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Abstract— In this work we analyze performance of network
coding focusing on two specific network coding schemes: XOR
and random linear network coding. We have simulated different
topologies and traffic patterns in order to provide better under-
standing of network coding behavior and its possible bottlenecks.
As a part of our performance evaluation we consider also com-
putational complexity of coding and decoding operations which
influence packet latency. In particular, we indicate potential
drawbacks and trade-offs of network coding when applied on
specific topologies under specific circumstances by monitoring
the differences in XOR and random linear network coding
approaches. Finally, we apply network coding on the topology
of existing research network Abilene [1] in order to evaluate
network coding performance under realistic conditions.

I. INTRODUCTION

Due to its generality and potential, network coding has
received a lot of interest. It has been applied to wide range
of communication areas, e.g. information and complexity
theory, cryptography, network optimization and wireless com-
munications. Network coding has been envisioned as one
possible solution to increase throughput and enable higher
data rates than conventional source coding. Additionally, its
potential to recover from network failures has motivated
research community to investigate different network coding
schemes. Early research has mostly focused on theory. Results
showed significant capacity gains, but most of the analyzed
cases are using relatively simple topologies [2]. Extending
these conclusions to larger networks has been done using
mathematical abstractions. Due to the broadcast nature of
wireless links most of the recent attention has been directed
into applying network coding to wireless networks [3]. The
seminal theoretical work has been followed by more practical
contributions raising numerous questions on implementation
constrains [4].

While majority of existing work has been focused on
analyzing wireless network coding using algebraic tools, our
goal is to evaluate network coding behavior in medium sized
networks under more realistic circumstances including point
to point connections. In this paper we focus on two commonly
considered network coding approaches, namely XOR and
linear network coding. We evaluate performance of these
approaches under different conditions using ns-3 network

simulator [5]. We monitor a number of packets successfully
decoded at the receiver side and latency that coding/decoding
process introduces, as well as the overall dependency of perfor-
mance on topology and traffic patterns. This paper is extension
of our previous network coding evaluation work [6] containing
additional analysis and cases of network coding behavior.
We improve our earlier results studying larger networks,
new traffic patters, realistic topologies and introducing design
constraints at receivers’s and sender’s sides. The contribution
of this paper is in network heuristics especially exploring how
different network parameters, including underlying topology,
affect the performance of network coding.

The remainder of this paper is organized as follows. In
Section II we briefly describe the basic concept of XOR
and random linear network coding followed by illustrative
examples and related work. Section III explains our main
design principles in the implementation of network coding
using ns-3 network simulator. We continue by describing
simulation results in Section IV and showing how the network
coding performance depends on different network parameters.
In Section V we give conclusions and outline further research
directions.

II. OVERVIEW

Following two simple examples provide the basic idea of
models we are investigating. These are given as an illustra-
tive examples to provide adequate background for our later
discussion.

A. XOR coding

Let us consider the classical scenario where two sides (Alice
and Bob) want to exchange a pair of packets via a router, i.e.
4 transmissions are required as shown in Figure 1. First, Alice
sends packet to a router, which forwards it to Bob, and then
Bob sends packet to the router which forwards it to Alice.

Instead of this, XOR combination of packets is possible at
the router side: Both, Alice and Bob send their packets, router
XORs them and broadcasts XORed version. After receiving
a XORed packet, A⊕B, both Bob and Alice are able to
decode the packet sent from the other side by simple XORing
the received packet with their own. This is illustrated in

Manuscript received April 30, 2009;  revised June 14, 2009; accepted
September 3, 2009.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 885

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcm.4.11.885-893



Fig. 1. Exchange of packets without network coding.

Fig. 2. Exchange of packets using network coding.

Figure 2. Moreover, encryption is achieved by the fact that it is
impossible to reverse the operation (decode message) without
knowing value of one of two initial arguments.

In more complex scenarios, such as shown in Figure 3, a
router will have different coding possibilities, among which it
should choose the one that maximizes the number of packets
delivered in one transmission. In this particular example, router
having packets p1p2p3p4p5p6... will optimize decoding at the
sides of receivers. Thus all of them will be able to decode
missing packet, combining p1p2p3p4 together. This leads to
simple conclusion: Router will maximize coding gain by
making n packets combinations if all recipients already have
n − 1 packets of the same combination. In order to optimize
XOR network coding gain in our implementation, we will be
essentially following this rule, while taking other objectives
into consideration.

B. Random linear network coding

Random linear network coding approach is, in general, sim-
ilar to XOR coding with the difference that the XOR operation
is replaced with linear combination of data (in essence, matrix

Fig. 3. Maximizing coding gain by making combinations of n packets if all
receivers already have n − 1 packets of the same combination.

