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Abstract— Network coding in wired networks has been
shown to achieve considerable throughput gains relative
to traditional routing networks. For wireless multihop net-
works however, the ergodic capacity is unknown. In this
context, the scaling of capacity with the number of nodes
(n) has recently received increasing attention. While existing
works mainly focus on networks with n source-destination
pairs, this paper deals with capacity scaling in any-to-
any wireless links, where each node communicates with
all other nodes. Complex field network coding (CFNC) is
adopted at the physical layer to allow n nodes exchanging
information with simultaneous transmissions from multiple
sources. As n increases, a hierarchical CFNC-based scheme
is developed and shown to achieve asymptotically optimal
quadratic capacity scaling in a dense network, where the
area is fixed and the density of nodes increases. This is
possible by dividing the network into many clusters, with
each cluster sub-divided into many sub-clusters, hierarchi-
cally. As a result, information is transmitted on multi-input
multi-output based multiple access channels and broadcast
channels. When generalized to extended networks, where the
density of nodes is fixed and the area increases linearly with
n, the hierarchical CFNC scheme is shown to scale as n3−α/2

for a path loss exponent α ≥ 2, which is asymptotically
optimal when α < 3.

Index Terms— Capacity scaling, hierarchical transmis-
sion, complex field network coding, multi-input multi-output
(MIMO), multiple access channel (MAC), broadcast channel
(BC).

I. INTRODUCTION

With the emergence of network science, capacity scal-
ing laws in large ad-hoc wireless networks have attracted
growing interest, since the exact ergodic capacity of wire-
less multihop networks is unknown. Gupta and Kumar
first studied the scenario where n nodes are randomly
located in the unit disk and each node communicates with
a random destination node at a rate R(n) bits/second [1].
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The problem was to assess how fast the total network
capacity increases with n, i.e., the maximally achievable
scaling of the total capacity C(n) = nR(n). The results
in [1] and [2] established that a multihop architecture
with conventional single-user decoding and forwarding of
packets can achieve C(n) at most O(

√
n), and the same

scaling can be achieved by a scheme using only nearest-
neighbor communication.

Different from the dense network in [1], where the total
area is fixed and the density of nodes increases, many
subsequent works dealt with extended networks, whose
size grows to cover an increasing area with the density
of nodes remaining fixed. After successive refinements,
the nearest-neighbor multihop scheme was shown to be
order-optimal whenever the power path loss exponent α
is greater than 3, after bounding the maximum transmit
power in the network [3]–[9].

Recently, a scheme based on hierarchical cooperation
and distributed multi-input multi-output (MIMO) commu-
nication was developed to identify the scaling laws of
random ad hoc networks for any path loss exponent α ≥ 2
[9]. For dense networks, [9] established that the total
capacity scales linearly with n. For extended networks,
this capacity scales as n2−α/2 for 2 ≤ α < 3 and

√
n

for α ≥ 3. Hence, a better scaling than multihop can
be achieved in dense and extended networks under low
attenuation.

The Gupta-Kumar model assumes that the signals re-
ceived from nodes other than the source constitute inter-
ference that is regarded as noise degrading the communi-
cation link. Under this assumption, direct communication
between source and destination pairs is not preferable,
as the interference generated discourages most other
nodes from communicating. Complex field network cod-
ing (CFNC), however, allows multiple users to transmit
simultaneously to a destination after precoding, which
turns destructive interference into a constructive signal
[10]. This motivates the present paper’s utilization of
CFNC to achieve an improved capacity scaling law.

When traditional Galois field network coding (GFNC)
is employed by random networks with n source-
destination pairs, compared to the scheme in [1], there is
only a constant (as opposed to a scaling) gain [11], [12].
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Fig. 1. An ad hoc wireless network.

In contrast, this paper establishes that CFNC achieves
asymptotically optimal capacity scaling in a wireless
network, where each node transmits to all other nodes.
This any-to-any connectivity appears often in both tactical
and commercial ad hoc networks, as illustrated in Fig. 1.

The results here apply to both dense and extended
networks, which correspond to interference limited and
coverage limited regimes, respectively. As the distributed
MIMO scheme of [9] does not attain a desirable capacity
scaling in a network with n2 source-destination pairs,
the CFNC-based hierarchical scheme here divides the
network (or sub-network) into multiple clusters in each
layer of the hierarchy. Each layer includes five transmis-
sion phases, which entail MIMO multiple access (MAC)
and MIMO broadcast (BC) channels [13]–[16]. CFNC
is used to overcome the interference during simultane-
ous transmissions in MIMO-MAC and MIMO-BC. The
number of clusters M per layer is critical to the total
capacity scaling, which is now defined as C(n) = n2R(n)
for the n2 pairing network. With M increasing slowly
as n increases, the 5-phase scheme achieves a capacity
scaling of order O(n2−ε) in dense networks, for any
ε > 0. As the capacity scaling is upper-bounded by
O(n2 log n), this scheme is nearly optimal. Moreover, the
associated capacity scaling exponent approaches the upper
bound as n grows large, which justifies the asymptotic
optimality claim. For extended networks, a bursty version
of the 5-phase scheme achieves a capacity scaling of
O(n3−α/2−ε), for any ε > 0, which is also asymptotically
optimal when α < 3.

