SINR per bit threshold at receiver for i-th user in k-th channel
where be restated as
pi(B)haa (k) Determine p” in”])"
7 1,1 . .
vi(k) = ) S o Vi, k. (2 To Minimize
Dot i Pi(k)hyi(k)pji? + o2 (k) L M
> pilk)
k=1i=1
- subject to
Here, p = [pi(1),--, Py )(1)s 5 Py oy (D] C1: 0<pi(k)<p"*(k), Vi, k

C1 indicates limit on transmit power; C'2 indicates the
interference temperature constraint, and C3 is SINR
constraint required to guarantee desired QoS. This is a
convex optimization (linear programming) problem. The
convexity of QoS/SINR constraint (C3) is discussed in
Theorem 1 in Appendix A. Solution to this optimization
problem provides optimal transmit powers that every
secondary user needs to use in the channels that they are
operating in.

In the following subsection, we derive the user-based
distributed approach to solve the above proposed opti-
mization problem.

Distributed Implementation of Stage 1: The centralized
solution of the first stage requires a central controller
and information about all users and channels. That is,
centralized power allocation demands extensive control
signalling and is difficult to implement in practice. Hence,
we develop a distributed user-based approach to solve
stage 1 of our proposed optimization framework. We use
the dual decomposition of the optimization problem in
order to derive the user-based power allocation algorithm.

For ease in presentation, we assume that there are
equal number of users in each of the channels. The
discussion below can be easily extended to the case
when there are different number of users in each channel.
Stage 1 of the proposed optimization problem (Eq. (1))
has one coupled constraint (C2) and one cross power
term (ijz“ilf)j# p;(k)h;,i(k)p;i?) in constraint C3. In-
troducing an auxiliary variable in;(k) (representing the
interference power that user ¢ experiences in k-th channel)
for the cross power term, the optimization problem can
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M
C2: Y pi(k)him(k)<Iin(k), ¥ k
i=1

O35 pilk)has()>(ins(k) + o2(K)
<" (k). i, k;
C4 : ini(k)>Ci(k), Vi, k; 3)

where, in = [ini(1),---, inp(1),---, iny(L)]T and
Ci(k) equal to 3.7 . pj(k)hji(k)p;* is the lower
bound for in;(k). From (3), the Lagrangian of stage 1
optimization problem can be written as

Determine [p’ in

To Minimize:

subject to
CD1: 0<p;(k)<p;i"*"(k), Vi, k
CD2: pi(k)hii(k)>(ini(k) + o (k)
xyi"(k), ¥ 4, k;
CD3: in;(k)>C;(k), Vi, k; 4)

Here, A(k) and v;(k) are dual variables. Rearranging (4)
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results in
Determine p" in"])"
To Minimize:
M L
Lis = Z Z pl + )‘(k)pz(k)hl m(k)
i=1 k=1
L
+vi(k)in, (k Z)\ Vin(k
k=1
L M
B WACLA
k=1 i=1
subject to
CD1, CD2, CD3. 5)

Now, we can easily decompose the optimization prob-
lem (5) into M subproblems. Based on how we model
the impact of in;(k) in each of the subproblems, three
formulations for decomposed problem from Lagrangian

(5) can be derived.

CASE 1: For the scenario when in;(k) is assumed
constant but measurable, each of the subproblems can be
written as

Determine pPi

L
gi(pi, A) =Y pi(k) (1 + A(k)him (k)
k=1

To Minimize:

subject to
CDL1: 0<p;(k)<p;"““(k), V k
CDL2: pi(k)hii(k)>(ini(k) + o* (k)
i (k), ¥ k, (©6)
where,
Pi = [ 1(1)7 p1(2)a ) p’L(L)]Ty (7)
M

ini(k) = > pi(k)hya(k)psi®, 9)

Jj=1, j#i

p; and g;(p;, A) are the transmit powers across dif-
ferent channels and the Lagrangian function for user <,
respectively. The corresponding master dual problem is

Determine A

M
> gipi, A
=1

L
To Minimize: Z Ak Len (K
k=1

subject to

A>0. (10)

The user-based distributed power allocation algorithm
can be summarized as follows. Dual variables A are
initialized. in; are measured. Each user executes one
optimization problem to compute transmit power for each
of its intended channels. At regular intervals, each user
measures in; and updates the dual variables. Each user
continues to do the same until it achieves desired SINR
along with satisfying system constraint (C'2). The pseudo
code for the algorithm is shown in Algorithm 1. In
Algorithm 1, ¢ is the iteration counter, « is a sufficiently
small positive step-size.

