
Resilience as a New System Engineering for Cloud

Computing

Manghui Tu1 and Dianxiang Xu2
1Department of CITG, Purdue University Calumet, Hammond, Indiana, 46323, USA

2College of Business and Information Systems, Dakota State University, Madison, South Dakota, 57042, USA

Email: manghui.tu@purduecal.edu; dianxiang.xu@dsu.edu

Abstract—It has become increasingly evident that large scale

systems such as clouds can be brittle and may exhibit

unpredictable behavior when faced with unexpected

disturbances. Even weak and innocuous disturbances can bring

down the system inoperative and may introduce catastrophic

disasters to the society. The goal of this research is to explore

the fundamental principles and theories that govern cloud

system resilience and to provide novel and effective

mechanisms to model and enhance the resilience of cloud. A

food web like process interaction model is developed and

system resilience enhancement mechanisms are proposed based

on the control of the strength of interactions. Also, the

effectiveness and limitations of modularization on resilience

enhancement is illustrated by using a replica consistency control

protocol. The research has shown that weakening key process

interactions and modularizing complex systems are very

effective on resilience enhancement.

Index Terms—system resilience; modeling; enhancement;

cloud; interactions; modularization.

I. INTRODUCTION

Cloud computing has emerged as a new computing

paradigm that delivers highly reliable and elastic services

to satisfy users’ dynamic demands in internet

environment [1], [2]. The “pay-as-you-use” business

model and computing elasticity have attracted huge

attention from businesses and organizations [2]-[6]. With

all the enthusiasm and excitement on the huge payoff

cloud can bring into the computing world, there are still

lots of hesitations and reluctances on adopting cloud

computing due to the low confidence on the sustainability

to components failures, security threats, operation and

design mistakes, as well as nature disasters [7]-[11].

Cloud computing centralizes the management of many

decentralized data centers across the world [4]. This

vendor driven monoculture has achieved much higher

degree of efficiency than traditional data centers and

make it extremely attractive in cost efficiency. With its

rigid operational parameters, resource redundancy, and

elegant management system, cloud can achieve reduced

failure rate as it is programmed to be. However, a

fundamental problem is usually overlooked. In the cloud

design and implementation, the system is designed to

achieve high robustness under a small range of expected

Manuscript received March 9, 2013; revised April 17, 2013.

Corresponding author email: manghui.tu@purduecal.edu.

disturbances. Once an unexpected strong enough

disturbance occurs, the cloud system cannot be resistant

to such disturbance and this will first lead to local failures.

Such failures may then be propagated to the rest of the

system through the interdependent interactions in the

hierarchical structure, causing a system wide failure.

Despite numerous efforts spent on the research and

practices on computer system and network security,

system and data availability, business continuity, and

fault tolerance, it has become increasingly evident that

these large scale complex systems remain brittle and can

exhibit unpredictable behavior when faced with

unexpected disturbances, natural created or human made,

intentionally or unintentionally [7], [9]-[12]. History has

repeatedly shown that even weak and innocuous

disturbances can shut the system down and may introduce

catastrophic disasters to the society, which has been

demonstrated by numerous case histories such as the

1940 Tacoma Narrow Bridge, 2005 Hurricane Katrina,

the current economic crisis since Year 2008 [13]. The

recent Amazon EC2 outage incident has brought such

sustainability concerns back into the public’s spotlight in

computing world [14], [15]. A sustainable system are

inherent resilient and thus a sustainable complex

computing system should be designed with resilience,

which is defined as the amount of disturbance that a

system can survive without changing system state,

including system’s ability to absorb, be adaptive to, and

to recover from the disturbance [5], [7], [11], [16]-[18].

System resilience has recently been studied for

computing and network systems design [4], [5], [16]-[19].

Most of the current research works focus on analyzing the

importance of resilience design [19], [20], resilience

definition [16], resilient architecture design [16], [17],

resilience assessment metrics [18], [19], [21], and the

impacts of disturbance of information systems or local

internet [18]. All of them focus on conceptual analysis or

empirical measurements and some research works also

provide suggestions on enhancing system resilience for

networked systems such as P2P systems and the Internet

[18], [21]. However, few of them have explored the

fundamental principles and theories that govern complex

computing systems’ resilience property. Without a deep

understanding on those fundamentals, it is unlikely to

provide a systematic approach to effectively enhance the

resilience of large scale complex systems such as clouds.

