
Flow Synchronization for Network Coding
Thorsten Biermann, Martin Dräxler, and Holger Karl

University of Paderborn, Germany

{thorsten.biermann, martin.draexler, holger.karl}@uni-paderborn.de

Abstract—Network Coding (NC) is a means to improve
network performance in various ways. Most evaluations
so far were done with simplified assumptions about the
application scenario, namely equal data rates and packet
sizes for traffic to be encoded. Traffic in real networks,
however, does not have this property. Hence, as deterministic
and random NC require these properties, flows have to be
synchronized prior to encoding to guarantee these properties
and to be able to benefit from NC in real networks.

In this paper, we present a set of algorithms that syn-
chronize arbitrary flows in wired and wireless scenarios
for joint encoding later on. These algorithms are based
on fragmentation and Active Queue Management (AQM)
techniques. To demonstrate the benefits of our approach, we
developed an encoder and decoder for deterministic XOR
NC that uses this synchronization technique.

Simulation results show that with our synchronization
techniques, NC, even in scenarios with bursty, self-similar
traffic where NC could not have been deployed so far,
increases throughput and lowers packet loss and variance
of end-to-end delay compared to plain forwarding.

Index Terms—network coding, deterministic, random, inter-
session, flow, packet, synchronization

I. INTRODUCTION

Network Coding (NC) is a technique where data pack-

ets are not just forwarded on the path from the source to

the destination but are also mixed with packets of other

flows [1]. Various techniques that implement this idea

have been developed and evaluated in recent years [2].

These evaluations were mainly done in theory and pointed

out the high potential of NC to increase the transmission

quality in many different scenarios. These analyses are

mainly based on highly simplified assumptions about

the traffic that is encoded. Characteristics of real traffic,

like different data or packet rates, differ packet sizes, or

burstiness of the data flows, are not considered. Dealing

with these issues is, however, a mandatory issue to benefit

from NC techniques in the real world.

In this paper, we focus on deterministic, linear NC

where packets of (usually) two unicast or multicast flows

are jointly encoded. Unlike plain forwarding, linear NC

fully utilizes the maximum flow from a source to the des-

tinations in multicast transmission [3]. A simple form of

linear NC is calculating the exclusive OR (XOR) of each

packet pair. This transformation is simple to implement

and can be applied in a variety of topologies [4]; the

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n◦ 216041.

Manuscript received April 30, 2009; revised June 14, 2009; accepted
September 03, 2009.

probably most famous of them is the butterfly topology

(Figure 1). Although we will focus on this topology in the

course of this paper, our techniques can simply be applied

in other topologies suitable for linear NC [4]. They all

have in common that two plain flows are multicast at a

certain node and that these plain flows are jointly encoded

at a node that receives both of them. Finally, the encoded

flow is decoded again where both the encoded and one

of the two plain flows are received.

S1 S2

R2

R1

D2 D1

(a) NC is not active. Both
flows share the same bottleneck
R1→R2.

S1 S2

R2

R1

D2 D1

(b) NC is active. The high bot-
tleneck load on R1→R2 is di-
minished.

Figure 1. Basic data flow in the butterfly topology. Two multicast flows
(dashed/dotted) are deterministically encoded at node R1, thus saving
one time slot on the link R1→R2.

Data flows that traverse the NC topology, like the

dashed and dotted flows in Figure 1, can be of differ-

ent types. They could be single Transmission Control

Protocol (TCP) streams, label-switched paths, or multiple

smaller flows that jointly traverse a part of the network

over the same links and, hence, can be aggregated and

treated as a single flow. The small flows even do not

need to be of the same type. The only requirement is

the common path through the network topology. In the

rest of the paper, the term flow is used as a synonym for

any of these concrete types.

Two flows that arrive at the bottleneck router R1 usually

have different properties. I.e., their packet sizes are not

equal and their data rates differ as well. Without additional

effort, packets of these flows can only be fed into the

encoder as they arrive (Figure 2).

Deterministic and random NC schemes require equally-

sized packet pairs as input. Furthermore, encoders cannot

handle flows with differing data rates because this means

that packets of the low-rate flow are missing for encoding

packets of the high-rate flow.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 873

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcm.4.11.873-884

Figure 2. Packets of both input flows arrive at different rates and have
different packet lengths at the encoder. As deterministic and random NC
require packet pairs of equal size, effective encoding is impossible.

To solve these problems, we introduce the notion of

flow synchronization. A flow synchronization unit trans-

forms two (or more) input data flows into correspond-

ing flows with equal packet size and data rate. This

is achieved by combining buffering, fragmentation, and

queue management techniques.

In this paper, we are going to answer the question

whether flow synchronization can enable NC techniques

to deal with real-world data flows. To achieve this, we

make the following contributions:

• We introduce a new way of identifying packets.

Instead of using sequence numbers, our scheme is

based on hashing. The main advantage is a lower

overhead and a simpler decoder implementation

compared to conventional sequence numbering. This

scheme will be discussed in Section III-A.

• We designed algorithms for synchronizing, encod-

ing, and decoding arbitrary packet flows. These al-

gorithms introduce an adjustable trade-off between

latency and coding gain. They work independently

of the underlying network topology and transmission

technique (wired/wireless) and can be integrated at

any position in the protocol stack. More information

will be given in Section III-B.

• We evaluated the proposed mechanisms under re-

alistic traffic scenarios, including self-similar, long-

range-dependent flows, representing flows with high

burstiness. This property is especially challenging

because bursts result in high, temporary data rate

differences that complicate successful encoding. The

results in Section IV show that NC can still be

beneficial in such real-world scenarios.

The problem of finding suitable topologies and flows

that benefit from NC is not this paper’s focus. We always

assume that two flows are present in a butterfly topology

that allow NC. Mechanisms for finding such scenarios

will be discussed in Section II.

II. RELATED WORK

The problem of jointly encoding multiple flows, which

we focus on in this paper, is also known as inter-

session NC. It can be divided into the following basic sub

problems: finding suitable topologies/flows for encoding

and handling real-world traffic for encoding.

Linear NC can only be applied in network topologies

that fulfill certain requirements, i.e., where data flows pass

nodes which are interconnected according to certain rules.