It is important to note that the distributed approach
does not fully avoid central control. This is due to
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the requirement of updating dual variables A. The dual
variables capture information regarding how well the
interference temperature threshold constraint is being sat-
isfied. If the interference temperature threshold constraint
is violated, then the corresponding dual variable increases
in magnitude. This increase forces the objective function
in our optimization problem to increase. To counter this
effect, the optimization variables (power of users) are
reduced which in turn improves the ability of satisfying

the interference temperature threshold constraint.

CASE 2: Consider the case when in;(k) is assumed
a variable. However, in each iteration of distributed ap-
proach, a lower bound for this interference is measurable.
In this case, each of the subproblems can be written as,

Determine p:" in;"]"

gi(pi, iy, ) = pi(k)

X (L4 A(k)him (k)

To Minimize:

subject to
CDL1, CDL2
CDL3: in;(k)>C;(k), V k, (11)

where Ci(k) is the lower bound for in;(k) and equal

to> i 05(k h;.i(k)p;j 2. The corresponding master
dual pro fem is
Determine A
M L
To Minimize: Zgi(pi, in;, A Z A(K) Lin (K
i=1 k=1
subject to

A>0. (12)

The pseudo code for the corresponding algorithm
is shown in Algorithm 2. In Algorithm 2, C; =
[Ci(1),---,C;(L)]* and « is as defined before.

CASE 3: An alternative formulation can be created by
absorbing the constraint C'D3 in the objective function.
The subproblems for this case can be formulated as

Determine [p:" in;T)"
L
To Minimize: gi(pi, ing, A, v;) = Z (pi(k)
k=1
X (1 4+ A(K)him ()) + vi(K)ima (k)
subject to
CDL1, CDL2, CDL3. (13)
The corresponding master dual problem is
Determine [)\T vl ool llfl]T

M

Zgl(p’w ini> >‘7 V’L

=> > uik)Ci(k

To Minimize:

L
=Y Ak L (k
k=1

k=1 1i=1
subject to
A>0
v;>0; (14)
where,

vi = [vi(1), vi(2),-- ,vi(L)]". 15)
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The pseudo code for the corresponding algorithm is
shown in Algorithm 3. In Algorithm 3, 3 is also a
sufficiently small positive step-size, « is as defined before
and [-]T denotes the projection onto nonnegative orthant.

Algorithm 1 Dual Algorithm to solve (5) based on CASE
1
Initialization: A(0);
while termination criterion is not true do
{% Execute subproblems}
fori=1, 2,---, M do
Measure in;;
Solve optimization subproblem (6);

end for
{% Update \}
for k=1, 2,---, L do

it (M, pi(k)him (k) > Iip(k)) then
NFL(R) = [N (k) — o= oLy pik) i () +
Iin (k)]s
else
)\t+1(k) —
end if
end for
end while

A (k);

Algorithm 2 Dual Algorithm to solve (5) based on CASE
2
Initialization: A(0);
while termination criterion is not true do
{% Execute subproblems}
for:=1, 2,---, M do
Measure C;;
Solve optimization subproblem (11);
end for
{% Update \}
for k=1, 2,---, L do
it (M, pi(k)him (k) > Iipn(k)) then
AL (R) = [N(R) — o= 3202, pi(k)hm (k) +
Iin (k)]
else
)\t+1(k) —
end if
end for
end while

A (k);

In summary, based on a priori information or ability to
measure interference power, we can formulate the differ-
ent versions of distributed implementation of stage 1. It is
also important to note that initializing dual variables and
choice of step sizes are critical in convergence and speed
of the distributed solution [9].

