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Abstract—Two dimensional magnetic recording (TDMR) is a
novel scheme which envisions reaching 10 Tb/in? density in
magnetic recording systems. The feasibility of this density relies
largely on sophisticated two-dimensional (2-D) signal processing
algorithms. This paper gives a survey on TDMR channel models
and 2-D detectors. Our discussion on channel models places an
special emphasis on the suitability of the read channel models for
the purpose of detector design. Furthermore, a comprehensive
review on 2-D detection is given focusing on compatibility of the
detectors for the TDMR channel models.

Index Terms— Two dimensional magnetic recording (TDMR),
read channel model, two-dimensional detectors, Inter-symbol
interference (ISI), Data dependent noise

I. INTRODUCTION

Magnetic recording systems have reached a point where
the grain size can no longer be reduced due to energy
stability constraints. A number of new technologies have been
proposed to increase the storage density via other avenues.
The most promising technologies include heat-assisted mag-
netic recording (HAMR) [1], microwave assisted magnetic
recording (MAMR) [2], bit-patterned media (BPM) [3] and
two-dimensional magnetic recording (TDMR) [4]. Each of
these are at different stages of development and pose vari-
ous unique challenges. HAMR and MAMR rely on a novel
read/write head mechanism, while BPM relies primarily on
novel methods for producing highly ordered media. Although
an important component, signal processing may not be a
deciding factor in determining the feasibility of such systems.
TDMR is advantageous because it uses conventional media,
relying instead on sophisticated signal processing and coding
algorithms, a much less expensive alternative to radically
altering the media or the read/write head as required for the
other technologies.

Theoretically, TDMR can achieve areal-densities of the
order of 10 Tb/in? when one bit of information is recorded in
one or a few grains. However, formidable challenges need to
be addressed before some conclusions on achievable densities
can be derived. The nature of write and read processes in
TDMR necessitates that the information storage be viewed
as a two-dimensional (2-D) system. Therefore, there is a
need for developing 2-D signal processing algorithms. One
of the major challenges in TDMR signal processing is the

Emails: Mehrdad Khatami: khatami @ece.arizona.edu

Bane Vasi¢: vasic@ece.arizona.edu

This work is funded by IDEMA ASTC and partially by NSF under Grant
CCF-0963726.

doi:10.12720/jcm. 8.4.233-239

©2013 Engineering and Technology Publishing

detector design. The detector-design paradigm for TDMR is
significantly different from approaches used in the literature
for two reasons. Firstly, there is severe interference in both
down-track and cross-track directions. Hence, it is desirable to
develop 2-D detectors in lieu of multi-track detection schemes
[5]1, [6]. Secondly, in contrast to conventional magnetic media,
the primary source of noise in TDMR arises from irregularities
in the recording medium. These differences also make the de-
tector design difficult. This survey considers the application of
2-D detectors for TDMR channels with data dependent noise
(DDN). Our main focus is on two 2-D sub-optimal detectors
that are applied to the TDMR system and to show how using
the DDN information helps to improve the performance.

Since random grain positions and boundaries form the
primary source of noise during readback, the detector design
also necessitates the development of appropriate TDMR read
channel models. TDMR channel models have been studied in
[7]. The simplest TDMR channel model is the binary error
and erasure channel (BEEC). It models the TDMR channel as
a channel where bits are either erased or flipped with assigned
erasure and flipping probabilities. Although simple, this model
lacks the accuracy needed for detector design. In [8], Kavcic
et al. introduced a simple magnetic grain media model called
“granular tiling model”. In this model, the recoding medium
is assumed to consist of randomly shaped tiles covering the
medium plane where each tile represent a grain. Using the
model in [8], bounds for the capacities of TDMR channels are
derived. However granular tiling model is not well suited for
the purpose of detector design. In this paper, our main focus
is on the Voronoi model [7] and the 2-D Microcell model
[9]. In the Voronoi model, the recording medium is modeled
as a Voronoi tiling of a plane with every Voronoi region
representing a grain. The Voronoi model captures the charac-
teristics of the media noise generally observed in TDMR. The
2-D Microcell model is the generalization of the traditional
microtrack model [10] to two dimensions so that each bit is
composed of a small number of horizontal and vertical tracks.
The 2-D Microcell model is an accurate model for densities
which the bit to grain size ratio is on the order of 5 — 10.
This model enables the analytical derivation of the pattern
dependent distributions of the read-head output samples. These
models are relatively simple yet accurate which can capture
the properties of the media noise and well suited for detector
designs.