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing

doi:10.12720/jcm. 8.4.267-274

267

The goal of this research is to explore the fundamental

principles governing computer systems’ resilience and to

provide effective mechanisms enhance resilience for

large scale systems such as cloud. The following

objectives will be achieved. 1) The interactions among

processes in the cloud will be modeled as a multi-level

resource consuming hierarchy. Components of cloud will

be modularized as autonomous sub systems and the

effects of de-coupling of system components on system

resilience will be analyzed. 2) A systematic approach will

be developed to analyze and enhance system disturbance

resilience for the cloud. 3) Tradeoffs among system

resilience, robustness, efficiency, and performance will

be investigated and effective resilience enhancement

mechanisms will be developed.

The remainder of the paper is organized as follows. . A

mini cloud system based on Eucalyptus is described in

Section II. Process interaction modeling and resilience

analysis based on interaction strength tuning are

presented in Sections III. The effectiveness of

modularization on system resilience enhancement is

illustrated in Section IV. Section V concludes the paper.

II. SYSTEM AND RESILIENCE MODELING

To understand the interactions among different

components in the cloud, we implemented a mini cloud

environment by using the Eucalyptus open source system

[22], which can simulate the Amazon EC2’s IaaS cloud

environment (shown in Fig. 1).

Figure 1. A mini eucalyptus cloud environment.

Eucalyptus provides a tiered design consisting of the

cloud controller, storage controller, cluster controller, and

node controller. The cloud controller provides the

interface for tenants and administrators to query the node

managers for resource information and makes high level

scheduling decisions. The storage controller controls

access to virtual machine images and tenant data. The

cluster controller manages the virtual instance network

and the scheduling of virtual machine execution on node

controllers. The node controller is responsible for the

execution, inspection and termination of virtual machine

instances on the host where it runs [22]. The cloud

controller, storage controller and cluster controller was

installed on a single dual-NIC physical machine with an

Intel Pentium 4 processor, two gigabytes of RAM, and a

500 gigabyte hard disk which resides on the public and

private network. The node controller was installed on a

system with an AMD Phenom quad core processor with

AMD virtualization support, four gigabytes of RAM, and

a terabyte hard disk.

System resilience is related to system robustness.

Resilience emphasizes system conditions that are far from

any stable steady-state, where disturbances can shift a

system from one regime of behavior to another i.e., to

another stability domain. Robustness is defined as the

capacity of a system to maintain its performance when

subjected to disturbances and can only maintain narrow

band of states when exposed to disturbances [23]. Let Ho

denote the system property of the original system state

(denoted as So) and Hmin denote the system property of the

system state just before collapse (denoted as Smin). Hence,

a cloud can be defined as resilient if Hmin is far from Ho

(Hmin << Ho) and So is far from Smin, while a cloud can be

defined as robust when Hmin Ho and So is very close to

Smin. The difference between system robustness and

resilience can be illustrated in Fig. 2.

Disturbances

F
u
n
c
t
i
o
n

p
e
r
f
o
r
m
a
n
c
e

States of robust system

State of resilient system

Figure 2. State of resilient system and robust system.

III. RESILIENCE AND PROCESS INTERACTIONS IN

THE CLOUD

The recent Amazon EC2 outage [14], [15] is caused by

the failure of a few components in the system. The

analysis of such failure revealed that its weak resilience is

causally related to the interactions among system

components at different levels and the strength of

interactions.

A. System Interaction Modeling

The architecture of cloud computing is service oriented

and the interactions among cloud services can be

modeled as a service-consumer model. In the cloud, a

large number of business services are grouped into

disjoint zones, and are then grouped into disjoint

subregions, which are further grouped into disjoint

regions. Each zone maintains a resource pool with a fixed

capacity to serve business demands. The business

services are managed by different sets of controlling

services, which is organized into a tree network in order

to adapt to the scale of the cloud. Each node in the tree is

responsible for a single subregion, and it represents of a

pool of controlling services to serve the requests from

business services within such subregion. An instance of

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 268

controlling service may need to collaborate with other

services, such as utility services at the same level, or to

collaborate with the controlling services that are

represented by neighboring nodes in the tree. Therefore,

the services and their interactions in the cloud form a

multi-level hierarchy, which can be shown in Fig. 3.