The most famous topology that allows this kind of NC

is the butterfly topology [1]. It has been shown that the

butterfly can be generalized to support pair-wise linear

NC in many more scenarios [4] and that such topologies

can be found in a distributed manner [5]. Furthermore,

relay networks that have multicast capability in the down-

stream, like wireless meshes or Passive Optical Networks

(PONs), can be mapped to the butterfly topology [6]. This

is illustrated in Figure 3.

N2N1

N3

Tx

Rx

Tx

Rx

Figure 3. Node N3 acts as relay for N1 and N2. System components
(Tx, Rx) within N1, N2, and N3 are regarded as communicating nodes
in a butterfly. This way, the coding scheme becomes attractive even for
unicast flows as the transfer from Tx to Rx practically comes for free.

When applying and evaluating NC schemes in real

networks, components, like encoder and decoder, have

to deal with the characteristics of real network traffic.

This issue has mostly been neglected in previous studies

as they were mainly focused on theoretic analysis or

simulations that assumed known flow patterns or even

just equal rate flows. Our work ties in at this point and

presents techniques for handling arbitrary flows without

any a priori knowledge.

A system that deals with real TCP and User Datagram

Protocol (UDP) traffic is COPE [7]. COPE is an additional

layer that adds linear NC support to wireless networks

to increase throughput. This layer is situated between

the Internet Protocol (IP) and Medium Access Control

(MAC) layer and, like our approach, does not depend on

assumptions about certain traffic patterns.

The packet coding algorithm of COPE does not delay

packets. I.e., if the medium is idle and there are packets

available for sending, they are sent out immediately even

if there are no packets of other flows for joint encod-

ing. As we also assume background traffic that cannot

be encoded, our synchronization scheme introduces an

adjustable trade-off between additional waiting time and

achieved coding gain. I.e., if desired, the system can be

configured to wait for a certain time before sending out

packets to increase the coding benefit.

Incoming packets are only filed into two categories:

small and large packets. Packets of each category are

only encoded with packets of the same category. This

scheme is suboptimal as packets are encoded that have

different sizes, i.e., coding is inefficient. In contrast,

our flow synchronization scheme always produces packet

pairs of equal length which allows a maximum benefit

from coding.

Although COPE tries to avoid packet reordering, it

cannot be avoided due to its packet selection algorithm.

874 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Therefore, COPE contains a module to ensure in-order

packet delivery for TCP packets at the receiver to avoid

unnecessary retransmissions due to the reordering pro-

cess. Our flow synchronization does not introduce packet

reordering at all and, hence, seamlessly integrates with

any transport protocol.

III. SYSTEM ARCHITECTURE

Our NC architecture consists of four functional com-

ponents: packet identification, synchronization, encoding,

and decoding. These tasks are assigned to different nodes

in the network. Responsibilities within the butterfly are

shown in Figure 4.

Synchronization/Encoding

Packet identification

Decoding

S1 S2

R2

R1

D2 D1

Figure 4. Functional components of the NC architecture and their
assignment to nodes within the butterfly.

The different components are discussed in detail in the

following subsections.

A. Packet identification

To be able to correctly decode an encoded packet,

the decoder must exactly know which packets from the

two flows have been used for encoding, else it cannot

pick the right uncoded packet for decoding. The conven-

tional way to achieve this unique packet identification

is to augment packets with sequence numbers. Existing

sequence numbers within the packets (e.g., from TCP)

can usually not be reused as many end-to-end flows might

be aggregated and, hence, the sequence numbers cannot

uniquely identify a packet.

Adding the additional sequence numbers on top of each

packet must be done at S1 and S2 in the butterfly topology

as this is the latest point where the plain data flows split

up to the encoder and decoder nodes (Figure 4). This

technique, however, requires that the data flows to which

the packets belong are already uniquely identifiable within

the network – a feature which is not always given, e.g.,

when using IP.

For NC it is actually not important to know from which

flow a packet originates that has been used for encoding.

The only important property for correct decoding is the

packet’s content. E.g., if there are two identical packets

a and b (within a single or multiple flows), and a is used

for joint encoding with a packet c as a ⊕ c, then b can

be used for decoding c as well. This insight leads to an

alternative to sequence numbering for identifying packets

in the context of NC: Hashing. Instead of adding sequence

numbers at S1/S2 that are used to identify packets at the

encoder (R1) and the decoders (D1/D2), a hash digest

of the packets’ content is calculated at R1 and D1/D2

to identify the packets. This approach has the following

advantages compared to the sequence numbering method:

• Functions for identifying data flows and adding se-

quence numbers to packets at S1/S2 are not required

as the packets’ content itself is used for identifica-

tion. S1 and S2 just need multicast capabilities.

• The decoder implementation is simplified. Distin-

guishing between different flows, e.g., by maintain-

ing different packet buffers, is not required anymore

as just the packet content matters.

• Encryption techniques, like Internet Protocol

Security (IPsec), can be used together with NC. As

the packet and flow identification via certain header

fields in the packets to be encoded are not required

anymore, encrypting the packets does not matter.

Both sequence numbering and hashing require to care-

fully choose the length of the included identifier (se-

quence number/hash). Unnecessarily long identifiers in-

crease the overhead and too short identifiers cause identi-

fier collisions in form of sequence number wrap-arounds

and hash collisions. I.e., packets cannot be uniquely

identified and, hence, cannot be correctly decoded. These

corrupted packets will be discarded by the upper layers’

Cyclic Redundancy Check (CRC).

The choice of suitable identifier lengths and the param-

eters that influence their overhead are obviously important

for implementing encoders and decoders. They are eval-

uated in the following subsections.

1) Sequence numbers: When flow information is avail-

able in the environment where NC is used, e.g., in

label-switched networks, sequence numbering is a simple

method for identifying packets within the flows [8]. To

keep the overhead caused by this numbering as low as

possible, the length of the sequence numbers has to be

chosen carefully.

For NC, sequence numbers need to uniquely identify all

packets from the point in time tE when they are encoded

until the point in time tD when the resulting encoded

packet is not further required for any decoding process.