The one-dimensional (1-D) Maximum a-posterori (MAP)
detection is theoretically optimal for 1-D inter-symbol inter-
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fernce (ISI) channels. However, unlike 1-D MAP detection,
2-D MAP is NP-complete. Therefore, most of 2-D detection
techniques are the extended version of 1-D detectors. Various
approaches are considered for 2-D detection. The first category
of 2-D detection are schemes that utilize BCJR detectors [11]
on multiple tracks which is called “Multi-Track” detectors
[12]. The core of these techniques is iterative algorithms that
operate on multi-track detectors in both directions. However,
when the locally optimal multi-track detectors are combined,
the global detection becomes sub-optimal. An outline of these
algorithms is provided in Section III. The second category is
the 2-D detectors which perform sub-optimal decoding on the
full graph. The Generalized Belief Propagation (GBP [13]),
which originates from statistical physics, is in the second
category of detectors and has been first considered in the
context of 2-D detection by Shental et al. [14]. The GBP
detector operates on an undirected graphical model of a two-
dimensional Gaussian channel with memory. It infers the
symbol a posteriori probabilities (APPs) using a message
passing algorithm which takes into account the existence of
loops in a graph. Using GBP is a natural way of exploiting the
2-D characteristics of ISI, and it was shown in [14] that the
performance of GBP is almost the same as the MAP detector.

In case of TDMR read channel model, the read-head output
samples are also contaminated by the data dependent media
noise. Therefore the detector schemes have to be modified to
incorporate with DDN model.

The paper is organized as follows: In Section II, the read-
channel models are reviewed and the Voronoi and Microcell
model are explained in this section. Section III outlines the
detection problem and reviews most of the important 2-D
detectors. Finally, Section IV concludes the paper.

II. CHANNEL MODEL

In this section we describe TDMR channel models which
can easily applied in design of near-optimum detectors. The
read/write channel model for TDMR consists of three com-
ponents: the data writing process, 2-D channel and the read-
back process. The write process, the TDMR channel and the
readback process are introduced in Sections II-A, II-B and
II-C, respectively.

A. Writing Process

The approach to data storage in TDMR is significantly dif-
ferent from those of today’s recording systems. Firstly, TDMR
attempts to store one bit in very few grains of conventional
magnetic media, the ultimate goal being that of storing 1
bit/grain (today’s systems use about 20 grains per bit). To
ensure a sufficiently large magnetization field, the head is
made larger than the track width. This relaxes head design
constraints, but in order to achieve very narrow tracks, each
sweep of the write head partially overlaps with the previous
track. This technique is known as shingled writing [4].

Such an aggressive write process, along with the lack of
ordering of grains as in the conventional media, may cause
some bits to be over-written and some to not be written at all.
We note that bits lost to write-errors can never be recovered
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Figure. 1.Write/read model for the Voronoi medium: (a) Desired magnetization

of an ideal medium. (b) Magnetization of a non-ideal medium. (c) Readback

signal (before sampling). We assume the readback impulse response to be a

truncated 2D Gaussian pulse of unit energy with half-maximum of 1 bit-period
and a span of 3 bit-periods in both dimensions.

by any detector. We can only hope to recover such information
by the use of constrained and error-correcting codes. This is
an unavoidable price of making the dimension of bits so small.

B. TDMR Channel Models

One of the critical challenges in TDMR is the channel
modeling for detector design. In contrast to conventional
recording systems, the primary source of noise comes from
random grain positions and the lack of knowledge of these
boundaries during the readback process. The TDMR models
discussed here, are the Voronoi and the 2-D Microcell model.