Figure 3. A preliminary model characterizing the interactions among

processes in cloud

The interactions among services can be modeled in the

same way as the food chains/food web predation

modeling in natural ecosystems. Fig. 3 illustrates the

service-consume relationship for a few components and

processes in this system. In a cloud, each service will be

accessed by a large number of consumers and the access

requests are independent to each. Therefore, the arrival of

the requests on a service hosted in the cloud can be

modeled as a single Poisson Process with mean arrival

rate [24]. For example, business services within zone i

in Subregion x consume the control services that are

responsible for Subregion x, at a rate of (b, x, i);

Controlling services in Subregion x consume other

services such as the utility services in Subregion x, at a

rate of (c, u, 1); and consume controlling services at

level 2 at a rate of (x, c, 1, 2); Utility services in

Subregion x consume resources in Zone i at a rate of (u,

x, i). Also, The expected service time for processing

access requests on the service are about the same, thus,

the service time of serving access requests can be

modeled as exponentially distributed with expected

service time of 1/. For example, resources are released

in Zone i at a rate of (b, x, i), and controlling services in

Subregion x are released at a rate of (c, x, 1). In the

cloud system, a service may be requested by two or more

types of consumer services. Since the requests from those

consumer services to the consumed service are

independent to each other, these arrival Poisson Processes

of the requests can be combined into a single Poisson

process with = k , where k is the arrival rate of

requests from each consuming service k. Also, the

expected service time for processing requests from

different types of services are about the same, the service

time can be modeled to be exponentially distributed with

expected service time of 1/. Based on queuing theory,

the interactions between service and consumers can be

modeled as an M/M/1 Markov process, with arrival rate

of and service rates of .

Under normal conditions, these M/M/1 Markov

processes will be in a dynamic equilibrium state such that

(b, x, i) + (u, x, 2) (c, x, 1), (x, c, 1, 2) + (y, c, 1,

2)(c,2). However, if there is an unexpected disturbance

affecting a business service Sb(x, i, k) in zone i, (b, x, i)

can reach a very high level such that (b, x, i) > (c, x, 1).

According to queuing theory, the controlling services will

soon be exhausted and this will lead to the unavailability

of service in zone i and then the unavailability of all

business services in Subregion x. This cascading

phenomenon can be much worse if it involves with

controlling services at upper levels, which could shut

down the entire cloud

B. System Resilience Analysis

The resilience of a system is a property very difficult

to measure since it could be affected by many factors.

The strength of resilience can be demonstrated only when

there is a strong enough unexpected disturbance. Also,

under different conditions, the impact of resilience can be

very different. In this research, system resilience is

defined as the number of requests to business services

(denoted as) in the system that could be affected and

even failed, by a given disturbance. Also, a system with

smaller number of affected requests to business services

is considered to have a stronger resilience. The strength

of a disturbance , denoted K, can be measured as the

change of the rate (denoted as) that a services

consumes the another services and the time period t such

change lasts, i.e., K() = f (, , t). Let A,B denote

the interaction between service A and service B (A

consumes B) and let PA,B [0, 1.0] denote the strength of

A,B, which is measured as the maximum proportion of B

that can be consumed by A, and the value of P is

independent of the consuming rate and disturbance

strength K. Note that the actual proportion of B that will

be consumed by A depends on the consuming rate .

Based on the definition, the value of can be measured

as function of interaction strength and disturbance

strength. For simplicity and demonstration purpose, let’s

only consider a single interaction A,B in the system, then

system resilience can be defined as Eq.1,

 = f(K
(A,B), PA,B) = f(f (A,B, , t), PA,B) (1)

It can be inferred from Eq. 1 that system resilience is

causally related with the strength of system interaction,

and we define their causal relationship in Theorem I.

Theorem I: Given a system S with an arbitrary

interaction A,B and an arbitrary strong disturbance with

a strength of K(A,B). Let S1 denote the system S

designed with interaction A,B
1 and S2 denote the system S

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 269

designed with interaction A,B
2, where S1 differs from S2

only on the strength of interaction A,B . If PA,B
1 < PA,B

2,

then 1
 < 2, when S is facing with the strength of

K().

Proof: Let the cloud system be S, business services in

Zone i be A and let the controlling service in the

Subregion x be B, then the service-consuming

relationship between is A,B. Let Cx denote the total

number of controlling service instances in Subregion x, Ni

be the number of business service instances in zone i, Nx

denote the total number of business service instances that

are served by the controlling services in Subregion x, we

have Ni < Nx. The two designs for S (S1 and S2 differs

only on the relationship between the controlling service

Subregion x and business service in Zone i. In design S1,

only Ci instances of controlling services are designated to

serve business services in Zone i, where Ci = Cx*Ni/Nx,

then we have Ci < Cx and PA,B
1 = Ci/Cx < 1. An M/M/K (a

general form of M/M/1) queuing system can be used to

analyze the state dynamics of the interaction A,B
1 in

design S1. A high (b, x, i) introduced by will result in

a huge number of requests in the queue since the service

rate of the controlling service, (b, x, i), is constant. This

will exhaust all Ci instances of controlling services which

cannot provide to services to new requests. Hence, the

affected number of business service instances is Ni, i.e.,

1 = Ni. In design S2, all of Cx instances of controlling

services can be allocated to serve business services in

Zone i, then we have PA,B
2 = Cx/Cx 1. Similarly, a high

(b, x, i) introduced by can result in a huge number of

requests in the queue and it will eventually exhaust all Cx

instances of controlling services. Thus, the controlling

services in Subregion x cannot provide services to any

new business requests in the entire Subregion x.