Hence, there must not be any collision among sequence

numbers during the time interval tC = tD − tE. This

interval depends on the duration required for encoding

and decoding, the waiting times in all queues, as well as

on the propagation time of the encoded packet from the

encoding to the decoding node. The number of available

sequence numbers must be large enough to identify all

packets of a flow during the interval tC.
We choose sequence numbers from a pool of size S,

i.e, the bit length of the binary representation is log2(S).
To calculate S, parameters about the data flows to be

encoded are required, namely, the peak data rate R and

the minimum packet size P . Then, S can be calculated

according to Equation (1).

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 875

© 2009 ACADEMY PUBLISHER

S(tC, R, P) = tC ·

R

P
(1)

2) Hashing: In scenarios where flows cannot be

uniquely identified or where encoder/decoder implemen-

tations have to be simple, sequence numbering is not

an option. Here, hashing can be used as a powerful

alternative. A similar problem as for the sequence number

length has to be solved for hashing, too: How to choose

the length of a hash which identifies a certain packet?

We assume that the used hash function generates hash

values that are uniformly distributed within the set of all

possible hash values. The size of this set is H , i.e., the

binary representation of the hashes has size log2(H).
To determine the smallest hash length that avoids

collisions, we first calculate the smallest number of hash

values n(p,H) such that the expected probability of

finding a collision among these n hash values is at least

p. The resulting Equation (2) is basically a generalization

of the famous birthday problem [9].

n(p,H) =

√
2 · H · ln

(
1

1 − p

)
(2)

As a hash is calculated for each packet within a flow,

we are interested in the time tC during which a hash

collision for a flow with data rate R and packet size

P occurs with probability less than p. This time can be

calculated according to Equation (3).

tC = n(p,H) ·
P

R
(3)

To directly calculate the required hash length for a set

of given parameters describing the scenario (tC, R, P , and

p), we solve Equation (3) for H and derive Equation (4).

H is the required number of available hash values such

that, when hashing each packet of a flow with data rate

R and packet size P , a hash collision within the time

interval tC occurs with probability at most p.

H(tC, R, P, p) =
R2

· t2C

2 · P 2
· ln

(
1

1−p

) (4)

Note that large values for p introduce a packet error

floor for the encoded flows. The reason for this is the in-

creased hash collision probability which causes corrupted

packets after decoding, which will be dropped.

To give an impression of the required hash and se-

quence number lengths, Figure 5 shows a plot of H
and S depending on tC for some typical flow data rates.

The time to collision is evaluated in the interval 0 s <
tC ≤ 1 s, which covers most wired and wireless network

technologies. The packet size P = 438 byte is set to the

average packet size in the Internet [10], and for hashing,

a collision probability of p = 10−6 is tolerated.

The plot shows that for a given data rate R the required

hashes need to be approximately 3.5 times longer than

Figure 5. Required packet identifier length for hashing (H) and sequence
numbering (S) depending on the required time to collision tC and data
rate R; P = 438 byte, p = 10−6.

the required sequence numbers at the same tC. Although
this looks like a clear advantage in favor of the sequence

numbers, this is usually not the case. As the numbers

do not include any information about the flow a packet

belongs to, but this information is required for the se-

quence numbering approach, the flow identification has to

be added additionally at the encoder. This is required in-

dependently of the fact whether the plain packets already

contain a flow identification as this information will not

be available at the decoder due to the encoding.

In case of a TCP flow, a 4-tuple consisting of source/

destination IP addresses and ports identifies a flow and

would require additional 96 bit on top of the sequence

number. Compared to the required hash length of about

55 bit for an average data rate of 1Gbit/s and 1 s time to

collision with a probability of 10−6 (Figure 5), hashing

clearly outperforms the traditional sequence numbering.

Figure 6 illustrates this for two TCP packets.

The resulting advantage of hashing is shown in Fig-

ure 7. This plot shows how the expected time to collision

tC depends on the full identifier length for hashing and

sequence numbering when two TCP flows are jointly

encoded. The full identifier includes packet identifiers

(sequence numbers or hash values) for both techniques

and an additional flow identification for the sequence

numbering, consisting of the source/destination IP ad-

dresses and ports (96 bit in total).

Implementing the proposed hashing scheme requires

hash functions that support arbitrary digest lengths to

adapt the packet identifier to the flow properties. Exam-

ples for families of such hash functions are HAIFA [11]

or LAKE [12].

B. Synchronization

For simplicity, we only discuss the synchronization of

two flows in the following. Our methods easily extend to

more than two flows.

1) Overview: To synchronize two flows, two separate

tasks have to be fulfilled: packet rate synchronization and

876 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

dest addr 2

src/dest port 2

seq num 2

src addr 2

payload 2

dest addr 1

src/dest port 1

seq num 1

src addr 1

payload 1

dest addr 1

src/dest port 1

seq num 1

src addr 1

dest addr 2

src/dest port 2

seq num 2

src addr 2

dest addr 1/2

src/dest port 1/2

seq num 1/2

src addr 1/2

payload 1/2

Encoder

(a) Sequence numbering

dest addr 1

src/dest port 1

seq num 1

src addr 1

payload 1

dest addr 2

src/dest port 2

seq num 2

src addr 2

payload 2

hash 1

hash 2

dest addr 1/2

src/dest port 1/2

seq num 1/2

src addr 1/2

payload 1/2

Encoder

(b) Hashing

Figure 6. Comparison of packet identification for two TCP packets
using sequence numbering and hashing. Gray fields are encoded and,
hence, cannot be used for identification. Note that TCP/IP header fields
that are not relevant for packet identification have been left out.

Figure 7. Time to collision tC depending on used identifier length
for two TCP flows being jointly encoded. The identifier includes the
flow and packet identification for sequence numbering (S) and, as flow
identification is not required anymore, just the packet identification for
hashing (H). R = 1Gbit/s, P = 438 byte, p = 10−6.

packet size synchronization. Packet rate synchronization

enables the NC system to encode two flows with different

(instantaneous or mean) packet or data rates. During the

packet size synchronization, packets are fragmented or

aggregated to create packets of the same size. Fragmen-

tation is necessary at this point as the additional header

carrying the packet identifiers might increase the encoded

packet’s size beyond the outgoing interface’s Maximum

Transfer Unit (MTU).