The rest of this paper is organized as follows. Section II
introduces the model and pertinent assumptions; upper
and lower bounds of the capacity scaling are developed
in Section III; a simple CFNC scheme for information
exchange within one cluster is described in Section IV;
Section V introduces a hierarchical CFNC scheme which
is asymptotically order-optimal in dense networks; Sec-
tion VI considers extended networks and conclusions are
summarized in Section VII.

Notation: Upper and lower case bold symbols denote
matrices and column vectors, respectively; (·)T de-
notes transpose; (·)H Hermitian transpose; CN (0, σ2) the
circular symmetric complex Gaussian distribution with
zero mean and variance σ2; for a random variable γ,
E[γ] denotes its mean; C(n) = O(nt) means that
limn→∞ C(n)/nt = K, for some bounded constant K >
0.

II. MODELING

Consider n nodes uniformly and independently dis-
tributed in a square of unit area in dense networks (Sec-
tions III–V), or, a square of

√
n×√

n area when dealing
with extended networks (Section VI). Any node can be the
source of information to all other nodes, and at the same
time, any node can be the destination of all source nodes.
Hence, there can be n(n− 1) possible source-destination
pairs in total. Suppose that each source has the same
traffic rate to send to its destination node and a common
average transmit power budget of P Joules per symbol.
The overall network throughput is C(n) = n(n−1)R(n),
where R(n) is the achievable rate per source-destination
pair. For simplicity in exposition, suppose that every node
is also the destination for itself, that is C(n) = n2R(n)
from now on.

We assume that wireless communication takes place
over a flat channel of bandwidth W Hertz around a carrier
frequency fc with fc � W . The complex baseband-
equivalent channel gain between node i and node k at
time slot m is given by

Hik[m] =
√

Gr
−α/2
ik exp(jθik[m]) (1)

where rik is the distance between nodes, θik[m] denotes
random phase at time m, uniformly distributed in [0, 2π]
and {θik[m]}n

i,k=1 is a collection of independent and
identically distributed (i.i.d.) random processes. Variables
θik[m] and rik are also assumed independent, while the
gain G and the path-loss exponent α ≥ 2 are assumed
constant.

Note that the channel is random and depends on the
location of nodes and the channel phases. The locations
are assumed to be fixed, while the phases are allowed
to vary in a stationary ergodic manner (fast fading). All
channel gains are assumed available to all nodes. The
signal received by node i at time m is

Yi[m] =
n∑

k=1

Hik[m]Xk[m] + Zi[m] (2)

where Xk[m] stands for the symbol sent by node k at
time m and Zi[m] ∼ CN (0, σ2).

The path-loss model applies to a far-field scenario,
where the distance is assumed much larger than the carrier
wavelength. When the distance is in the order or shorter
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than the carrier wavelength, the simple path-loss model no
longer holds, since path loss can potentially become path
“gain”. The phase θik[m] depends on the distance between
the nodes modulo the carrier wavelength. This random-
phase model also fits a far-field scenario because node
separation is at a much larger spatial scale compared to
the carrier wavelength; hence the phases can be modeled
as completely random and independent of the actual
positions. In addition, a line-of-sight type environment is
assumed and multi-path effects are ignored. Nevertheless,
the ensuing results can be extended to the multi-path case
if multi-carrier modulation is adopted.

III. CAPACITY SCALING

Capacity scaling quantifies how fast the information-
theoretic capacity increases with the network size n. The
pertinent metric is provided by the scaling exponent e(n),
which is defined as

e(n) := lim
n→∞

log C(n)
log n

. (3)

In networks for which the exact capacity expression is not
available, capacity scaling reveals how much throughput
gain one can expect as the network size grows. This in
turn delineates the tradeoff between throughput gain and
deployment cost, which is critical for the network design.

A. Upper Bound

This section provides an information-theoretic upper
bound on the achievable scaling law for the aggregate
throughput in the network model of Section II. Before
pursuing practical communication strategies, the follow-
ing theorem establishes the best one can hope for.

Theorem 1: The aggregate throughput in the dense
network is bounded above by

C(n) ≤ K ′n2 log n

with high probability (i.e., with probability going to 1 as
n grows) for some constant K ′ independent of the number
of nodes n.