Therefore, the affected number of business service

instances is Nx, i.e., 2 =Nx. Since Ni <Nx, it follows that

1 <2, also, PA,B
1 < 1 PA,B

2. Thus, Theorem I follows.

However, there are a few challenges need to be

addressed before we can design mechanism to tuning the

strength of interactions. Specifically, the impacts of the

existence of other interactions on an interactionA,B and

system resilience should be investigated and modeled in

the following four cases.

B C

A

a cb

P1 P2

B C

A

P1 P2

A C

B

P1 P2

OR AND AND

d
A B

C

P1 P2

Figure 4. Relationships of consumers and resources.

Case I: The existence of an alternative interaction A,C,

shown in Fig. 4 (a). C provides resource redundancy to A

and will help Service A to maintain its persistent

functions, when the availability of resource B becomes

low. Thus, to improve system resilience, it is desired to

provide service redundancy.

Case II: The existence of a concurrent interaction A,C,

shown in Fig. 4 (b). The concurrent resource C required

by Service A will hurt the persistent behavior of Service

A, when faced with disturbances and the availability of

resource C becomes low. Therefore, to improve system

resilience, it is desired to break or avoid such

interdependency between the interaction A,B and the

interaction A,C.

Case III: The existence of a competitive interaction

C,B, shown in Fig. 4 (c). The competitive consumer C

will definitely hurt Service A to provide persistent service

to users, when faced with disturbances that the arrival

rate of the requests from C increased. Thus, to improve

system resilience, it is desired to break or mitigate the

strength of the competitive relationships among

interactions.

Case IV: The existence of chained interactions A,C

and C,B, shown in Fig. 4 (d). The interactions A,C and

C,B will increase the degree of dependence of

components on each other. When faced with disturbance,

the low availability of B or C will hurt the persistence of

Service A. Furthermore, if A,C and C,B are at different

levels of the multi-level hierarchy, then a disturbance

leading to high request rate of A may introduce

disruptions into higher levels of the system, and thus

affect more services in the system. Hence, to improve

system resilience, it is desired to broke such chained

interactions of A,B and A,C.

C. System Resilience Enhancement

In a natural ecosystem, species that sustain or flourish

in an unstable environment are r-selected, i.e., focusing

more on growth rate by exploiting redundant resource to

generate more offspring [25]. To improve system

resilience, a straightforward approach is to provide

extremely high redundancy of the services or resources to

be consumed. For example, a cloud can grant highly

redundant controlling services for each zone and

subregion, which can help to maintain normal functions

even under strong disturbances. However, in a natural

ecosystem, r-selected species usually cannot sustain or

flourish in highly competitive stable environment, and

will eventually be replaced by K-selected species

(focusing more on performance and efficiency) [25]. If a

cloud is designed with too much redundancy, then it will

sacrifice too much cost efficiency. Obviously, such a

cloud will not be able compete with other cloud vendors

and will eventually be driven out of the market. Therefore,

an ideal resilient cloud should be designed with the

balance of the two strategies.

With certain resource redundancy, system resilience

can also be enhanced by weakening the strength of

interactions (i.e., lowering the value of P). The value of P

can be lowered in such a way that each pool of consumers

can have abundant resources reserved to maintain

acceptable performance, i.e, to achieve the acceptable

response time specified in user’s SLA (Ds). To achieve

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 270

high efficiency and performance under stable

environment, a shared pool of resources is maintained to

achieve good response time (De≥Ds). In this way, the

cloud can achieve good resilience, performance, and

efficiency at the same time. To determine the number of

reserved controlling services (k) for each type of cloud

applications (business services), the interactions among

them are approximately modeled as an M/M/K queuing

system. Hence, k can be computed by using Erlang C

Formula, e.g.,

(1) /(*(/))
e

D k

where is the probability that all k services are busy and

 is determined by k, and . Theoretically, with this

mechanism, the impact of unexpected disturbance can be

contained without the loss of efficiency on the consuming

of controlling resources.