All packets that are produced by this synchronization

process are fed into the encoder. Figure 8 shows how

these components interact.

For two flows that are going to be synchronized, two

Figure 8. Components of the flow synchronizer. If the coding manager
decides that coding has to be applied, e.g., based on the output link
utilization, incoming packets are stored in the appropriate input queue
before they are passed to the aggregation/fragmentation unit. This unit
produces packet pairs of equal size.

corresponding input queues are instantiated. These queues

store all incoming packets of their associated flows. There

are two possibilities for a packet to be dequeued again:

both input queues’ fill levels have reached the coding byte

length lB or its maximum Time To Live (TTL) within the

queue tTTL has elapsed. These two parameters determine

the behavior and the output of the synchronizer.

Parameter lB defines the desired output packet size after

synchronization. This size should be chosen according to

(1) the additional overhead introduced by the encoder,

e.g., for packet identification as discussed in the previous

section, and (2) the MTU of the output network interface.

The optimal value to avoid fragmentation at the output in-

terface would be the interface’s MTU minus the overhead

added by the encoder.

The second parameter tTTL is required to support en-

coding flows with different mean data rates. Furthermore,

it avoids high packet delays in situations where packets

from the partner flow are missing and the required fill

level lB is not reached. In this case, available packets in

the queues are dequeued by the aggregation/fragmentation

unit for immediate processing.

There will be situations where coding is not required or

performs even worse than plain forwarding. E.g., XORing

two flows even if the output link is operated at very low

utilization usually does not make sense. In such situations,

the coding manager (Figure 8) can decide to bypass the

whole synchronization and coding process.

Another special handling for an arriving packet is

required when the packet’s appropriate input queue is full.

As packet loss before the bottleneck, i.e., caused by the

encoding process, should be avoided in any case, packets

should be sent out uncoded in this situation instead of

dropping them before the encoder. There are multiple

options to achieve this. The simplest one that avoids

packet reordering is to dequeue head packets of the queue

such that the arriving packet fits into the queue; the

dequeued packets bypass the encoding process and are

forwarded uncoded.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 877

© 2009 ACADEMY PUBLISHER

2) Packet processing in detail: Whenever a packet

arrives at the synchronization/encoding node, the function

ENCODERRECEIVEPACKET is executed with the received

packet as parameter. This function is shown in Algo-

rithm 1.

Algorithm 1 ENCODERRECEIVEPACKET(pkt)
fid← EXTRACTFLOWID(pkt)
q ← GETINPUTQUEUE(fid)
// simple coding manager
if LENGTH(q) + LENGTH(pkt) > CAPACITY(q) then

FORWARD(pkt)
else

ENQUEUE(q, pkt)
STARTTTL(pkt, tTTL)

end if
// check queue fill levels
doCoding ← TRUE

for each input queue q do
if LENGTH(q) ≥ lB then

doCoding ← doCoding & TRUE

else
doCoding ← doCoding & FALSE

end if
end for
if doCoding then

// trigger synchronization and encoding
PREPARECODING()

end if

The first steps in ENCODERRECEIVEPACKET are to

determine the flow identifier and the corresponding input

queue for the incoming packet. Now, depending on the

queue length, the packet is either forwarded uncoded or

it is enqueued for later encoding (cp. Coding Manager in

Figure 8). Thereafter, the input queue lengths are checked.

If all lengths are larger than the required fill level for

encoding lB, the encoding process is triggered by calling

ENCODERPREPARECODING. This method is also invoked

in case the timeout tTTL has elapsed for any packet in the

queues.

The method ENCODERPREPARECODING performs the

actual flow synchronization and passes two packets of

equal size to the encoder. This is done by choosing “data

chunks” of both input flows from the fragment buffer and

from the input queues. The selection of chunks is done in

the following order until the total size of all chosen parts

is exactly lB:

1) Complete fragments (from fragment buffer)

2) Fragment of fragment (from fragment buffer)

3) Complete packet (from input queue)

4) Fragment of packet (from input queue)

This order has the advantage that packets are not

delayed unnecessarily and packets are only fragmented

if required.

ENCODERPREPARECODING is shown in detail in Al-

gorithm 2. Note that the pseudo code assumes that all

queues and buffers are filled. Handling of special cases is

omitted.

Algorithm 2 ENCODERPREPARECODING()
for each input queue q do

v ← {} // vector for selected data chunks
lv ← 0 // byte length of v
f ← GETFRAGMENTQUEUE(q) // fragment buffer
// step 1: check for complete fragments
while lv + LENGTH(HEAD(f)) ≤ lB do

frag ← DEQUEUE(f)
APPEND(v, frag)
lv ← lv + LENGTH(frag)

end while
// step 2: check for fragment of fragment
frag ← DEQUEUE(f)
lrem ← lB − lv // remaining byte length
frag1← CUT(frag, 0, lrem)
frag2← CUT(frag, lrem, LENGTH(frag)− lrem)
APPEND(v, frag1)
ENQUEUEFRONT(f, frag2)
// step 3: check for complete packets
while lv + LENGTH(HEAD(q)) ≤ lB do

pkt← DEQUEUE(q)
STOPTTL(pkt)
APPEND(v, pkt)
lv ← lv + LENGTH(pkt)

end while
// step 4: check for fragment of packet
pkt← DEQUEUE(q)
STOPTTL(pkt)
lrem ← lB − lv // remaining byte length
frag1← CUT(frag, 0, lrem)
frag2← CUT(frag, lrem, LENGTH(pkt)− lrem)
APPEND(v, frag1)
ENQUEUE(f, frag2)
// pass collected chunks to encoder
SENDTOENCODER(v)

end for

C. Encoding

The actual encoder module is straightforward. It re-

ceives packets from the synchronizer and encodes these

packets, i.e., calculates their XOR value in our case. This

operation is illustrated in Figure 9.

Figure 9. Two input packets are jointly encoded. The resulting packet
contains the XORed content and the (hash) identifiers of the packets
used for encoding.

In case the processing of the input queues at the

synchronizer has been triggered by an elapsed TTL, both

packets to be encoded can have different sizes as all

packets in the queues have simply been flushed. The

encoder handles such different packets by filling the

shorter packet with zeros prior to encoding.