1) Voronoi Model [7]: In this model, the recording medium
can be visualized as the Voronoi tiling of the shifted grain-
centers with their regions representing the grains. The ran-
domness in the shape and position of grains is modeled by
shifting the grain-centers randomly. Each region represents a
set of all points in the media closer to the selected grain center.
The shift of the grain-centers from their ideal positions is a
random variable (R.V.) of a known probability distribution.
We assume the grain-centers shifts to be N'(0,02) where o,
is normalized over the bit spacing 7.

The write-head simply assumes that the medium is ideal and
attempts to write at the center of each cell in a raster fashion.
The grain whose center is within the cell is then appropriately
magnetized. Fig. 1 shows writing/reading process on a square
lattice. It illustrates the difference between the magnetization
of an ideal medium and an actual medium as a result of the
writing process. Figures 1(a) and 1(b) show the magnetization
of an ideal and the actual medium, respectively. The grains
with magnetization +1/ — 1 are colored light and dark,
respectively.

2) 2-D Microcell Model [9]: In this model, the grains
which straddle the cell boundaries are modeled by small
tracks displaced from the ideal cell borders. In the Microcell
model, the cell on which the signal is written, is divided into
N equally sized smaller tracks called microtracks which are
oriented in vertical and horizontal directions. The perturbations
are modeled as the random position of microtrack boundaries.
Thus, the irregularities of the non-ideal cells are modeled by
microtracks displaced from the ideal position. A non-ideal cell
with displaced transition boundaries is call a “microcell”. The
transition boundaries represented by a number of microtracks
are independently and randomly displaced from the desired
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Figure. 2.(a) A realization of the distribution of grains in the Microcell model. (b) The 2-D Microcell model for2 x 2 cell. (c) Grain regions of two neighboring
bits for the Voronoi model (bit to grain ratio = 9) (d) Magnetization of the medium after the write process in the Voronoi model.

(ideal) transition position. Fig 2(a) shows the Microcell model
as a simple and natural way to approximate the irregular
boundaries of the medium. Fig. 2(b) illustrates the differences
between ideal cells and microcells in the microcell model.
1/ — 1 bits are colored as light/dark, respectively. Each shift
is chosen from a distribution which is typically considered
to be a truncated Gaussian distribution (see Fig. 2(b)). The
Microcell model can be considered as a 2-D generalization
of the microtrack model [10]. The 2-D Microcell model is
characterized by two parameters: the number of microtracks
for a microcell in each direction, N, and the normalized
boundary transition shift standard deviation o; where it is
normalized over the bit spacing 7.

3) Parameter Estimation for Microcell Model: We estimate
the parameters of the Microcell model based on the Voronoi
model. This estimation is accurate for densities which the
bit to grain size ratio is in the order of 5 — 10, since the
independency assumption of transition shifts is true for this
range. We consider a 3 x 3 grain regions for a bit. Thus, the
bit to grain size ratio is 9. Fig. 2(c) shows an instance of the
grain regions of two neighboring bits. Fig. 2(d) depicts the
magnetization after the write process. The bit values 1/—1 are
colored as light/dark, respectively. The source of media noise
is the area in the grain regions straddling from their ideal
position. We consider noise as a deviation of the recording
medium from the ideal medium. In Fig. 2(d), the difference
of area between ideal and non-ideal medium is considered
as media noise for the Voronoi model. In order to match
the Microcell model to the Voronoi model, o; is estimated
using the Maximum Likelihood (ML) estimator of the media
noise collected from the Voronoi model. Fig. 3 shows the ML
estimations of o ; of the Microcell model based on the Voronoi
model for different o, and different number of micro tracks
N.

C. Readback Process

During readback, the read-head picks up magnetization from
multiple bits in the down-track and cross-track directions.
Hence, there is severe inter-symbol interference (ISI) in both
directions. The readback signal is obtained by convolving the
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Figure. 3.ML estimations of o ; of the Microcell model for different number
of microtracks (2-6) based on the media noise values collected from the
Voronoi model with different o,.

magnetization of the medium with the read-head response and
then sampling at cell-centers.