IV. SYSTEM RESILIENCE AND MODULARIZATION

It is well known that modularity plays a critical role in

system robustness and resilience at different levels in

biological systems [9], [20], [26]. A modularized system

can provide strong resilience since local failures can be

isolated and contained [9], [20]. In such a modularized

system, modules are integrated and communicated

through management protocols, which define the

corresponding architectures, rules, interfaces, etiquettes,

and codes of conduct for modules [9], [26]. When

subjected to disturbances, bad-designed protocols can be

vulnerable [9], [26]. Macroeconomists and scientist in

system engineering have attempted to apply modularity to

improve system resilience [9].

In this research, the impact of modularity on cloud

resilience is illustrated by the epidemic based replica

consistency control protocol [27]. Data objects can be

replicated across the cloud to serve user access and the

consistency of replicas can be controlled by using an

epidemic based update protocol [27]. However, high

number of conflicting updates may lead the cloud into a

non-recoverable state, which will lead to the crash of the

entire system [27]. To improve system’s robustness to

such disturbance, the components modularity mechanism

has been applied.

S
i

S
k

H
i

H
k

Figure 5. Topology of the replicas in the cloud.

Replica sites are clustered into non-overlap local

groups. Each local group will have a super site that

represents the local group to communicate with other

groups for update exchange. The set of super sites are

organized into a super group. The replica sites can only

disseminate updates directly with each other within the

same group (either in a local or a super group). The

modularized system results in a two level hierarch, which

is shown in Fig. 5.

Let site(t) denote the peer at which the transaction t is

first executed, TS(t) denote the timestamps of t, RS(t) and

WS(t) denote the read and update data set. When a user

needs to access a data object d, it can access d at any peer

that holds a replica of d. For an update t, site(t) needs to

propagate it to all other peers that hold a copy of any non-

empty subset of WS(t). Each replica site Pi keeps a

timetable Ti (shown in Fig. 6), each row of which, e.g.,

Ti[k, *], represents Pi’s knowledge of the updates

received at peer Pk. If Ti[k, j] = v, then Pi knows that Pk

has received the vth update (namely, t) that is originally

executed at Sj and all other updates that are causally

preceding t. The row Ti[i, *] represents Pi
s record of the

received updates that are originally issued at each replica

site, e.g., Ti[i, j] = u means that Pi has received the uth

update (namely, t) that is issued at Pj and all other

updates that are causally preceding t.

In the timetable, the kth row of Ti is Pi’s knowledge

about Pk’s reception of updates in the system, i.e.,

HasRecvd(Ti, t, Pk) (Ti[k, site(t)] TS(t)[site(t)]). When

Pi executes an update, it places a record in the log. When

Pi sends a message to Pk, it includes all of such update t

that HasRecvd(Ti, t, Pk) is false, together with Ti. When Pi

receives a message from Pk it applies all non-conflicting

updates and updates its time-table in an atomic step to

reflect the new information received from Pk. When a site

receives a log record, it knows that the log records of all

causally preceding events either were received in

previous messages, or are included in the current message.

When Pj receives an update t issued at Pi, it first searches

its local log Lj to see if there exists such a transaction t′

that TS(t) <> TS(t′) (t and t′ are executed concurrently),

and the data accessed are overlapping (i.e., (WS(t)

WS(t′) ≠) (RS(t) WS(t′) ≠) (WS(t) RS(t′) ≠)

(if only consider transactions accessing a single data

object and allow users to read old data, then the condition

of (WS(t) WS(t′) ≠) is sufficient). If such a transaction

t′ exists, then a conflicting flag is set with r(t), and both t

and t′ will be aborted.

index ... i j k ...

...

i u

j w

k v

...

P
i
has received the uth update from P

j

P
i
’s knowledge that

P

j
has received

the wth update from P
i

P
i
’s knowledge that

P

k
has received

the vth update from P
i

Figure 6. Sample timetable Ti at peer Pi.