Proof: For each pair, the transmission rate R(n)
from source node to destination node is upper-bounded by
the capacity of the single-input multiple-output (SIMO)
channel between the source node and the rest of the
network. From [9, Thm. 3.1], it follows that R(n) ≤
K ′ log n, with some constant K ′ independent of n, for
all source-destination pairs in the network with high
probability. Hence, Theorem 1 follows readily since there
are n2 source-destination pairs in the present setup.

Now let us consider an unrealistic example which
achieves this upper bound by capitalizing on standard
properties of wireless communications, namely: (p1) om-
nidirectional transmissions, (p2) interference due to si-
multaneous transmissions from different sources, and (p3)

the half duplex constraint, which disallows simultaneous
packet transmission and reception by any node (due to
the constraint that nodes are equipped with a single
transceiver). If one could bypass constraints p2 and p3,
then all n nodes in the network would be allowed to
broadcast together, while at the same time, each node
would receive the messages from all other nodes. One
can easily verify that each source-destination pair in
such a scheme freed from p2 and p3, achieves capacity
scaling R(n) = O(1), implying a total capacity scaling
of C(n) = O(n2), with scaling exponent e(n) = 2. We
will term this kind of scheme asymptotically optimal, as
the scaling exponent difference from the upper bound of
Theorem 1 is just ε(n) = logn(log n), which disappears
as n increases to infinity.

B. Lower bound

Having envisioned an asymptotically optimal scheme
that is too ideal to be true, one is motivated to look also
for lower bounds on the capacity scaling. To this end,
notice first that any realistic scheme obviously yields an
achievable rate scaling, which at the same time provides
a lower bound on the capacity scaling of the wireless net-
work. Furthermore, the hierarchical cooperation scheme
introduced by [9], which achieves the asymptotically
optimal capacity scaling in a network of n pairs, does
not lead to an asymptotically optimal capacity scaling in
the network of n2 pairs considered here. Actually, when
the hierarchical cooperation scheme in [9] is modified to
apply in the network of n2 pairs, the capacity scaling is
still linear: C(n) = O(n) [17].

For the lower bound, the main result of this paper can
be summarized as follows:

Theorem 2: With α ≥ 2 and for any ε > 0, there
exists a constant Kε > 0 independent of n such that with
high probability, the aggregate throughput

C(n) ≥ Kεn
2−ε

is achievable by the dense network model with n2 source-
destination pairs.

Theorem 2 asserts that the achievable capacity scaling
can come arbitrarily close to the upper bound of Theorem
1, i.e., one can devise an asymptotically optimal scheme
in the wireless network with n2 pairs. Instrumental to
proving Theorem 2 is to show that the interference
property p2 can be mitigated with cooperation among
nodes using the complex field network coding (CFNC)
approach introduced in [10] to achieve high throughput
and the maximum diversity gain provided by the wireless
network.

The proof of Theorem 2 relies on the construction of an
explicit scheme that realizes the promised scaling law. But
before that, it is useful to consider the simple transmission
scheme of the ensuing section, which is based on CFNC.
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Fig. 2. Information exchange without a common destination in one
cluster.

Fig. 3. The constellation received at R in a CFNC-based 2-source
1-relay network with BPSK.

IV. INFORMATION EXCHANGE WITHIN ONE CLUSTER

The information exchange scheme in [10] can be
modified to the scenario where there are M − 1 nodes
{Si}M−1

i=1 , exchanging information with the help of one
relay node R yet without any common destination. This
motivates the scheme we will develop to achieve the
asymptotically optimal capacity scaling in Theorem 2.

A. Information Exchange without a Common D

Consider a cluster of M − 1 sources exchanging infor-
mation without a common destination. As illustrated in
Fig. 2, each transmission takes place over two time slots,
during which the input-output channel relationships are

ySR = θT
IEHSRx + nSR (4)

yRSi = hRSiθ
T
IEx̂ + nRSi (5)

where x̂ is the estimate of the source’s information block
x and the row vector θT

IE denotes the linear CFNC
precoder as in the information exchange (IE) scheme of
[10].

In the IE scheme, every source knows its index and
the channel state information (CSI) of the Si ↔ R link
(hSiR) is available at both Si and R. This is possible e.g.,
when the Si ↔ R channels are reciprocal: hSiR = hRSi .
The transmission of Si can be channel adaptive in order to
e.g., (i) cancel (or control) the phase of hSiR; (ii) cancel
(or control) the fading magnitude |hSiR|; and (iii) perform
symbol level synchronization with other sources.

Consider the Si → R links in a simple 2-source 1-
relay setup, where CFNC is applied to BPSK symbols.
Without loss of generality, suppose that |hS1R| ≥ |hS2R|

and the phase of hS1R is 0 since R can always cancel
the phase of hS1R. The constellation received at R is
depicted in Fig. 3, where θ depends only on the phase
θhS2R

, as θ = π − (θhS2R
+ 3π/4) [18]. It is easy to see

that θ = π/2 maximizes the minimum Euclidean distance
(MED) between received symbols. Since each source
node only knows the link between itself and the relay,
the transmit power can be optimized at each individual
source accordingly.