In the remainder of this section, the readback process is
formulated to determine the properties of the output samples
based on the discussions in [9]. To facilitate the discussions,
we introduce the concepts of an ideal medium, an ideal and
non-ideal cell. These concepts are applicable to both Voronoi
and Microcell models. A medium is “ideal” if the bit areas
are equally sized and regularly spaced squares. We refer to the
bit areas in an ideal medium as “ideal cells”. In our channel
model, all instances of recording medium are assumed to be
produced by independent perturbation of the ideal medium.
We refer to the perturbed bit areas as “non-ideal cells”. The
irregularities of the non-ideal cell are estimated as a random
process of perturbing the ideal cell.

Let ; ; € {—1,+1} be the input data bits and let z(t1, t2)
be the continuous magnetization of the recording medium after
the write process at position (¢1, t2). Given x; j, variation of
Z.(t1,1t2) is due to the different realizations of the non-ideal
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(a)

Figure. 4.Visualization of read channel model. a) Read-head impulse response.

b) Input signal for Microcell model. ¢) Output signal after convolving the
read-head.

cells. Fig. 1(b) and Fig. 4(b) show z.(t1,t2) for the Voronoi
and 2-D Microcell model, respectively. The readback signal
samples are obtained by convolving the magnetization of the
recording medium with the 2-D read-head response and then
sampling the resulting signal at cell centers (i1 + %, JT +
%) where i, j are integers. The response of the read-head,
h(t1,t2), can be obtained by using the method proposed in
[15]. In this paper, we assume the read-head response to be
a truncated 2-D Gaussian pulse which spans 3 x 3 cells. We
choose a 3 x 3 for the read-head response since it is reasonably
small yet sufficient to consider the ISI effect. Moreover, it is
also the typical size considered in many pervious works ( [7],
[14]).

Let y; ; € R be the noiseless readback signal samples
and r; ; € R be the noisy readback signal samples. Due to
major improvements in magnetic recording readers, the noise
is mostly composed of media noise with small portion of
electric noise. The noise free readback signal samples can be
expressed as the discrete convolution of the input data bits
(x;,;) and the discretized read-head response (hx, i,) :

+1 +1

Yij = E E Pky ko Timky j— ko

ki=—1ko=—1

(D

Let Cpj = {(ki,k2)[i =1 < ks <i+1,j—-1< kg <
j -+ 1} be the set of local neighborhood indices of bit (i, j)
and X¢, ; = {@k, k,|(k1, k2) € C; ;} be all the input data bits
which contribute to the read-back signal sample y; ;.

In the non-ideal case for both channel models, The read-
head output samples can be written as follows:

+1 41
>
ki=—1ko=—1
. T . T
// h(iT + 3~ 71,1 + 3 T2)Timky j—ky AT1AT2
:1—1«,1,_7’_1@

2

where A}, is the area spanning the (1, ko)t grain (mi-
crocell in case of Microcell model). The output samples, 7; ;,
can be obtained by sampling the read-head output signal for
the Voronoi and Microcell model in Fig. 1(c) and Fig. 4(c) at
the center of cell (¢, j). The non-ideal read-back signal sample
can also be written as

3)

Tij = Yij T Nij
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Figure. 5 An example of data dependent media noise distributions for the
Microcell model with various input data patterns. The x-axis shows the noise
values and the y-axis shows the probability density function (pdf) of the noise.