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 271

1ReceiveLocal (Pk,i, msg, Pk,j){

2 updateSet = msg. updateSet;

3 Tk,j = msg. timetable;

4 for {t| r(t) updateSet HasRecvd(Tk,i, t, Pk,i)}{

5 begin mutex

6 if { t′ Lk,i|(TS(t)<>TS(t′))(WS(t) WS(t′) ≠) }{

7 resolveConflict(t);

8 t.inconflict = true;

9 if (site(t’) Hk) { resolveConflict(t’);

10 t’.inconflict = true;}

11 if (site(t’) belongs to Hk) t’.inconflict = true; }

12 if { t′ Lk,i| (t’.inconflict) (t read from t’)

(WS(t) WS(t′) ≠) } {

13 resolveConflict(t);

14 t.inconflict = true; }

15 else if ((t.inconflict) && (Pk,i holds WS(t)) {

16 acquire write lock on WS(t)

17 execute update t locally;

18 commit(t) and release write lock;

19 If (i0) { // super peer, it must hold WS(t)

20 TS
k[k, k] = TS

k[k, k] + 1;

21 tS = t;

22 TS(tS) = TS
k[k, *];

23 site(tS) = Sk;

24 create r(tS) by appending TS(tS) ;

25 LS
k = LS

k {r(tS)};}// end super peer}

26 if (Tk,i[i, site(t)] < TS(t)[site(t)])

Tk,i[i, site(t)] = TS(t)[site(t)] ;

27 Lk,i= Lk,i {r(t)};

28 end mutex }; // end foreach

29 begin mutex

30 m,n, Tk,i[m, n]= max (Tk,i[m, n], Tk,j[m, n]);

31 Lk,i = {t | r(t) Lk,i n| HasRecvd(Tk,i, t, Pk,n)};

32 end mutex}

Figure 7. The protocol for a site Pk,i handling received updates from

another site Pk,j from the same local group.

The consistency protocol at a local group site with

modularization is shown in Fig. 7 and the section of

codes deals with modularization is in bold font. Once a

super site Pk,i (i 0) receives an update from a local site

Pk,j (at line 20), it will first change the timestamps of t for

the super group (line 20-22), update the new update

generation site for t (line 23), creates a new update record

of t for the super group (line 24) and incorporates the new

update record into the log used for the super group (line

25).

A. Effectiveness of Modularization on System Resilience

Enhancement

To evaluate the effectiveness of modularization on the

improvement of system resilience (locally executed

updates that are conflicting with updates executed at

other sites), the two level update protocol used for the

modularized system is compared with classic one level

update dissemination protocol [27].

The number of conflicting units (the sum of the

conflicting transactions that all sites have received,

whenever a conflicting is detected) is used as the

parameter to evaluate the impact of the disturbance on the

system. When there is a higher number of conflicting

transactions introduced in the system, the higher the

possibility of system will reach the state that cannot be

recovered from the inconsistency and lead the crash of

the entire system. Results are shown in Fig. 8 (a) and Fig.

8(b).

0

50

100

150

200

250

0 100 200 300 400

system size

C
o
n
f
l
i
c
t
i
n
g

U
n
i
t
s

Two Level

One Level

(a)

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10

Update/Propagation Rate

C
o
n
f
l
i
c
t
i
n
g

U
n
i
t
e
s

Two Level

One Level

(b)

Figure 8. (a) Impact of system size and (b) Impact of update

propagation rate.

From Fig. 8 (a) and Fig. 8 (b), it can be seen that as the

system size and the update propagation rate increase, the

impact of modularization on system resilience become

more significant. This is because that with modularization,

each local group consists of less number of replica sites,

thus conflicting is much easier and earlier to be detected

within the local group. Also, the conflicting updates

originally executed at different local groups will be

forwarded to the super group and the conflicting will be

detected by the super group before they are forwarded to

other local groups. All of these will create “isolated

islands” for conflicting update. The larger the update

propagation rate, the larger the number of replica sites

will receive the conflicting updates, and the two-level

update protocol can detect such conflicting much earlier

than the one-level update protocol. The smaller the

update propagation rate, the smaller the number of replica

sites will receive those conflicting updates, hence, the

effectiveness of the two level update protocol on

preventing inconsistent update propagation is close to that

of the one level update protocol. It can make a

preliminary conclusion that modularization is very

effective on the improvement of system resilience to

unintentional disturbances.

B. Limitation of Modularization on System Resilience

Enhancement

Inappropriate modularization may create new barriers

for communications among the modularized sub systems.

A single path between two sub systems in the cloud may

make the system vulnerable to single point of failure and

denial of service attacks. Thus, appropriate redundancy

on components and pathways is critically needed. Also,

the topology of the network composed by the

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 272

modularized system may have a great impact on system’s

resilience. Disassortative networks, in which a few super

nodes connect many regular nodes, while regular nodes

do not connect many other nodes, have shown strong

resilience to disturbances. Therefore, the relationships

among modularization, resource redundancy, and

resilience need further study.