Fig. 4. An example of linear network coding, where M1, M2...Mn are
source packets multicast to the receivers, and coefficients gi, ki and hi are
randomly chosen elements of a finite field.

multiplication) where coefficients of linear combination are
taken from a certain finite field. This provides more flexibility
in how the packets can be combined. Successful reception
of information does not depend on receiving a particular
data packet but on receiving sufficient number of independent
packets.

Let M1,M2...Mn denote the original packets generated by
several sources, also called native packets [7]. The encoded
packet would be a linear combination of M1,M2...Mn with
associated set of coefficients g1, g2, ...gn from a certain finite
field F which implies that it has a form of X =

∑n
i=1 giM

i.
In other words two vectors exist: first, g1, g2, ...gn -encoded
vector, which is used at the receiver side to decode the
message, and second, X =

∑n
i=1 giM

i - information vector
[8]. Encoding can be performed recursively, with already
encoded packets, as shown in Figure 4.

In order to retrieve original message decoder has to solve
the system of m equations Xj =

∑n
i=1 gj

i M
i using Gaussian
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elimination algorithm, where unknowns are M i. This system
with m equations has n unknowns, and having m≥n is
prerequisite for decoding. Fulfilling this requirement is not
a guarantee that the message will be decoded since some of
the linear combinations might be linearly dependent.

C. Related work

Notion of network coding, where intermediate nodes are
allowed to encode and decode messages was introduced by
Ahlswede et al. [2]. This work focuses on discussion of
the maximum throughput possible in a directed network for
a multicast session between a source and a given set of
receivers, and presents benefits in increasing the throughput
by using network coding. Koetter and Médard [9] were
considering network capacity problem entirely on analitical
framework using linear codes. Recent work on improving
throughput of wireless network using XOR coding [3], [4]
has introduced more practical approach and showed high
benefits of XOR packets combination layer between IP and
MAC. This work follows more reliable approach using backoff
and ack mechanism of modified 802.11 unicast. In order to
avoid dependency between nodes in coding/decoding process,
random linear network coding has been proposed as one of
the most promising solutions. Nodes execute independently
random linear transformations of input data over certain finite
field [10]–[12]. Applying network coding to probe packets
improves network tomography in terms of link loss rate
estimation and bandwidth efficiency [13]. Introducing limits
in decoding delays for specific applications, e.g, streaming
powered with packet decoded acknowledgements from re-
ceiver’s side leads to higher optimization of the throughput
and better performance of network coding [14]. Sundararajan
et al. [15] proposed the idea of network coding layer between
the network and transport layers. This approach followed by
adaptation of current TCP acknowledgement mechanism to
better serve network coding requirements shows improvement
in network coding results without large changes in current
network structure.

III. IMPLEMENTATION AND SCENARIOS

In our implementation, network coding/decoding process is
inserted on the top of existing network layer, due to availability
of information about packet source and destination necessary
for XOR coding/decoding that IP header contains. We are
exploiting helper functionalities of ns-3 to build point to point
links between nodes in the network, with a desired data rate
and delay. Nodes have buffers of infinite size for storing
packets. Every node keeps track of received and sent packets,
based on which it gains knowledge about packets distribution
in the neighborhood. Thus, during coding/decoding every node
relies on local information about overall packet distribution,
without contacting other nodes. This information is of high
importance for optimization, since every packet combination
will not lead to successful data recovery and network coding
benefit. We aim at maximizing this benefit following the rule
illustrated in Figure 3 only if this opportunity exists. Therefore,

each packet has to be created in such a way that every neighbor
after receiving packet combination and performing XOR op-
eration with packet it posses, retrieves a missing packet. This
is possible only if node, receiving N packets combination,
already owns N − 1 packets of received combination. In
our particular case, node having M point to point interfaces
(neighbors), in order to benefit from broadcast will make M
packets combinations, ensuring that every neighbor already has
M − 1 native packets of that combination. Before combining,
the node performs look up in its received packets buffer finding
all packets with M − 1 sources (packets with same unique
ID but with different source address). Such packets, having
the same ID but M − 1 different source addresses denote the
same packet received from M − 1 different sources, i.e., it is
one possible packet to be put into final combination. At the
end, the node makes all possible M (number of neighbors)
combinations out of packets that have M − 1 sources, and
broadcasts it. Information about combined packets is stored in
metadata of packet combination to facilitate decoding process.
Upon receiving the packet, the node performs look up in
the buffer one more time to find combination of packets
that has to be XORed with received combination in order to
retrieve missing packet. Validity of resulting packet is checked
performing checksum over payload [16].