B. Stage 2: Optimal Rate

In the second stage, we attempt to satisfy the rate re-
quirement for each secondary user. Our goal in this stage
is to determine how each SU distributes its information
across the multiple channels in a way that the overall
rate is maximized and the individual rate requirement is
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Algorithm 3 Dual Algorithm to solve (5) based on CASE
3
Initialization: A(0);
Initialization: v1(0), ---, v;(0), ---
Measure Cy, ---, C;, ---, Cyy;
while termination criterion is not true do
{% Execute subproblems}

, v (0);

for:=1, 2,---, M do
Solve optimization subproblem (13);
end for
{% Update \}
for k=1, 2,---, Ldo
it (M) pi(k)him(k) > Ly (K)) then
AFL(R) = (k) — o= 323, po(k)him (K) +
I (K))];
else
AL (E) = \E(k);
end if
end for
{% Update vy,---, vi,--+, vpr}
fori=1,2,--- ;M do
Measure C;;
for k=1, 2,---, Ldo
VL (k) = (VL (k) — B(—inq(k) + Ci (k)]
end for
end for
end while

met. Employing the optimal transmit powers and SINRs
from first stage, the following rate allocation problem is
proposed:
Determine b
To Maximize

k= )
subject to
C5 bi(k) €1, , b (k)] Vi, k
(k)
C6 : Z k)<RY (), V k
L:
CT7: Z k)>R. Vi,
08: peyi(k)gpe,ia v 1, k7 (16)
where,
_ - 4 _ _bi(k) 3b1(1€)’yl(1€)
pe,z(k) - bl(ik') (1 2 2 > Q ( (2b1(k) — 1) ’
Vi, k, even b;(k); 17
4 3b; (k)i (k) .
i < Tob () 1) | ) ) 0 .
Pe, (k)_bi(k)Q< CCESY Vi, k, odd b;(k). (18)

Here, b = [bi(1), -, by D)y by (L)(L)}T;
C5 indicates limit on rate; C'6 indicates total rate that
a channel can support, C'7 captures the rate requirements
for each SU, and C8 is BER requirement for every SU.
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It is to be noted that Q(z) is defined as [~ e=¢/24¢.
It is very easy to show that to achieve a certain BER,
constraint C'8 is equivalent to the following constraint

C9: —3i(k)S = Coarg(2" ™ —1), Vi, ks (19)

where, Cyqrg is a constant and can be determined using
(1) minimum rate, b7*"(k) = 1 (in our system); (2)
b7**(k), and (3) value of p’ from C8. As an example,
with b""(k) = 1 to achieve py = 1072, Eq. (18)
suggests that ~;(k)/(2%(®) — 1) has to be greater than
4.08 and with b"**(k) = 6, Eq. (17) suggests that
vi(k)/(2%F) — 1) has to be greater than 0.50. From this,
we can conclude that by setting Cyurg = 4.08, we can
guarantee a BER that is less than or equal to 10~3 for
the feasible values of b;(k). For ease in presentation,

we define Quurgi(k) = —7i(k)/(2%%) —1); so that
constraint C'9 can be rewritten as
C9: Qqarg,i(k) < —Clarg- (20)

1) Rate Distribution by Graph Theoretic Analysis: The
rate allocation problem (Eq. (16)) can be formulated as
a maximum flow problem in a directed network in graph
theory. A directed network is expressed as G = (N, A)
defined by a set N of n nodes and a set A of m directed
links [12]. Each link (i, j)€A is associated with a capac-
ity u;; that denotes the maximum amount that can flow on
the link and a lower bound /;; that denotes the minimum
amount that must flow on the link. The maximum flow
problem seeks a feasible solution that sends the maximum
amount of flow from a specified source node s to another
specified sink node d in such a directed network. The rate
measure in our problem of interest takes the role of flow
in the maximum flow problem formulation. Therefore, the
equivalent graph formulation of Eq. (16) corresponds to
Fig. 1.

Figure 1. Rate distribution problem as a maximum flow problem in
graph theory.