In addition to the encoded payload, an additional header

is added to the output packet that contains information

about the packets and fragments used for encoding. This

header will be discussed in detail in Section III-E.

878 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

D. Decoding

The decoder module requires slightly more function-

ality than the encoder as it must be able to undo the

fragmentation introduced by the synchronizer.

To deliver both flows in the original form, both the

uncoded and coded flow have to be buffered. The resulting

data flow is illustrated in Figure 10.

Figure 10. Incoming encoded packets and plain packets required for
decoding are buffered and decoded whenever possible. The buffer also
contains decoded fragments that cannot be fully assembled at this time.

Each arriving packet is inspected by the decoder to

determine whether this packet is required for the decoding

process or not. If not, i.e., it is not encoded and is not

a packet from a flow used for encoding, it is forwarded

to the upper layer. Otherwise, the packet is stored in the

fragment buffer. Uncoded packets that have been used

for encoding are not only stored in the buffer but are also

immediately forwarded to the upper layer.

The decoder checks for decoding possibilities when

a new fragment is added to the buffer. If there are

enough fragments to decode an encoded packet, the actual

decoding operation is triggered and the fragments which

will not be required anymore for further decoding are

removed from the buffer. Furthermore, if the result of

a decoding operation just delivers a fragment of a plain

packet, this fragment is also stored in the fragment buffer

until the whole decoded packet can be delivered. The

basic decoding process is given in Algorithm 3.

Algorithm 3 DECODERRECEIVEPACKET(pkt)
STOREINBUFFER(pkt)
// try to decode packets
for each encoded pktE in buffer do

DECODEPARTIAL(pktE)
// decoded fragments will be stored in buffer, too

end for
// try to assemble decoded fragments in buffer
ASSEMBLEFRAGMENTS()

There might be situations where encoded packets can-

not be decoded completely because some plain packets

required for decoding (key packets) are already available

and some are not. In this case, decoding just the part that

already can be decoded at this time might be beneficial

to reduce delay. We call this partial decoding as depicted

in Algorithm 4.

Algorithm 4 DECODEPARTIAL(pktE)
for each packet pktO encoded in pktE do

// check for required key packets
pktkey[]← GETKEYPACKETSFROMBUFFER(pktO)
if all key packets are present then

// do actual decoding
pktD ← DECODE(pktO, pktkey[])
if pktD is a fragment then

STOREINBUFFER(pktD)
// try to assemble decoded fragments in buffer
ASSEMBLEFRAGMENTS()

else
SENDTOUPPERLAYER(pktD)

end if
end if

end for

E. A packet life example

To illustrate the interaction of the proposed mecha-

nisms, this section steps through the life of some packets

that pass the synchronization and encoding process.

All figures in this section show a graphical and textual

representation of either the encoder node’s input queue or

the resulting encoded packets, respectively. Additionally,

the configured coding byte length lB is drawn next to the

graphical representations.

At the beginning, all input queues and the fragment

buffer are empty. Thereafter, five packets arrive at the

encoding node; three of them belonging to the first flow

and two to the second flow to be encoded. All of them are

enqueued to the appropriate input queues. This situation in

depicted in Figure 11; it happens before any TTL timeout

expires. The queues grow from left to right.

flow id size hash

1 572 925d7518
1 40 382e6ace
1 572 511e91fb

2 40 fe3f401c
2 1496 f4763667

Figure 11. Input queues after first packet arrival.

Both queue fill levels exceed the required length of lB
to start encoding. Thus, the synchronization process is

triggered to be able to produce an encoded packet. The

resulting synchronized packets are shown in Figure 12.

The textual representation of the encoded packet con-

tains two offsets. The first, offsetE , denotes the end of a

packet/fragment within the encoded packet. It allows the

decoder to exactly identify the position of each encoded

packet for decoding. The second, offsetO, has similar

semantics but describes from which part of an original

packet a given fragment was taken. Furthermore, offsetO
plays an important role at the decoder: A value of 0

signals that the packet has not been fragmented and can

be decoded immediately. If the value is negative, it marks

a fragment as the last one of the corresponding original

packet. Hence, the decoder is able to determine for a

received fragment whether it has already received all

remaining fragments of the original packet or not.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 879

© 2009 ACADEMY PUBLISHER

flow id 1

offsetE hash offsetO
572 925d7518 0
612 382e6ace 0
1096 511e91fb 484

flow id 2

offsetE hash offsetO
40 fe3f401c 0
1096 f4763667 1056

Figure 12. Synchronized packets that will be used for the first encoded
packet. The information contained in the table is also added to the
encoded packet’s header to permit later decoding.

Note that, thanks to the partial decoding algorithm, the

decoder for flow 2 will be able to decode packet fe3f401c

by only using the key packet 925d7518 of flow 1.

In addition to sending out the encoded packet, the

encoder stores the remaining fragments of the packets

that have been cut in the fragment buffer. The buffer’s

content is given in Figure 13.

flow id size hash

1 88 511e91fb

2 440 f4763667

Figure 13. Contents of fragment buffer after synchronization.

Now, assume that the packet arrival rates for both flows

decrease and the encoder only receives one additional

packet for each flow before tTTL expires. The resulting

input queues are shown in Figure 14.

flow id size hash

1 40 7ff13585

1 572 c2b7dae3

2 572 3b6f16a7

Figure 14. Input queues after second packet arrival.

As tTTL has expired, the encoder is forced to trigger

the synchronization and coding process although lB is not

reached yet to avoid further delay. Figure 15 depicts the

resulting synchronized packets that are encoded.

Note that both fragments 511e91fb and f4763667 are

marked with a negative offsetO so the decoder recognises

that it has received all fragments for both original packets.

flow id 1

offsetE hash offsetO
88 511e91fb -572
128 7ff13585 0
700 3b6f16a7 0
1012 zero fill

flow id 2

offsetE hash offsetO
440 f4763667 -1496
1012 3b6f16a7 0

Figure 15. Synchronized packets that will be used for the second
encoded packet. The missing data for flow 1 is filled with zeros.