For a cluster comprising M2 pairs, the IE scheme
provides a means to achieve scaling of order O(M2/2)
using CFNC at the physical layer [10]. Since the focus
is on capacity scaling and the fading channels are i.i.d.,
it is possible to set the average power budget equal
across nodes. Assuming that symbol level synchronization
has been achieved, we are ready to consider the n-node
network with multiple clusters.

B. Number of Nodes per Cluster

CFNC is designed to mitigate the effect of the wireless
property p2, when multiple messages are concurrently
received at each node. Since CFNC is also subject to
the half duplex constraint, at least two time slots are
needed to exchange 1 bit for every transmission pair. This
is clearly the case if a multiple access channel (MAC)
transmission is used in Time Slot 1, and a broadcast
channel (BC) transmission is used in Time Slot 2. Since
the BC transmission is upper bounded by the capacity
scaling in Theorem 1, focus will be placed henceforth on
the MAC transmission.

In a MAC channel with n source nodes and one
destination, each equipped with a single antenna, the per-
node average power budget will be upper bounded by
P/n as opposed to P , for a reason to be clarified in the
next section. Then, the sum capacity can be derived from
the following lemma (see Appendix A for the proof).

Lemma 1: The sum mutual information achieved by a
MIMO-MAC transmission from M nodes to a single node,
each equipped with N antennas, grows at least linearly
with N .

If all n nodes are clumped into one cluster, i.e., M = n
and N = 1, Lemma 1 asserts that the per node rate is
R(n) = O(1/n) and the aggregate capacity scaling is
thus C(n) = n2R(n) = O(n). To improve this capacity
scaling law as in Theorem 2, we will rely on the CFNC-
based hierarchical transmission described next.

V. HIERARCHICAL TRANSMISSIONS WITH CFNC

The goal of this section is to prove Theorem 2 by
constructing a realistic scheme based on hierarchical
clustering and CFNC transmissions among clusters. As
we have seen in the previous section, to achieve an
asymptotically optimal capacity scaling, the number of
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nodes (M ) transmitting over the MAC should not increase
as fast as the network size n. This is possible if the
network is split into multiple (M ) subnetworks or clusters,
each covering a smaller square of area A = 1/M . Since
there are n nodes uniformly distributed in the network,
there will be on average nA = n/M nodes inside each
cluster, and each cluster will contain order n/M nodes
with probability higher than 1 − Me−Λ(δ)n/M , where
Λ(δ) is independent of n and satisfies Λ(δ) > 0 when
δ > 0 [9]. While n increases, each cluster should be
divided again into another M clusters, each containing
n/M2 nodes. This kind of hierarchical sub-division can
be successively performed until each cluster contains less
than or equal to M nodes, which results in a total of
logM (n) layers in the hierarchical clustering.1

Focusing on the transmission taking place in a particu-
lar layer h + 1 of the hierarchy, consider that layer h has
transmission rate Rh, h = 1, . . . , logM (n). The last layer
h = 1 corresponds to the bottom layer of the hierarchy,
while h = logM (n) denotes the top layer which includes
the entire network of size n. In layer h + 1, each of the
M clusters operates at rate Rh and the entire transmission
proceeds in five steps.

(s1) Nodes in each cluster exchange information at rate
Rh, as detailed in Section IV-A.

(s2) All nodes of each cluster then form a distributed
transmit antenna array, so that M − 1 clusters operate
as M − 1 nodes, each with Mh transmit antennas, for
their information bits to be received coherently by the
remaining cluster which serves as a relay.

(s3) Each node in the relay cluster obtains one obser-
vation from each CFNC transmission in s2. This node
quantizes and exchanges the observation with the other
nodes at rate Rh within the cluster, which can then
perform joint MIMO decoding to obtain the transmitted
bits using CFNC and multiuser detection as detailed in
[10].

(s4) Nodes in the relay cluster re-encode the decoded
information from s3 as well as their own information,
and broadcast to the other M − 1 clusters together as a
distributed transmit antenna array.

(s5) Finally, each of the M − 1 clusters performs joint
MIMO decoding using CFNC and multiuser detection
again at rate Rh similar to the relay cluster in s3.

From the network point of view, steps s2 and s4 are
MIMO-MAC and MIMO-BC transmissions, respectively,
at the cluster level; while steps s1, s3, and s5 include local
communications within each cluster and can be carried
out in parallel at multiple clusters. This leads to five
operating phases of the network:

Phase 1. Information Exchange within Each Clus-
ter: As illustrated in Fig. 4, clusters start communicating

1Unless stated otherwise, it is assumed for simplicity that n is an
integer power of M .