In the graph shown in Fig. 1, nodes 1 and 2M +
2L + 2 are the source and sink nodes, respectively.
Nodes (2, 3,---+, M +1, M +2,---, 2M + 1) and
M + 2, 2M 4+ 3,---, 2M + 1+ L, 2M + L +
2,-+-, 2M + 2L + 1) represent users and channels,
respectively. The lower bounds on link capacities between
nodes (2, 3,---, M+1)and (M+2,---, 2M+1) can be
obtained from the minimum rate requirement of the users
(constraint C'7). The upper bounds on link capacities for
these links can be set to some reasonable high values. As
for example, the upper bound can be set to the value
obtained by multiplying the maximum capacity of the
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links between nodes (M +2, M +3,---, 2M + 1) and
(2M+2, 2M+3,---, 2M+1+L) by the number of total
available channels. The upper bounds on link capacities
between nodes (2M +2, 2M +3,---, 2M +1+ L) and
M+ L+2, 2M+L+3,---, 2M 4+ 2L+ 1) can be
obtained from the maximum rate supporting capabilities
of the channels (constraint C'6). The lower bounds on
link capacities for these links i.e., R\, (k)’s can be set
to 0. The lower and upper bounds on link capacities
between nodes (M + 2, M + 3,---, 2M + 1) and
(2M+2, 2M+3,--- , 2M+14L) can be computed from
the constraints C'5 and C'9 with obtained SINR in first
stage. The upper bounds on the link capacities between
nodes 1to (2, 3,---, M+1)and 2M+L+2, 2M +
L+3,---, 2M +2L+1) to 2M + 2L + 2 can be set
to the total capacity of the links between nodes between
(M+2, M+3,---, 2M + 1) to (2M + 2, 2M +
3, , 2M 4+ 1+ L).

There are several algorithms to solve maximum flow
problem such as labeling algorithm, capacity scaling al-
gorithm, successive shortest path algorithm. The running
time of the labeling algorithm, capacity scaling algorithm
and successive shortest path algorithm are O(nmU),
O(nmlogU) and O(n?m), respectively [12]. Here, U is
the maximum capacity of the links in the network. The
running time may increase with a high number of nodes
(n) or links (m) or maximum capacity (U) of the link in
the network. The running time of the above mentioned
algorithms for finding maximum flow in a network corre-
sponding to Fig. 1 is shown as O(M?LU), O(M?LlogU)
and O(M?L), respectively. In the following, we develop
an heuristic to solve problem (16).

2) Rate Distribution by Proposed Heuristic: The rate
allocation algorithm that can be employed to solve rate
allocation problem (16) as follows. First, we allocate the
maximum feasible rate (i.e., maximum b; (k) that satisfies
Eq. (20)) to all users across channels. Based on this
allocated rate, the average (Qqqrg,i(k) is calculated for
all users and compared with —Cqpy in the next step.
For a specific user, if average Qgarg,i(k) does not satisfy
constraint C9, the maximum rate allocated to a channel
for that user is reduced by 1. This process is repeated
until constraint C'9 is satisfied or a maximum number
of iterations (I7***) are completed. In the latter case,
the average Qqarg’i(k;) (though not satisfactory) is the
achievable Qgqrg,i(k) for that user. In the following step,
the algorithm checks if the total rate limits that are set for
all channels are violated. If the rate constraint per channel
(constraint C6) is not met, the maximum rate allocated
to a user in that channel is reduced by 1. This process
is repeated until constraint C6 is satisfied or a maximum
number of iterations ([5*“*) are completed.

The running time of our developed heuristic is shown
as O(M (max{L, 17"**, 15***})) which is less than that
of the optimal graph theoretic algorithms.