IV. EVALUATION

The proposed mechanisms have been evaluated by

simulation. The system model and the observed results

are discussed in the following subsections.

A. System model

To evaluate the proposed flow synchronization mech-

anisms, we implemented our algorithms in a simulator.

This simulator is based on OMNeT++ 4.0 [13], a discrete

event simulation system written in C++. In addition, we

use the INET framework [14], version INETMANET-

20080920B, which provides ready-to-use implementa-

tions of the IEEE 802.3 Ethernet link layer. All modi-

fications described in the following are done on top of

this Ethernet link layer.

1) Topology: We use a simple butterfly topology to

transport two multicast flows. It consists of seven nodes

and is depicted in Figure 16. The data sources have been

implemented within a single node (A) for simplification;

nodes F and G are the data sinks. All remaining nodes

(B, C, D, E) are routers.

The links between nodes are identically parametrized.

They are error-free, have a capacity of 10MBit/s, and add

a packet delay of 10ms.

B C

E

D

F G

A

Figure 16. Simulated butterfly topology. Node A sends two multicast
flows to the destinations F and G. Encoding will be done at D.

2) Nodes: Each node in the scenario contains an

Ethernet Link Layer (LL), consisting of an IEEE 802.3

MAC and Link Layer Control (LLC) sublayer. The output

queues between the link layers and the Network Interface

Cards (NICs) are all drop-tail queues and have a capacity

of 4380 byte. This capacity corresponds to 10 packets of

the mean packet size, using the traffic model described

later on.

Depending on the node type (source, sink, or router),

there are several “applications” on top of the LL that

perform the desired actions. The source node (A) contains

three traffic generators. One for the foreground traffic

that is encoded at router D later on and one additional

generator for each link’s background traffic. Background

traffic is always of Self-Similar/Long-Range-Dependent

(SSLRD) type, whereas for the foreground traffic different

traffic types are evaluated. Both foreground generators are

configured to send data at the same mean data rate.

The sink nodes (F, G) instantiate a single decoder

application which decodes encoded packets and delivers

uncoded packets. This decoder does not reorder arriving

packets nor does it check for correctness of received pack-

ets. These tasks are delegated to a higher-layer protocol.

880 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Routers (B, C, D, E) contain a routing application that

performs routing and coding decisions. The decision how

an incoming packet is treated depends on the packet’s

flow identifier. In this simulation, the identifier is just

an integer, contained in each packet. Figure 17 shows a

sample routing table of Router D.

XOR-coded transmission

1 000000000600,2,code_xor

2 000000000600,2,code_xor

Figure 17. Sample routing table for router D. Flows 1 and 2 are
jointly encoded using an XOR encoder. Resulting packets are sent with
destination MAC address 00:00:00:00:06:00 (router E) via interface 2.

Like the source nodes, each router contains a back-

ground traffic generator for each of its interfaces to

represent local traffic.

To get implementation-independent results, the time

required for data operations, like encoding or decoding,

is not taken into account during the simulation.
3) Packet preprocessing: To get an impression about

the power of the proposed flow synchronization technique

we evaluate two alternative packet processing techniques:

Simple NC and Packet Length Matching (PLM) NC.
a) Simple NC: Packets of the data flows to be

encoded are not synchronized. Resulting packet pairs

(heads of the input queues) are encoded regardless of

their lengths. Eventually, length differences are padded

with zeros.
b) PLM NC: Packets of the data flows to be encoded

are not synchronized either. Packet pairs, however, are

chosen from the input queues such that their length

difference is minimized. Just like flow synchronization,

PLM NC uses a TTL timer for packets in input queues

to avoid starvation.
4) Traffic model: The traffic generators we used in

our simulations have basically two parameters: the packet

inter-arrival time and the packet size. In the Internet,

one can usually find just three characteristic packet

sizes – 40 bytes (60%), 572 bytes (20%), and 1496 bytes

(20%) [10]. This trimodal distribution is caused by the

MTUs of popular transport technologies and TCP ac-

knowledgments.

For the inter-packet times we evaluated three different

models: Constant Bit Rate (CBR), Exponential (EXP),

and Self-Similar/Long-Range-Dependent (SSLRD) traf-

fic. CBR or EXP traffic is trivial to implement but repre-

sents only a minority of data flows in the current Internet,

like Voice over IP (VoIP) or video streaming. SSLRD

traffic is bursty and models, e.g., aggregated TCP flows.

Generating SSLRD traffic is a bit more complex. We

used the Fractional Gaussian Noise (FGN) method [15]

with exponentially distributed inter-packet times within

the batches, Hurst parameter H = 0.7, and variance

V = 75. These parameters are chosen according to [15].

The batch length is set to the duration of sending 100

packets at the desired mean data rate.

The main parameter related to the generated traffic is

the relative pre-coding bottleneck load. This factor defines

the ratio of the overall load passing the bottleneck link

to the bottleneck link capacity. Any coding mechanism is

disregarded for the calculation, i.e., load reduction on the

bottleneck due to coding is not included.

The second parameter concerning the traffic is the

fraction of overall traffic that is actually codeable. This

parameter heavily determines the achievable gain of NC.

5) Metrics: Depending on the application that runs

on top of the network, various figures of merit are of

interest. They can be categorized into two groups: end-to-

end metrics and intermediate metrics. For the end-to-end

metrics we only monitor one of the diagonal occurrences,

e.g., from A to F or from A to G, as both of them

deliver the same results due to symmetry of the topology.

We evaluate the following end-to-end metrics during our

simulation:

a) PSR: The Packet Success Rate (PSR) is the

fraction of packets sent by the source (A) that arrives

at the destination (F or G).

b) BSR: The Byte Success Rate (BSR) is the frac-

tion of bytes sent by the source (A) that arrives at the

destination (F or G). It is required in addition to the PSR

as the traffic model produces packets of different size. I.e.,

many small packets can produce a high PSR although the

throughput in terms of data volume is low.

c) EED: The End-to-End Delay (EED) is the time

that elapses from the point in time when a packet is sent

by the application at the source (A) until it arrives at the

sink at the destination (F or G).

d) Variance of EED: The variance of the EED

values as described above.