This change in output for the ideal and non-ideal case
is considered as “media noise”. mn;; is the media noise
component for cell (, j). This noise depends not only on grain
(microcell in case of Microcell Model) shapes in C; ;, but also
on the polarity of the magnetization as it will be discussed
later. As a result, the media noise is a DDN and from (1), its
conditional probability density function (pdf) given the local
neighborhood data bits can be written as

“)

The DDN, n; ;, is caused by the difference between the
input data for two neighboring bits in C; ;. Therefore, me-
dia noise components caused by the common sides depend
on the value of the corresponding neighboring bits. If two
neighboring bits have the same value, there is no media noise
caused by their common side. Fig. 5 shows the media noise
distributions for the Microcell model for several input data
pattern. As it is shown, flipping the input data results in a
symmetrical distribution about y-axis.

p(rijlxc, ;) = p(rij — vijlxc, ;) = pnijlxc, ;)

III. DETECTION

The problem of detection in 2-D ISI channels arrises in
many applications. The literature is rich with various methods
for reducing the effect of 2-D ISI. However, most of 2-D detec-
tion techniques are the extended version of 1-D detectors. We
partition 2-D detectors into two categories. The first category is
the multi-track extensions of 1-D algorithms such as the BCJR
and the soft Viterbi algorithm. In [16], Nabavi et al. proposed
a 2-D generalized partial response (GPR) equalizer followed
by conventional 1-D Viterbi detector for processing signals
read from 3 adjacent tracks. A joint-track detection using a
1-D equalizer with a 2-D GPR target was proposed in [17].
The 2-D soft output Viterbi algorithm (SOVA) detection using
two 1-D SOVAs for the along and cross-track directions was
proposed in [18]. However, because the 2-D SOVA detection
is based on a 1-D GPR target, it offers smaller gain than
the multi-track detection. In [19], an iterative algorithm to
exchange soft information between two soft-input soft-output
(SISO) 1-D detectors is implemented. 2-D Decision Feedback
Equalizer (DFE) and MAP-DFE hybrid equalization schemes
are considered in [20]. In [21], separable 2-D ISI channel
is used for transmission. Non-binary column MAP detector
concatenated to a binary row MAP detector followed by LDPC
decoder is considered. Iterative techniques and coding gain
enables [21] to approach the non-ISI curve within 1 dB. In
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Figure. 6.

a) Factor graph for the 4 x 4 2-D ISI channel. b) Sliding regions include all the nodes contributing to the corresponding factor node.

c) A region graph generated using the cluster variation method [13].

[22] Chen et al. developed an iterative soft-decision feedback
zig-zag MAP algorithm for good performance in low SNR.
In a recent work [23], Chen et al. developed several turbo
feedback based multi-track MAP algorithm which show 2 dB
SNR gain over non-iterative methods.

All these detection schemes are multi-track rather than 2-
D, and consequently cannot fully exploit the characteristics
of the channel detection with 2-D interference. The second
category is the full-graph sub-optimal detector such as the
Generalized Belief Propagation (GBP [13]). GBP algorithm
has been first used for 2-D detection by Shental et al. [14].
The detector operates on an undirected graphical model of
a two-dimensional Gaussian channel with memory. It infers
the symbol a posteriori probabilities (APPs) using a message
passing algorithm which takes into account the existence of
loops in a graph.

In this section, we discuss two different 2-D sub-optimal
detectors that are applied to the TDMR system. The first one
is extended version of 1-D MAP detector for separable 2-D
channels and the second one is the GBP detector.

A. Separable 2-D MAP Detector

In [21], separable 2-D ISI channel is used for transmission.
The ISI channel is separable if the 2-D ISI matrix can be
written as a product of a column and a row vector. Thus,
H = UV where U and V are column and row vectors,
respectively. It can be shown that if the channel is separable,
then the channel can be considered as two 1-D channels which
one results in ISI along the row and the other one results in
ISI along the column. So an iterative detector is developed
accordingly which consists of a 1-D non-binary column MAP
detector concatenated to a 1-D binary row MAP detector. In
[21], an LDPC decoder is also incorporated which enables this
detector to approach the non-ISI curve within 1 dB.