In summary, the two-stage optimization framework
decomposes the power calculation and rate allocation into
two stages. In the first stage, the transmit power for every
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TABLE II.
USAGE PATTERN ACROSS CHANNELS

Channel, k|

1
User, 1 1
User, 2 1
User, 3 0
User, 4 0
User, 5 0

0
0
1
1
1

O O O | = = O] O O | &
—| ol o] ol o —| =| —| —| —|| o

—| = =] =] =] —| o o o] of| 00

O O O Of =| = = —=| =] || ©
—_
(=]
—_

User, 6
User, 7
User, 8
User, 9
User, 10

| =] = = = =] =] = o of| ki
—_ =] = =] =] =] =] o o] o
—| =] =| =] =] =] =[ =] =] =

S| =| =] =| = =] =| o =| =[] <

ol | | = =| = =| =| =] o] o
== =] | =] = =] = =] =] W

TABLE III.
CHANNEL QUALITY PARAMETERS

Channel, k [ o2(k) (x10~3)
5.0
4.0
3.0
2.0
25
6.0
4.0
4.0
5.0
35
435

| S| 0| 00| A | | B Lo 1| —

SU is governed by the SINR threshold and in the second
stage, we attempt to maximize the rate for each SU given
the BER requirement.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the
optimization framework. We assume a CRN with L = 11
available channels and a total of M = 10 secondary
users. We assume a usage pattern as shown in Table
II, where a 1 indicates that the corresponding channel
is being used by the SU. Table III provides information
on the channel quality for all L channels. Table IV
lists the minimum rate requirement for each SU. Finally,
Table V contains all other system parameters that are
relevant to our optimization framework. Based on all this
information, our objective is to find the optimal transmit
power and rate that each of the A/ SUs should employ to
guarantee their QoS.

As discussed in Section III, the first stage of optimiza-
tion framework is a linear programming problem, and any
LP solver can be used to find the solution. In this work, we
use the “Linear Interior Point Solver (LIPSOL)” to solve
stage 1. We use “Mixed Integer Programming (MIP)” to
solve second stage for optimal rate distribution.We set the

SINR threshold, 7¢"*(k) to 12 dB. Based on the system

TABLE IV.
MINIMUM RATE REQUIREMENT OF USERS

User,i | 1 |2 3] 4 |S5S|6| 7 |89 10

i
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TABLE V.
SYSTEM PARAMETERS

Pl (k) Vi, k 5
b (k) Vi, k 6
pth Vi 1073
Iin (k) V k 200 x o2 (k)
Pii 0.03125

parameters defined earlier, we can calculate Cyqrg at 4.5.
For second stage, we set RY, (k) to 20 for all channels.

Figure 2 illustrates the transmit power and rate alloca-
tion across channels for users 1 and 8. The channel noise
variance and resulting SINR are also plotted for reference.
Here, user 1 operates on channels 1, 3, 6, 7 and 11; user 8
operates on channels 1, 2, 3, 5, 7, 8, 10 and 11. From Fig.
2, it is evident that for both users, higher transmit powers
are allocated to channels with higher noise variance. In
other words, optimal transmit power allocation follows
“reverse water filling” process since the goal is to satisfy
the minimum SINR threshold. Figure 2 also indicates
that the SINR threshold is attained in every channel. The
allocated rate across channels directly follows SINR and
since SINR is maintained at the threshold value, the rate
allocation is also a constant across channels. The allocated
power and rate for other users follow the pattern presented
for users 1 and 8. Figure 3 shows the total transmit power
and rate allocation across users. From this figure, we can
conclude that the proposed optimization framework has
been successful in meeting the rate requirement for every
active SU. Figure 4 captures the effects of increasing
number of users on the total transmit power and rate
for user 1. It is clear that with increase in the number
of users in the system (i.e., increasing the number of
users in the channels based on usage pattern), user 1
is forced to use higher transmit power. This is because,
with increase in number of users, interference increases
and therefore more power is required to satisfy the SINR
threshold. Since, SINR is maintained at the threshold level
irrespective of the number of users, the total rate (that is a
function of SINR) for user 1 remains unchanged as seen
in Fig. 4.

Figure 5 shows us the allocation of transmit power
across users obtained from three formulations of dis-
tributed approach, i.e., CASE 1, CASE 2 and CASE 3
with centralized solution. In each case, we initialize dual
variable A\(k) to O for all channels. The step size « is
set to 0.1. For CASE 3, v;(k) is initialized to O for all
users and channels and the step size 3 is set to 0.1. From
Fig. 5, we can conclude that the solution from each of
the distributed formulations converges to the centralized
solution.