In addition to these metrics, we evaluated the following

non-end-to-end metrics to gain further insights into the

synchronization and coding mechanisms:

e) Fragments per plain packet: This is the average

number of fragments a plain packet is split into by the

flow synchronization process, i.e., the number of encoded

packets a plain packet is spread over.

f) Plain packets per coded packet: This is the aver-

age number of plain packets or fragments of plain packets

that are contained in a single encoded packet. Besides

the fragmentation behavior, this metric also gives an idea

about the additional overhead by the encoding process as

packet identifiers for each contained packet are required.

B. Results

Confidence intervals with a confidence level of 95%

have been calculated for all plots that are shown in the

following subsections. They are omitted in the plots due

to their small size and for the sake of clarity.

1) Performance comparison: To get a first overview of

the performance gains that can be achieved with NC using

our flow synchronization techniques, Figure 18 shows

the comparison of PSR, BSR, EED, and EED variance

for plain forwarding, NC with Packet Length Matching

(PLM), and NC flow synchronization (SYNC).

The plots clearly show that when data flows are not

identical in terms of packet size and rate NC without

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 881

© 2009 ACADEMY PUBLISHER

(a) PSR (b) BSR (c) EED (d) EED variance

Figure 18. Comparison of plain forwarding, simple NC, NC with PLM, and NC with flow synchronization (FSYNC). For BSR and EED, theoretical
bounds are shown additionally. EED for simple NC is omitted due to its high variance. SSLRD traffic, C = 0.95, tTTL = 1ms, lB = 1296 byte.

flow synchronization is no real alternative to plain packet

forwarding. Especially the EED varies heavily throughout

the evaluated load range and has a mean of 58ms. In

contrast, when using the proposed flow synchronization

technique, NC outperforms plain forwarding in terms of

PSR, BSR, EED, and EED variance throughout nearly the

whole evaluated load range.

The behavior of the NC scheme with PLM differs for

the evaluated metrics. While it is even better in terms of

PSR compared to flow synchronization, which is caused

by the missing packet aggregation before encoding, the

EED and its variance is comparable to forwarding. Re-

garding the BSR, PLM performs slightly worse than flow

synchronization. Note that this difference raises for other

synchronization parameters, as shown in the next section.

The BSR and EED plots also contain theoretical bounds

for NC and plain forwarding. The minimum possible EED

is the sum of the links’ propagation delays; the maximum

possible BSRs have been calculated based on the bottle-

neck link capacity. Whereas the BSR simulation results of

plain forwarding are just below the theoretical optimum,

all NC results are clearly below the possible optimum.

This is caused by the additional overhead introduced at

the encoder and ineffectiveness of the coding schemes.

2) Influence of synchronization parameters: The be-

havior of the flow synchronization process and, hence, the

trade-off between the achieved throughput and latency,

can be tuned via the two parameters tTTL and lB. The
influence of these synchronization parameters on the

three main metrics PSR, BSR, and EED is illustrated in

Figure 19.

The results confirm the expected trade-off between

throughput (PSR, BSR) and latency (EED). High through-

put also causes the EED to raise and is achieved for high

values of tTTL and lB. A large tTTL causes packets to

be collected over a long period of time at the encoder.

Hence, lB is usually the limiting factor that triggers the

synchronization and encoding process. Low values for

tTTL cause this process to be triggered before lb is reached
and, hence, cause the encoding to be more inefficient as

zero-filling is required.

The second parameter lB also influences the achieved

throughput. The reason is that large values reduce frag-

mentation during the synchronization process. This, in

turn, reduces packet dependencies for successfully decod-

ing an encoded packet as its probability of being spread

over multiple packets is reduced.

In sum, high throughput comes at the price of a high

packet delay due to buffering as both a high tTTL and a

high lb cause packets to be buffered for a longer time at

the encoder node.

An interesting effect occurs in Figure 19(c). Large

values for tTTL cause the EED variance (and the size of the

confidence intervals) to noticeably raise. This is caused

by the long duration over which packets are collected

at the encoder. All packets being jointly encoded arrive

at the same time at the decoder, i.e., bursts are created.

This is even worse at low values for lb. Here, the high

fragmentation ratio enforces this effect.

3) Influence of traffic properties: Another interesting

property of NC is the influence of traffic characteristics

towards the achieved NC performance. Figure 20 shows

the measured values for the PSR, BSR, and EED while

varying the traffic type (SSLRD, EXP, CBR) and the

fraction of codeable foreground traffic C.

According to the expectations, the higher the ratio C of

codeable traffic, the higher the benefits of NC. Both met-

rics PSR and] BSR show a similar qualitative behavior.

Concerning the traffic type, NC performs slightly better

when confronted with CBR traffic. The measurements

for SSLRD and EXP traffic are closely together where

SSLRD can be handled slightly better.

For the EED, the differences between the three traffic

types are even smaller than for the success rates. The

behavior depending on C can be explained by the higher

packet rate for large values of C. This, again, results in

shorter waiting times for packets in the input queues until

the required amount of data is available (lB is reached).

4) Packet fragmentation/aggregation: Our flow syn-

chronization technique applies fragmentation to deal with

882 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

(a) PSR (b) BSR (c) EED

Figure 19. Influence of synchronization parameters tTTL and lB on the three main metrics PSR, BSR, and EED; SSLRD traffic, C = 0.95.

(a) PSR (b) BSR (c) EED

Figure 20. Influence of traffic type (CBR, EXP, SSLRD) and fraction of codeable traffic C on PSR, BSR, and EED; tTTL = 1ms, lB = 1296 byte.

arbitrary data flows and diverse transmission technologies.

Fragmentation, however, makes packets more vulnerable

to packet loss as multiple sub-packets have to be delivered

to successfully deliver the original packet. Hence, it is

desirable to keep the rate of fragmented packets low.

We measured the average number of fragments that are

created from one plain packet during the flow synchro-

nization process. The results are depicted in Figure 21(a).

The plot shows that fragmentation occurs for less than

1% of the 40 bytes packets and for less than 10% of

the 572 bytes packets. In contrast to this small amount,

packets of size 1496 bytes are always split into two

fragments due to the simulated MTU of 1496 bytes.