With modularization, distributed protocols are required

to enable sub systems to collaborate. Elegant protocols

designed with efficiency and accuracy in mind may be

vulnerable to sophisticated intentional attacks [18]. In the

modularized system described in [27], a single

compromised replica site can manipulate the timestamps

of an update that is executed locally. For example, a

compromised peer P3 can creates a timestamps TS'(t) = (1,

3, 1, 5, 4) for the update t whose original TS(t) is (1, 3, 3,

5, 4), as shown in Fig. 9. Without detection, such attack

may introduce non-existent conflicts into the system.

Examples of such updates could be t2 and t3 with TS(t2) =

(1, 3, 3, 4, 4) and TS(t3) = (1, 3, 2, 4, 4), and t2 (or t3) and

t update on the same data object. With TS(t) manipulated,

t2 (or t3) and t will conflict with each other, but actually

their relationship should be that t2 (or t3) precedes t.

issued

update t

TS(t) =(1, 3, 3, 5, 4)

P
3
m
a
n
i
p
u
l
a
t
e
s

T
S
(
t
)

b
y

d
e
c
r
e
a
s
i
n
g

T
S
(
t
)
[
2
]

P3

P1

P4

P2

P0

TS’(t) =(1, 3, 1, 5, 4) TS(t
2
) =(1, 3, 3, 4, 4)

TS(t
4
) =(1,3, 2, 4, 3)

TS(t
3
) =(1, 3, 2, 4, 4)

issuedupdate t
2

issuedupdate t
3

issued

update t4

Non-existent conflict between t2
(as well as t3 and t4) and t are

intentionally introduced

Figure 9. TS(t) is manipulated by the compromised peer P3 by

decreasing TS(t)[2].

This type of manipulation can introduce a large

number of conflicting updates in the system, which may

lead to the crash of the entire system [27]. Such a denial

of service attack exploits the vulnerabilities existed in the

update propagation protocol. It successes only if it can

successfully exploit multiple vulnerabilities in the system

at the same time. A well-known model for multiple

sources of disturbance is the Swiss Cheese Model [16]. In

such system, each layer or component is resilient to the

intentional attacks but may exhibit one hole. An

intentional disturbance (attack) penetrates the hole on

each layer can eventually affect the entire system, which

leads to the loss of system resilience.

Therefore, to design the system resilient to such

disturbance, monitoring mechanisms with detection and

adaptive features should be designed. Thus, any

penetration of such hole can be monitored and detected,

and systems can be adapted to remove or disassociate

such compromised layers or components. In research

described in [27], it has been shown that a well-designed

management protocol with monitoring and detection

features can achieve strong resilience to such intentional

disturbance. However, the gain in resilience comes with

the loss of function performance and may require

redundant resources. Hence, modeling the tradeoffs

among system resilience gain, performance loss, and

resources redundancy is critical for large scale systems

such as cloud.

V. CONCLUSIONS

A In this paper, we explored the fundamental

principles and theories that govern cloud system

resilience and provided novel and effective mechanisms

to model and enhance the resilience of cloud. To study

the interactions among the processes in the cloud, a mini

cloud system is implemented by using the Eucalyptus

Open Source Software. A food web like process

interaction model is developed and the interactions are

modeled as M/M/1 queuing systems. The strength of

interactions is defined and system resilience enhancement

mechanisms are proposed based on the control of the

strength of interactions. Also, the effectiveness and

limitations of modularization on resilience enhancement

is illustrated by using a replica consistency control

protocol and experimental studies are conducted to

measure the effectiveness of modularization. The

research has shown that weakening key process

interactions and modularizing complex systems are very

effective on resilience enhancement.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, et al., “Above the

Clouds: A Berkeley view of Cloud Computing,” University of

California, Berkeley, Tech. Rep., 2009.

[2] P. Melland and T. Grance. (2009). The NIST Definition of Cloud

Computing. [Online]. Available:

http://csrc.nist.gov/groups/SNS/cloud-computing/

[3] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-

senstive application performance in the cloud,” in Proc. 1st ACM

Multimedia Systems Conference, 2010.

[4] G. Briscoe and A. Marinos, “Digital ecosystems in the clouds:

towards community cloud computing,” presented at the 3rd IEEE

Digital Ecosystems and Technologies Conference, 2009.

[5] G. Brunette and R. Mogull. (2009). Security Guidance for Critical

Areas of Focus in Cloud Computing V2. 1. CSA (Cloud Security

Alliance), USA. [Online]. Available:

http://www.cloudsecurityalliance.org/guidance/csaguide

[6] D. Owens, “Securing elasticity in the cloud,” Communications of

the ACM, vol. 53, no. 6, 2010.