The distributed formulations require measurement of
interference power (in; for CASE 1, C; for CASE 2 and
3). Figure 6 shows the number of iterations that the three
formulations of distributed approach need to converge
with error (overestimation) in measurements. This figure
illustrates that with increase in percentage of error, the
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Figure 2. Allocation of transmit power and rate with channel noise
variance and SINR for users 1 and 8.
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o
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User
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Figure 3. Allocation of total transmit power and total rate across users.

number of iteration decreases. The reason behind this
behavior can be better understood by observing the impact
of erroneous measurement of interference power in each
of the subproblems. When in; for CASE 1, C; for CASE
2 and 3 are overestimated, then it causes an increase in
the magnitude of optimizing variables p;. The increase in
magnitude of optimizing variables improves the ability to
satisfy the SINR constraints at a faster rate.

Figure 7 illustrates the rate distribution resulting from
our proposed heuristic with optimal graph theoretic ap-
proach. We consider three example cases. In example
1, RY (k) is set as 20 for all channels; In example 2,
RY, (k) is set as 15 for all channels; In example 3, the
maximum rate supporting capabilities of the channels
are set as 10, 12, 14, 18, 15, &, 11, 11, 8, 14 and
14, respectively for channels 1 through 11. The total
minimum rate requirement for all users in the system is
80 in all examples. In example 1, both heuristic and graph
theoretic approaches result in identical rate distribution for
users. However in examples 2 and 3, the rate distribution
profile from both approaches are different. In all three
example cases, the total rate (216:1 Zi\/:sl(k) b? t(k))
supported is found to be equal. From Fig. 7, we can
conclude that our proposed heuristic performs comparable
to optimal graph theoretic approach.

It is important to note that we have investigated the
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Figure 4. Total transmit power and total rate for user 1 with number
of users.

Total transmit power

Centralized

1 2 3 4 5 6 7 8 9 10
User

Figure 5. Allocation of total transmit power across users from different
distributed approaches.

cases where we assume that a feasible distribution of
transmit power and rate across all active SUs exists and
we have shown that our proposed approach is a useful
tool in determining that solution optimally. In practice,
some cases may arise when the total minimum rate
requirement of all active secondary users may exceed the
rate supporting capability of the entire system or channel
condition may be so poor that the desired SINR for all the
active SUs is not attainable. In such scenarios, the only
viable option is that some SUs may have to stop their
transmission and retransmit when the conditions become
favorable. Developing optimal scheduling policies for SUs
to access the channels across time in such over-burdened
systems is the focus of our future research.

V. CONCLUSION

In this paper, we propose a two-stage optimization
framework that provides the optimal transmit power and
rate distribution that each SU needs to employ while
maintaining QoS in a multi-channel CRN. We assume that
multiple secondary users may coexist in a single channel
and a single secondary user can simultaneously employ
multiple channels to meet its rate requirements. We show
that optimal transmit power follows reverse water filling
process and optimal rate allocation is proportional to
SINR. We also observe that the dual decomposed user-



JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 10, NOVEMBER 2009

308

251

20g

15
—o—cnseL
—O—CASE2
—e—casea

101

Overestimate % in measurement

. . . . N
2 4 6 8 10 12 14 16
No of iteration to converge

Figure 6. Convergence speed of the distributed approach with imperfect
measurement of interference power of adjacent users.

Total rate

Figure 7. Total rate allocation across users from proposed heuristic and
graph theoretic analysis.

based distributed solution of stage 1 converges to cen-
tralized solution and rate distribution in stage 2 based on
our proposed heuristic is close to optimal graph theoretic
solution.

APPENDIX A

Theorem 1: ~;(k)>~i"(k), ¥V i, k is a convex con-
straint.
Proof: From Egs. (1) and (2), we can write the
constraint as

pi(k)hai(k) > ~"(k) p;(k)hji(k)pj.i®
j=1, J;’éz
+02(k)) . @21
Equation (21) is equivalent to
N (k)
Wk DD pi(R)hi(k)p + o (k)
J=1, j#i

—pi(k)hii(k)<0.  (22)

This inequality is a linear combination of the variables
pi(k). Hence, the inequality is linear and can be treated
as convex. ]
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