On the other hand, the flow synchronization algo-

rithm aggregates packets to increase NC benefits (cp.

Figure 19). The average number of plain packets from

both flows that are jointly encoded depending on the

synchronization parameters is depicted in Figure 21(b).

For small values of tTTL and lB the number of plain

packets per encoded packet is nearly independent of the

bottleneck load as already few packets are sufficient to

trigger the encoding process. Large values of the two

parameters cause the number of packets per encoded

packets to grow. Furthermore, the number grows with the

amount of bottleneck load as more packets arrive within

the time interval tTTL.

V. CONCLUSIONS

Based on these results, we can conclude that (1) flow

synchronization is necessary to benefit from random and

deterministic NC in real networks and (2) our approach,

presented in this paper, fulfills this synchronization task

as expected. We have overcome the restriction that NC

benefits can only be achieved for flows with equal and

constant bit rates and equal packet sizes.

The evaluation shows that the performance of deter-

ministic, linear NC in terms of PSR, BSR, and EED

decreases only insignificantly for EXP and SSLRD traffic

with varying rates compared to simple CBR traffic. This

makes NC attractive for many new application scenarios,

like applying NC in core networks to increase resilience,

that were impossible to realize before due to the strict

input traffic requirements.

Furthermore, compared to plain forwarding, NC with

our flow synchronization clearly performs better in terms

of PSR, BSR, and EED variance, while showing compa-

rable EED behavior. There is a trade-off between latency

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 883

© 2009 ACADEMY PUBLISHER

(a) Average no. of fragments re-
sulting from packets of size P .
At P = 1496 bytes, the fragment
count is always 2. tTTL = 1ms,
lB = 1296 byte.

(b) Average no. of plain packets
or fragments of plain packets per
coded packet. The colors and line
styles are identical to those in
Figure 19.

Figure 21. Behavior of packet fragmentation and packet aggregation in
the evaluated load interval; SSLRD traffic, C = 0.95.

and throughput that can be adjusted via the synchroniza-

tion parameters. This adjustability enables to adapt the

NC behavior to the needs of encoded flows.

In the future, we will extend our synchronization

scheme to support adjusting the level of packet aggrega-

tion. This feature avoids loosing small packets, like TCP

acknowledgments, under high load (cp. Figure 18) and

avoids retransmission of large data packets caused by lost

control packets. In this context, we will also evaluate the

influence of NC towards today’s transport protocols, like

TCP, and their congestion avoidance mechanisms.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung,
“Network information flow,” Information Theory, IEEE
Transactions on, vol. 46, pp. 1204–1216, 2000.

[2] C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network
coding: An instant primer,” SIGCOMM Comput. Commun.
Rev., vol. 36, no. 1, pp. 63–68, 2006.

[3] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network cod-
ing,” Information Theory, IEEE Transactions on, vol. 49,
no. 2, pp. 371–381, Feb. 2003.

[4] C.-C. Wang and N. B. Shroff, “Beyond the butterfly
– a graph-theoretic characterization of the feasibility of
network coding with two simple unicast sessions,” in Proc.
IEEE International Symposium on Information Theory,
June 2007.

[5] ——, “Intersession network coding for two simple multi-
cast sessions,” in 45th Allerton Conference on Communi-
cation, Control and Computing, 2007.

[6] T. Biermann, Z. A. Polgar, and H. Karl, “Cooperation and
coding framework,” in Proc. International Workshop on
the Network of the Future (Future-Net), June 2009.

[7] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft, “XORs in the air: Practical wireless network
coding,” Networking, IEEE/ACM Transactions on, vol. 16,
no. 3, pp. 497–510, June 2008.

[8] T. Biermann, A. Schwabe, and H. Karl, “WIP: Creating
butterflies in the core – a network coding extension for
MPLS/RSVP-TE,” in Proc. IFIP/TC6 Networking 2009,
May 2009.

[9] E. H. McKinney, “Generalized birthday problem,” Ameri-
can Mathematical Monthly, vol. 73, pp. 385–387, 1966.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and S. Diot, “Packet-
level traffic measurements from the Sprint IP backbone,”
Network, IEEE, vol. 17, no. 6, pp. 6–16, Nov. 2003.

[11] E. Biham and O. Dunkelman, “A framework for iterative
hash functions – HAIFA,” in Second NIST Cryptographic
Hash Workshop, 2006.

[12] J.-P. Aumasson, W. Meier, and R. C. Phan, “The hash
function family LAKE,” in Fast Software Encryption: 15th
International Workshop, FSE. Springer-Verlag, Feb. 2008,
pp. 36–53.

[13] A. Varga et al., “OMNeT++ discrete event simulation
system.” [Online]. Available: http://www.omnetpp.org/

[14] INET Community, “INET framework for OMNeT++.”
[Online]. Available: http://inet.omnetpp.org/

[15] V. Paxson, “Fast, approximate synthesis of fractional gaus-
sian noise for generating self-similar network traffic,”
SIGCOMM Comput. Commun. Rev., vol. 27, no. 5, pp.
5–18, 1997.

Thorsten Biermann is currently a Ph.D. candidate at the Research
Group Computer Networks of the University of Paderborn, Paderborn,
Germany. He received his Diploma and BS degrees in computer science
from the University of Paderborn, in 2008 and 2006, respectively.

His research interests include Future Internet technologies with focus
on practical network coding and wireless cooperation techniques. Cur-
rently, he is working in the European Union research project 4WARD.

Martin Dräxler received his BS degree in computer science from the
University of Paderborn, Paderborn, Germany, in 2009.

Currently, he is a student assistant at the Research Group Computer
Networks, University of Paderborn.

Holger Karl studied computer science in Karlsruhe, Germany, and at
the University of Massachusetts, Amherst, USA, and received his Ph.D.
degree from the Humboldt University of Berlin, Berlin, Germany, in
1999. He was an Assistant Professor at the Technical University Berlin,
Berlin, Germany.

He is a Full Professor of computer science at the University of Pader-
born, Paderborn, Germany and head of the Research Group Computer
Networks, which concentrates on Internet and wireless communication.
His main research interests are architectural questions for future mobile
communication systems, cross-layer optimization, and wireless sensor
networks.

884 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