B. The GBP Detector

The main difference between GBP and belief propagation
(BP) is that the messages are sent between regions of nodes
instead of node to node message passing. As it is shown in Fig.
6(a) for a case of 4 x 4 grid, there exists many cycles in 2-D
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ISI channel factor graph. As a result, the tree-like assumption
used in BP does not hold and BP approximation is poor. In
GBP algorithm, sets or regions of nodes will send messages
to other regions of nodes. GBP uses region graph method to
specify regions and messages. Fig. 6(c) shows the regions and
the messages between the regions. Yedidia et al explained GBP
in details in [13]. The major advantage of GBP is benefiting
from region to region message passing instead of node to node
message passing.

C. Compatibility of Detection Methods to TDMR Read Chan-
nel Models

In order to get close to optimal MAP detector, the de-
tector needs to account for the correlation between noise
samples. Since the noise samples are dependent to their local
neighborhood input, the detector must incorporate the data
dependent media noise distributions in calculating a posteriori
probabilities. In multi-track methods, the noise distributions
must be accounted for calculating the metrics of the branches.
However, the incorporation of the noise distributions is not
possible for all the methods. In the GBP detector, by selecting
the regions the same as the span of the ISI, data dependent
media noise distributions can be applied in calculating local a
priori probabilities to improve the performance of the detector.
In [9], we simulated the GBP detector for a 8 x 8-bit TDMR
channel. In conventional GBP (CGBP), we ignored the DDN
distributions and assumed the noise to be AWGN. The DDN
distributions are accounted for the detection by distribution
adjusted GBP (DAGBP). Fig. 7 compares the CGBP and
DAGBP performance in terms of BER as a function of SNR
for different values of media jitter variance (0?]). As it is
shown, the performance improvement for 0% = 0.2 is about
2 dB and 1 dB for 03 = 0.1, where T" = 1. The number of
microtracks in each microcell is set to N = 10.

D. Joint Detection and Decoding

Due to the huge complexity of the optimum joint detection
and decoding, the separation of detector and decoder is wide-
spread in most practical cases. However, the performance loss
is caused due to this separation [24].
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An LDPC code can be defined by the parity check matrix
H,.«, where there are m constraints on n variable bits.
These constraints can also be shown as a Tanner graph.
By adjoining the ISI channel constraints to the LDPC code
constraints, GBP can be applied as a joint detector/decoder.
Fig. 8 depicts a Tanner graph which is a combination of the
Tanner graphs of the 2-D ISI channel and the LDPC code.
The upper squares represent the LDPC code constraints and
the lower squares represent the 2-D ISI channel constraints.
Variable nodes are represented by circles inside the grid.
In order to show the improvement of joint detector/decoder
compared to concatenated detector and decoder, we simulated
a 13 x 13 bit grid in which the message bits are encoded
by an LDPC code C(155,64) (Tanner code [25]). The 14
bits which are not included in the code, are assumed to
have known values. As it is shown in Fig. 9, the GBP/BP
iterative concatenated detector and decoder is compared with
the GBP joint detector/decoder over the 2-D ISI AWGN
channel. In the GBP/BP iterative concatenated detector and
decoder, we used 10 iteration between GBP detector and BP
decoder. Fig. 9 shows the performance improvement of the
joint detector/decoder scheme. It is also shown that the joint
detector/decoder has about 0.6 dB loss compared to the ISI-
free channel. Applying DDN distribution to the GBP joint
detector/decoder for TDMR allows us to further improve the
performance of the TDMR system.

IV. CONCLUSION

In this paper, we have provided an overview of the read
channel models for TDMR. The main focus was on the
Voronoi and 2-D Microcell model for the propose of detector
design. Moreover, we have reviewed the important works on
two-dimensional detection algorithms. Our main goal was
to provide a groundwork for addressing the challenges in
incorporation of the TDMR read channel models in detector
design. Furthermore, the joint detection and decoding scheme
is addressed and the superiority of this scheme is shown.
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Figure.8. Tanner graph of the joint detector/decoder as a combination of the
Tanner graphs of the 2-D ISI channel and the LDPC code.
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Figure. 9. Comparison of the GBP joint detector/decoder and the

iterative GBP/BP concatenated detection and decoder.
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