Our implementation of XOR coding/decoding at the
sender/receiver side is seen as auxiliary process to ”common
sending/receiving”. Thus after, e.g., receiving the packet, node
first checks if incoming packet is combination, if not it
performs ordinary processing of packet like in the case that
no coding/decoding mechanisms are present. In the case of
sending the packet, the node first checks if there is possibility
to send a packet combination based on information it has
about the packet distribution in its neighbourhod. Otherwise,
it sends packets following regular pattern. In other words it
is opportunistic, because it performs coding operation when
such possibility arises.

On the other hand, random linear network coding is simpler
due to the fact that node does not need to have overall knowl-
edge of its surroundings, since packet generation is carried out
probabilistically. Our implementation of this model relies on
ns-3 random number generators for creating coefficients and
selecting packets to be combined. A node generates output
packet as a linear combination of randomly chosen packets
from buffer and random coefficients g1, g2, ...gn. Structure of
packet combination is recorded in the form of vector of coeffi-
cients and packet IDs and stored in the metadata. Based on this
information decoding side is aware of each packet composition
and performs Gaussian elimination after sufficient number of
combination packets of same structure is received (n packets
with linearly independent vector of coefficients). Overhead that
this additional information introduces is negligible compared
to the packet size.

Our network coding scenario resembles constant bit rate
datagram communication between nodes. In our experiments
capacity of point to point links is initially set to 4.5Mbps,
with the delay of 5ms. Network topology varies based on
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Fig. 5. Mean latency and standard deviation for XOR coding (butterfly and
grid networks) and no coding.

the number of nodes involved ranging from 25 to 121 nodes
and the type of connectivity (grid or butterfly networks).
We additionally exploit the case of randomness in building
network topology by applying certain probability of link exis-
tence between two nodes. Finally, we observe network coding
performance applied to realistic networks by studying the
performance in the Abilene topology. Basic traffic model relies
on ns-3’s OnOff Application, which switches transmission and
idle states according to the predefined On and Off intervals.
During the On interval, CBR traffic with defined data rate
of 448Kbps and packet size of 210 bytes is generated, while
Off interval denotes no traffic. Similar to the randomness
applied in building different topologies we create random
traffic patterns by varying transmission probability of nodes
in the network.

IV. RESULTS

Large part of obtained results are based on measuring
network coding impact in terms of packets that are additionally
decoded at the receiver side compared with the case without
coding. We are varying data rate, packet delay, traffic patterns
as well as the underlying topology and monitor impact of
these parameters on overall results. Different traffic patterns
are obtained by altering transmission probability for every
node in the network. For underlying topology we choose
butterfly and grid networks with the number of nodes ranging
from 25 to 121, extending our observations with the random
topology case generated by varying connection probability
between nodes. Results show that benefit of both types of
network coding highly dependents on various parameters.

One of important concerns of network coding implemen-
tation is the mean packet latency that coding and decoding
introduce. Increasing the size of packet buffers enlarges the
amount of data that each node has to be aware and to process
leading to higher decoding delays. For XOR coding, having a
relatively small number of packets P with M − 1 sources in
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Fig. 6. Mean latency and standard deviation for XOR coding over different
data rates.

Fig. 7. Linear network coding - mean latency and standard deviation (grid
and butterfly networks).

the buffer, combination of N (number of interfaces) over P
becomes very large (due to P !/N !(N − P )!), and the task of
finding combination which results in benefits for all neighbors,
time consuming process. On the other hand, if the size of
packet buffer is not sufficiently large the node will not have
enough information based on which it can perform beneficial
coding. Our results show that for network settings we observe
latency caused by network coding is negligible for most of
the applications. The difference in packet latency when XOR
coding is applied over 36 nodes butterfly and grid networks
compared with the case of no coding is illustrated in Figure 5.

Results show that latency is not heavily dependent on the
underlying topology, but primarily varies based on the channel
parameters; data rate, and delay it introduces. For the fixed
channel delay, latency added by XOR coding decreases with
increasing the data rate of transmission as shown in Figure 6.
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Fig. 8. Linear network coding - mean number and standard deviation of
packets decoded on each node (grid and butterfly networks).

Evaluation of linear network coding latency and comparison
with XOR coding case is done by repeating the tests under
the same network settings as in the XOR case and fixing the
data rate to 4.5Mbps. Additionally, we monitor the impact
of packet combination size on coding/decoding delay. Our
results show that in the terms of latency linear network coding
performs better compared to XOR coding for the same channel
parameters.