Fig. 4. Phase 1 (also Phase 3 and Phase 5) of the hierarchical
transmission scheme using CFNC.

Fig. 5. Phase 2 of the hierarchical transmission scheme using CFNC.

in parallel. Within a cluster, each node distributes B bits
to each of the other nodes, so that at the end of this
phase, each node has B bits from each of the other nodes
in the same cluster. This requires transmitting B bits for
each source-destination pair. As each node in the cluster
is also the destination of other nodes in the cluster, there
is no extra traffic demand introduced by this clustering
operation. With this per-cluster transaction occupying Th

time slots, the throughput in Phase 1 is B/Th, where h
denotes the layer in the hierarchy.

Phase 2. MIMO-MAC using CFNC: In this phase,
MIMO-MAC transmissions from M − 1 clusters are
directed to the single designated relay cluster. The re-
maining M −1 clusters will be henceforth termed source
clusters. The relay cluster is chosen to minimize the total
transmit power in Phases 2 and 4. During the MAC
transmissions, the bits from the M − 1 source clusters
are transmitted using CFNC and arrive simultaneously at
the nodes in the relay cluster, as illustrated in Fig. 5.
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Letting rSiR denote the distance between the midpoints
of the source cluster Si and the relay cluster R, the
average transmit power per node is P (rSiR)α/Mh at
layer h. As in the previous section, precoding and symbol
synchronization precede each CFNC transmission. The
nodes in cluster R quantize and accumulate the signals
without decoding the information symbols in this phase.
From Section IV, it is clear that this phase requires B
time slots, one per bit transmitted from the nodes in each
source cluster.

The per-cluster area at layer h is Ah = 1/M logM (n)−h,
and the per-node power is assumed upper bounded by
P (Ah)α/2/Mh. For the parallel operation to be reliable, it
is necessary to further bound the inter-cluster interference
as in the following lemma, which is proved in Appendix
B.

Lemma 2: For a network of size n, consider clus-
ters of size Mh and area Ah operating as in the 5-
phase scheme. Let each node have an average power
P (Ah)α/2/Mh. For α > 2, the interference power
received by a node from other simultaneously operating
clusters is upper-bounded by MKI1 with a constant KI1

independent of n. For α = 2, the interference power
is upper-bounded by MKI2 log n with a constant KI2

independent of n. In addition, the interference signals
received by different nodes in the cluster are zero-mean
and uncorrelated.

Phase 3. Joint Decoding in the Relay Cluster: Since
nodes inside the relay cluster form a distributed receive
antenna array, each node receives B MIMO-MAC trans-
missions during Phase 2. Thus, each node in the cluster
receives B observations, one from each MIMO-MAC
transmission, and each observation is to be conveyed to
all other nodes for decoding. Since these observations are
real numbers, nodes in the relay cluster quantize each
observation to Q bits; hence, there are now a total of at
most QB bits to exchange inside the relay cluster. Using
exactly the same scheme as in Phase 1, it is clear that
this phase requires QTh time slots; and the transmission
is again illustrated in Fig. 4.

Phase 4. MIMO-BC using CFNC: This phase entails
MIMO-BC transmissions from the relay cluster to the
source clusters, as depicted in Fig. 6. CFNC is used again
as in the previous section, and by analogy it follows that
this phase is completed in B time slots.

Phase 5. Joint Decoding in Source Clusters: Since
each source cluster receives B MIMO-BC transmissions
in Phase 4, each node in the source clusters quantizes
and exchanges each observation similar to the relay nodes
during Phase 3 using a total of QTh time slots; see again
Fig. 4.

Phases 1, 3, and 5 contain further MIMO-MAC and
MIMO-BC transmissions at lower hierarchies, as illus-
trated in Fig. 7. Therefore, all transmissions in this 5-

Fig. 6. Phase 4 of the hierarchical transmission scheme using CFNC.

Fig. 7. Hierarchical structure and time division of the 5-phase scheme.

phase scheme take place during Phases 2 and 4 in each
layer of the hierarchy. The CFNC scheme described in
Section IV provides a concrete physical layer to cope with
the interference issues emerging in Phases 2 and 4. As
proved in Appendix B, the inter-cluster interference power
received at each node in Phase 4 also follows Lemma 2.