[7] D. Aresenault and A. Sood, “Resilience: A systems design

imperative,” in Critical Infrastructure Protection Program

Discussion Paper Series, George Mason University, 2007.

[8] D. Gribble, “Robustness in complex systems,” in Proc. Eighth

Workshop Hot Topics in Operating Systems, May 2001, pp. 21-26.

[9] J. Kambhu, S. Weidman, and N. Krishnan, “(Rapporteurs) New

directions for understanding systemic risk,” Econ. Policy Rev, vol.

13, no. 2. 2007.

[10] E. Messmer. Are Security Issues Delaying Adoption of Cloud

Computing? [Online]. Available:

http://www.networkworld.com/news/2009/042709-burning-

security-cloud-computing.html

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 273

[11] L. Perelman, “Shifting security paradigms: toward resilience,” in

Critical Infrastructure Protection Program Discussion Paper

Series, George Mason University, 2007.

[12] H. Kitano, “Towards a theory of biological robustness,” Journal of

Molecular Systems Biology, vol. 3, no. 137. 2007.

[13] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A.

Vespignani, and D. White, “Economic networks: The new

challenges,” Science, vol. 325, 2009.

[14] Amazon, “Amazon Web services overview of security processes,”

Amazon White Paper, May 2011.

[15] Amazon. (May 2011). Summary of the Amazon EC2 and Amazon

RDS service Disruption in the US East Region. [Online].

Available: http://aws.amazon.com/message/65648/

[16] S. Jackson, Architecting Resilient Systems, ISBN 978-0-470-

40503-1. Wiley. 2010.

[17] D. Liu, R. Deters, and W. Zhang, “Architecture design for

resiliency,” Journal of Enterprise Information Systems, 1-16,

iFirst article. 2009.

[18] M. Omer, R. Nilchiani, and A. Mostashari, “Measuring the

resilience of the global internet infrastructure system,” in Proc.

3rd Annual IEEE International Systems Conference, 2009.

[19] D. Garbin and J. Shortle, “Critical thinking: moving from

infrastructure protection to infrastructure resiliency,” in Critical

Infrastructure Protection Program Discussion Paper Series.

George Mason University, 2007.

[20] R. May, S. Levin, and G. Sugihara, “Complex systems: Ecology

for bankers,” Nature, vol. 451, pp. 893, February 2008.

[21] S. Wang, D. Xuan, and W. Zhao, “Analyzing and enhancing the

resilience of structured peer-to-peer systems,” Journal of Parallel

and Distributed Computing, vol. 65, no. 2, 2005.

[22] D. Nurmi, et al., “The eucalyptus open-source cloud-computing

system,” IEEE Computer Society, 2009.

[23] D. Read, “Some Observations on Resilience and Robustness in

Human Systems,” Cybernetics and Systems, vol. 36, 2005.

[24] M. Tu, H. Ma, I. Yen, and D. Xu, “Data placement in P2P data

grids considering the availability, security, access performance

and load balancing,” Journal of Grid Computing, vol. 11, no. 1,

2013.

[25] M. Janssen and J. Anderies, “Robustness tradeoffs in social

ecological systems,” International Journal of the Commons, vol. 1,

no. 1, 2007.

[26] M. Csete and J. Doyle, “Reverse engineering of biological

complexity,” Science, vol. 295, March 2002.

[27] M. Tu, Z. Xia, and D. Xu, “Securing epidemic based update

protocol in P2P data grids,” In Proc. PDCS11, December 2011.

Manghui Tu received the PhD degree in

computer science from the University of

Texas at Dallas in 2006. He is currently an

assistant professor in Department of

Computer Information Technology and

Graphics at Purdue University Calumet. He

was an assistant professor of computer

science at Southern Utah University from

2006 to 2009 and assistant professor of

information assurance at Dakota State

University from 2009-2012. His research

interests include sustainable computing, distributed systems,

information assurance, and digital forensics. He is a member of IEEE.

Dianxiang Xu received the BS, MS, and PhD

degrees in computer science from Nanjing

University, China. He is an associate professor

with the National Center for the Protection of

the Financial Infrastructure, Dakota State

University, South Dakota. He was an assistant

professor of computer science at North Dakota

State University from July 2003 to May 2009,

research assistant professor and engineer of

computer science at Texas A&M University

from August 2000 to July 2003, and research

associate at Florida International University from May 1999 to August

2000. His research interests include software security and safety,

software testing, applied formal methods, and computer forensics. He is

a senior member of the IEEE.

Journal of Communications Vol. 8, No. 4, April 2013

©2013 Engineering and Technology Publishing 274