Lower delay occurred applying linear coding for data rate
4.5Mbps and fixed channel delay as shown in Figure 7. More-
over, Figure 7 demonstrates influence of packet combination
size on latency. For relatively small packet combinations,
e.g. containing less than 20 packets, Gaussian elimination
does not introduce additional computational delay due to
larger number of native packets combined. On the other hand
number of packets combined and underlying topology have
impact on linear network coding performance in terms of
decoding gain. For particular topology, variation of packet
number in combination leads to different decoding outcome
as illustrated in Figure 8. Increasing the number of packets
put into the combination might lead to performance degra-
dation due to higher complexity and longer time needed for
sufficient number of coded packets to be received. In both
cases, XOR and linear network coding results rely on packets
distribution and the number of packets each node stores
in its buffer. In our implementation we assume that nodes
have unlimited capacity buffers for collecting packets. Thus,
every received packet is stored in the buffer and potentially
influences decoding outcome. Based on packet buffer size at
the time of coding/decoding decision network coding gain
varies. In order to better address packet diversity and buffer
assets influence on decoding outcome keeping the buffer sizes
unlimited we compare two network cases sharing the same
network parameters set but differentiating in packet resources
of nodes participating in communication.
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Fig. 9. Linear network coding - influence of network size and buffer size
on number of packets decoded
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Fig. 10. Linear network coding - influence of network size and buffer size
on number of packets decoded (30% less packets in buffers compared to the
network setting from Figure 9)

Figure 9 and Figure 10 show the difference in decoding
gain for grid networks containing 25, 36, 49 and 64 nodes
while node buffers of network from Figure 10 contain 30% less
packets than the network in Figure 9. Nodes having 30% more
packets stored in buffers are able to decode much less than
30% additional packets, thus the number of decoded packets
on each node is not linear function of buffer size. Nevertheless,
having larger packet buffers gives more combining opportu-
nities to nodes and ensures higher network coding benefit.
Moreover, the shape of decoding curve, thus the decision
upon optimal packet combination size for the given topology
settings, varies based on the node’s buffer size, as well.

Another interesting objective to investigate is relation be-
tween buffer limitations and decoding gain. Initial step in our
evaluation work is to limit buffers to particular size. In the
case of receiving the packet after the buffer has reached its
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Fig. 11. Linear network coding - influence of the buffer size and combination
size on the number of decoded packets.

limit, the first enqueued packet in the buffer is deleted in order
to make the space for incoming one. First part of our buffer
limitation evaluation is in monitoring influence of buffer limit
to decoding gain. Thus, we examine five different buffer sizes
with 100, 150, 200, 350 and 500 packets. Results show slight
increase in the number of decoded packets due to the increase
of buffer size. Applied to the same packet combination size
larger packet buffer does not bring significant decoding gain.
Smaller packet combinations perform better like in the case
of infinite buffers as illustrated in Figure 11. This raises
the question of larger buffer’s utilisation and justification of
applying them in network coding scenarios. While introducing
additional processing costs, infinite buffers do not provide
fundamental enhancement of network coding performance.

On the other hand there is large difference in decoding
gain while limiting lookup area at the receiver’s side. Not
taking into account even less than 5% of available packets in
the buffer during decoding process heavily changes decoding
outcome. Neglecting more than 10% of packets during the
decoding lookup phase deteriorates network coding perfor-
mance dramatically. Hence, the decoding gain does not justify
implementation of network coding as illustrated in Figure 12.
Based on this observation we can consider existence of rela-
tively small amount of packets heavily influencing decoding
gain. This remark might have larger impact in the case of
introducing mechanisms for faster packet look-up with the
possibility of false negatives. Disregarding even few packets
during decoding look-up due to false negatives will cause
poor decoding results. The size of the network is another
important parameter influencing decoding results. Increasing
the number of nodes involved in communication is followed
by increasing the number of packets decoded, for the same
traffic and topology parameters applied. Figure 13 illustrates
the impact of network size on number of packets decoded on
each node for grid networks built upon 36, 64, 81, 100 and
121 nodes.
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Fig. 12. Linear network coding - influence of limiting decoding look-up area
in buffers on the number of decoded packets.
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Fig. 13. Linear network coding - influence of network size on the number
of decoded packets.

A. Random traffic and topology settings

Changing the traffic pattern by not necessarily involving
every node in the communication, influences overall perfor-
mance of network coding in terms of efficiency while packet
latency remains the same. Defining the certain probability
for each node to broadcast data determinates its participation
in packet transmission as well as in network coding. In our
implementation we examine relation between given broadcast
probability and network coding performance. Figure 14 shows
results for 90% broadcast probability where mean number of
decoded packets is proportional to this predefined probability
(approximately 90% of network coding benefit compared to
the case where all nodes broadcast).