With each destination node capable of decoding the
source bits from the quantized signals it collects by the
end of Phase 5, the total number of time slots used in
layer h + 1 is

Th+1 = (2Q + 1)Th + 2B (6)

where h = 1, 2, . . . , logM (n) − 1 and T1 = 2B. It then
follows readily that

Th = B
(2Q + 1)h − 1

Q
, h = 1, 2, . . . , logM (n) (7)

and the total number of time slots used in this 5-phase
scheme is

Ttotal = TlogM (n) = B
(2Q + 1)logM (n) − 1

Q
. (8)

Before returning to the capacity scaling issue, it is
useful to clarify several definitions of the achievable
rate. Following the conventional definition in n pairing
networks, the total rate is B/Ttotal. While there are n2
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source-destination pairs in the network here, we will focus
on the achievable rate for each source-destination pair.
The following lemma quantifies the capacity scaling of
this 5-phase scheme (see Appendix C for the proof).

Lemma 3: When α > 2, the sum mutual information
achieved by the MIMO-MAC from M nodes to one node,
each equipped with N antennas, grows at least linearly
with N . The other way around, same scaling for the
sum mutual information can be achieved in a MIMO-BC
transmission. When α = 2, the sum mutual information
in both MIMO-MAC and MIMO-BC grows at least on the
order of O(N/ log n) for a network of size n.

Consider first the case of α > 2. Recall that all
transmissions in this CFNC scheme are either MAC or
BC. While joint encoding and decoding is employed in
other phases, during MAC and BC transmissions, each
cluster is treated as a single node with multiple antennas.
At layer h+1, each node in the MAC from M −1 nodes
to one node, has N = Mh antennas. From Lemma 3,
this leads to a capacity scaling of O(N) for the MAC.
While considering each transmission pair, the achievable
capacity scaling per pair is R(n) = O(N/(MN)) =
O(1/M). As the rate during the BC transmission is
R(n) = O(1/M), the achievable capacity scaling per pair
in the 5-phase scheme suffers a penalty of M relative to
the conventional definition. Thus, the aggregate capacity
scaling per pair in the 5-phase scheme is

R(n) =
B

MTtotal
=

Q

M

1
(2Q + 1)logM (n) − 1

(9)

and as a result, the capacity scaling of the entire network
is

C(n) = n2R(n) =
Q

M

n2

(2Q + 1)logM (n) − 1
. (10)

Using (10), the following lemma proved in Appendix
D yields the capacity scaling asserted in Theorem 2.

Lemma 4: There exists a strategy to encode the obser-
vations at a fixed rate of Q bits per observation and arrive
at a sum mutual information growth rate of O(N) (when
α > 2) or O(N/ log n) (when α = 2) for the resultant
quantized MIMO-MAC and MIMO-BC channels.

Having fixed Q, let us turn our attention to M . If M
is also fixed, the capacity scaling from (10) is

C(n) = O(n2−logM (2Q+1)) (11)

which is not as high as asserted by Theorem 2.
To achieve an asymptotically optimal capacity scaling

promised by Theorem 2, consider M = log n, which
implies that the size of each layer in the hierarchy M
increases sufficiently slowly with the network size n.
Furthermore, it is prudent to seek an optimal M to
maximize the capacity scaling exponent. As M increases

with n, the capacity scaling from (10) is

C(n) = O
(

n2

M(2Q + 1)logM (n)

)
(12)

= O
(
n2−logn(M)−logM (2Q+1)

)
. (13)

To maximize the capacity scaling exponent is equivalent
to:

min
M

{logn(M) + logM (2Q + 1)} . (14)

The optimal solution is 2/
√

log2Q+1(n), when M is cho-

sen as log2Q+1(M) =
√

log2Q+1(n). As a consequence,

the capacity scaling of C(n) = O
(
n2−2/

√
log2Q+1(n)

)
is

achievable, which proves Theorem 2 for α > 2.
When α = 2, the per node capacity scaling incurs a

penalty of M log n compared to the conventional case
given in Lemma 3. Moreover, the number of transmissions
in Phases 2 and 4 will scale as log n, which makes the
number of observations at each receiver node also scale
as log n. Hence, instead of QTh, we will have QTh log n
time slots in Phases 3 and 5. After incorporating these
modifications, the overall capacity scaling for α = 2 is
[cf. (9) and (10)]

C(n) = n2R(n) =
n2B

MTtotal log n
(15)

=
Q

M

n2

(2Q log n + 1)logM (n) − 1
. (16)

Although it is cumbersome to obtain the optimal M max-
imizing this capacity scaling, we are ready to complete
the proof of Theorem 2. To achieve a capacity scaling
of O(n2−ε), it suffices to choose M = (log n)log(log n),
which yields a capacity scaling exponent

e(n) = 2 − logn(M) − logM (2Q log n + 1) (17)

≥ 2 − [log(log n)]2

log n
− 2

log(log n)
. (18)

With e(n) in (18) approaches 2 as n goes to infinity, this
completes the proof of Theorem 2.

Remark 1: The power budget P/n is critical to con-
strain the power of the aggregate interference in Lemma
2, so that the parallel operation of multiple clusters is reli-
able. Moreover, the P/n budget constraint is instrumental
in proving Lemmas 1-4, both for dense as well as for the
extended networks treated in the next section.

Remark 2: The 5-phase scheme developed can be
further optimized to a 4-phase alternative. When the relay
cluster performs joint decoding in Phase 3, the source
clusters can exchange information as in Phase 1. Similarly
during Phase 5, while the source clusters decode, the
relay cluster can exchange information as in Phase 1.
Thus, Phase 1 of layer h + 1 in the hierarchy can be
performed in parallel with Phases 3 and 5 of layer h. The
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Fig. 8. Capacity scaling exponent under various scenarios in a dense
network.

only exception is the bottom layer, which always contains
Phases 2 and 4 only. For example, if α > 2, the capacity
scaling can be improved to C(n) = Q

M
n2

(2Q)logM (n)−1
,

while the optimal capacity scaling exponent becomes
2−2/

√
log2Q(n). Achievable capacity scaling exponents

under various scenarios are depicted in Fig. 8.
Remark 3: Different from [9], it is not necessary to

consider the relative position of the source and destination
nodes, simply because each node here is the destination
of all other nodes, and no time division multiple access
(TDMA) transmissions are needed across clusters in each
layer of the hierarchy.

VI. EXTENDED NETWORKS

In the dense networks considered so far, the total geo-
graphical area is fixed as the density of nodes increases.
Another natural scaling appears in the so termed extended
networks, where the density of nodes is fixed while
the

√
n × √

n area increases. This models the situation
where the network area is expanded to cover a larger
geographical area.

As compared to dense networks, the distance between
nodes is increased by a factor of

√
n; and hence for

the same transmit powers, the received powers are all
decreased by a factor of nα/2. Equivalently, by re-scaling
space, an extended network can be considered as a dense
network on a unit area but with the average power
constraint per node reduced to P/nα/2 instead of P [9].

Theorem 2 established for dense networks carries over
to extended networks too, provided that the average power
per node in the hierarchical 5-phase scheme is constrained
to P/n. This implies that when α = 2, the 5-phase
scheme applied to extended networks leads to quadratic
scaling. For extended networks with α > 2, the same

scheme does not satisfy the equivalent power constraint
P/nα/2. However, it is possible to consider a simple
“bursty” modification of the hierarchical CFNC approach
which runs the scheme a fraction 1/(nα/2−1) of the time
with power P/n per node and remains silent for the rest
of the time. This meets the given average power constraint
of P/nα/2, while achieving an aggregate throughput of
order O(n2−ε/nα/2−1) = O(n3−α/2−ε).

Recall that the multihop scheme used in n pairing net-
works achieves capacity scaling O(

√
n). In a multihop n2

pairing network, the nodes can transmit for n transmission
cycles, with each cycle aiming at a different n pairing. As
a result, multihop can be modified to fulfill the any-to-
any communications with n times the original time slots.
Therefore, the capacity scaling for multihop n2 pairing
is still O(

√
n). To summarize, the following result holds

for extended networks, the counterpart of Theorem 2 for
dense networks.

Theorem 3: Consider an extended network on a
√

n×√
n square. If α ∈ [2, 5), then for every ε > 0, with high

probability, an aggregate throughput C(n) ≥ Kn3−α/2−ε

is achievable, where K > 0 is a constant independent of
n. If α ≥ 5, then with high probability, an aggregate
throughput C(n) ≥ K

√
n is achievable, where K > 0 is

a constant independent of n.
An upper bound on the n2 pairing extended network

can be derived from [9], since the only difference between
the two network setups is the number of transmission
pairs. This implies that our upper bound is n times the
bound in [9] as summarized in the following theorem.

Theorem 4: For any ε > 0, the aggregate throughput
of an extended network with n nodes is bounded above
by

C(n) ≤
{

K ′n3−α/2+ε, 2 ≤ α ≤ 3
K ′n3/2+ε, α > 3

with high probability for a constant K ′ > 0 independent
of n.

The lower and upper bounds do not meet when α > 3
[cf. Theorems 3 and 4], which calls for either a more
sophisticated transmission scheme, or, a tighter upper
bound. Both subjects go beyond the scope of the present
paper but constitute interesting future research topics.