Standard deviation of decoded packets number is high due
to the large possible variations of number of sent and received
packets on the same node as illustrated in Figure 15. It shows
the mean difference between the number of packets received
and sent on each node while high positive and negative peeks
of standard deviation represent two extreme cases that might
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Fig. 14. Random traffic pattern (node broadcasts with 90% probability) mean
number of decoded packets
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Fig. 15. Random traffic pattern, mean number and standard deviation of
decoded packets (node broadcasts with 90% probability)

happen in random traffic scenarios. High positive values are
reached when node is not sending packets, since it is always
able to receive and decode, thus the difference between number
of received and sent packets is exactly the number of received
and decoded packets. On the other hand negative extreme is
obtained when the node is sending packets but it is not able
to receive anything from its neighbours since they are not
involved in communication.

Setting the broadcast probability to be very low, e.g. 10%
in our implementation, leads to negligibly low network coding
benefit. Another illustration of system randomness applied in
our implementation is topology oriented. We generate random
topology by defining probability of link existence between
nodes and monitor network coding behavior under these
circumstances. Results are similar to the case of random traffic
pattern in the sense that network coding benefit is proportional
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Fig. 16. Random topology pattern, mean number and standard deviation of
decoded packets (90% probability of link existence between two nodes)

to the given link existence probability, and it degrades dra-
matically and can be disregarded for low probabilities due
to network disconnections. Opposed to the random traffic
pattern case, standard deviation of number of packets decoded
is relatively small since there is no possibility for node to
send neither to receive to/from no existing links as shown
in Figure 16. In order to better understand the dependency
of decoding benefit due to network connectivity, we extend
out observations to larger networks and ”critical” connection
probability between nodes. We choose 55% link existence
probability to avoid cases of obvious network disconnections
due to low probabiliy, e.g. 10%, and cases of high nodes con-
nection probability, e.g. 90%, where circumstances are rather
the same as in completelly connected networks. Decoding gain
is not anymore proportional to connection probability as it was
in the case of high connection probability.
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Fig. 17. Linear network coding. Grid networks built upon 25, 36, 49, 64,
81, 100 and 121 nodes with 100% connection probability between nodes
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Fig. 18. Linear network coding - grid networks built upon 25, 36, 49, 64,
81, 100 and 121 nodes, with 55% connection probability between nodes

Results show that decoding curve has the same shape as for
completly connected networks but the network coding gain is
much lower due to network disconnections and nodes lacking
sufficient information to perform better coding/decoding as
shown in Figures 17 and 18.

B. Abilene network

As a final extension of our work we monitor behaviour of
network coding applied on realistic topologies. We use high
speed research network Abilene [1], [17] as a testcase.

Fig. 19. Abilene backbone topology

Abilene is based on 10Gbps links between nodes, mainly
serving to educational and research purposes. It represents
advanced backbone network with the goal of supporting
advanced network applications and evaluation of their per-
formance before integration with widely used systems. Con-
figuration files of Abilene routers are publicly available thus
the exact topology settings of this network can be used for
simulation and testing purposes.

Our topology consists of 12 nodes with link capacities and
connections as described in Abilene backbone specifications.
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Fig. 20. Linear network coding - Abilene topology, mean number and
standard deviation of packets decoded on each router

Network is shown in Figure 19, and we are using network
coding in communications. Our aim is to use the same traffic
generation parameters as applied in topologies that we have
been already tested. Thus, the evaluation goal is to find out the
impact of Abilene topology on network coding performance.
Results show network coding benefit followed by large devi-
ations in number of packets additionally decoded as shown in
Figure 20. Relatively poor decoding gain is related to traffic
generation manner used.

V. CONCLUSIONS

We have presented the main idea behind network coding
mechanism while focusing our evaluation work on using XOR
and linear network coding. Our results show that combining
numerous data units in the way that its designated destina-
tion is able to recover it, while saving the number of data
transmissions at the same time is not straightforward task.
Gains of applying such a mechanism are relying on various
input parameters in terms of channel properties, traffic patterns
and related network topology. In addition, possible latency
and complexity issues must be taken into account while using
it under different scenarios. Finally, apart of parameters and
topologies that have been analyzed in this work, there are
many potentially interesting network settings to be investigated
in the future. As an illustration of possible extensions to the
current work similar evaluation could be done for wireless
network case. Additionally, network coding employed under
different traffic generators, larger networks and other existing
realistic networks can be tested in order to get more complete
picture of network coding manners and its applicability in
specific use cases.
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