VII. CONCLUSIONS

We have investigated the capacity limits of wireless
ad hoc networks along with physical layer design and
processing steps required to meet them. In any-to-any
connectivity, the capacity performance of the traditional
transmission scheme is limited by the interference among
simultaneous transmissions. CFNC can mitigate the in-
terference through judicious precoding. As the network
size increases, we have established that a hierarchical
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scheme based on CFNC can achieve asymptotically opti-
mal quadratic capacity scaling in a dense network. When
applied to extended networks, the hierarchical CFNC
scheme is still asymptotically optimal when the path
loss of the propagation medium is relatively low, namely
α ∈ [2, 3).2

APPENDIX

A. Proof of Lemma 1

The MN × N MIMO-MAC between the M source
clusters Si and the relay cluster R is

Y =
M∑
i=1

HiXi + Z (19)

where each element of Hi obeys (1), and Z = (Zk)
denotes uncorrelated receiver noise with power N0.
The transmitted signals are assumed drawn from an
i.i.d. CN(0, σ2) randomly chosen codebook with σ2 =
P (rSiR)α/(MN), where N = Mh for the MAC trans-
mission at layer h + 1 of the hierarchy. Recall that rSiR

denotes the distance between the midpoints of the source
and relay clusters, and the clusters are split so that the
relay cluster always contains the midpoint of the area on
the current layer. Since each cluster at layer h occupies a
square of area Ah = Mh/n and rSiR ≤ √

Ah, it follows

that σ2 ≤ P
Mh

(
Mh

n

)α/2

= P
n

(
Mh

n

)α/2−1

≤ P
n .

Assuming that under this power constraint, the noise
Z is i.i.d. Gaussian, and perfect CSI is available at
both transmit- and receive-ends, the sum capacity of this
MIMO-MAC is lower bounded by [19, Chapter 10]

Csum ≥ E

[
log det

(
IN + SNR

M∑
i=1

FiF
H
i

MN

)]
(20)

where SNR := GP/N0, Fkl := ρkl exp(jθkl), and there
exists b > a > 0 with a and b independent of n, such
that all ρkl lie in the interval [a, b] specified in [9]. After
bounding the eigenvalues of FiF

H
i /(MN), arguments

similar to those in [9] lead to

Csum ≥ N log(1 + M
a

2
SNR)

(a2 − a/2)2

2b4
. (21)

Equation (21) shows that Csum grows at least linearly
with N , which proves Lemma 1.

B. Proof of Lemma 2

To establish the lemma for MIMO-MAC transmissions,
consider a node v in cluster V operating under the 5-
phase scheme, as illustrated in Fig. 9 with M = 9. The

2The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory
or the U. S. Government.

Fig. 9. Interfering clusters during MIMO-MAC transmissions in the
5-phase scheme.

interference present at this node due to a parallel operating
cluster set UV is given by

Iν =
∑

U∈ UV

∑
j∈ U

HvjXj (22)

where Hvj is given by (1), and Xj denotes the signal
transmitted by a node j belonging to a simultaneously
operating cluster U , which contains Mh nodes. Note
first that the signals Iv and Iv′ received by two different
nodes v and v′ in V are uncorrelated since the channel
coefficients Hvj and Hv′j are independent for all j. The
power of Iv is clearly

PI =
∑

U∈ UV

∑
j∈ U

GPj

(rvj)α
(23)

because the channel coefficients corresponding to differ-
ent nodes j are independent. As illustrated by Fig. 9,
the interfering clusters UV can be grouped based on their
distance to V so that each group UV (i) contains (M−1)2i
clusters or less; and each cluster in group UV (i) is sepa-
rated by a distance greater than (

√
Mi −√

M + 1)
√

Ah

from V for i = 1, 2, . . ., where Ah denotes the cluster
area. Since there are n/Mh clusters at layer h of the
hierarchy, the number of such groups is upper bounded
by n/Mh+1. Thus

PI <

n/Mh+1∑
i=1

∑
U∈UV

∑
j∈U

GPj

[(
√

Mi −√
M + 1)

√
Ah]α

≤
n/Mh+1∑

i=1

GP
M2i

[
√

M(i − 1) + 1]α
(24)

where we have used the fact that Pj ≤ PA
α/2
h /Mh, ∀j.

The sum in (24) is convergent for α > 2, and is upper-
bounded by MKI1 with a constant KI1 independent of
n. For α = 2, the sum is upper-bounded by MKI2 log n
with a constant KI2 independent of n.

For the MIMO-BC transmissions illustrated in Fig.
10, each node receives interference from less interfer-
ing clusters compared to MIMO-MAC. Therefore, the
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Fig. 10. Interfering clusters during MIMO-BC transmissions in the
5-phase scheme.

interference power in MIMO-BC is upper bounded by
MIMO-MAC, and Lemma 2 also applies to MIMO-BC
transmissions.

C. Proof of Lemma 3

The MIMO-BC transmission in the 5-phase scheme
allows the relay to transmit identical symbols to all
sources in the same cluster. Using Lemma 2, it follows
that the capacity scaling of MIMO-BC provides an upper
bound for MIMO-MAC as well. Hence, it suffices to
consider the MN × N MIMO-MAC between the M
source clusters Si and the relay cluster R. For a network
of size n, the input-output relationship of MIMO-MAC
is again given by (19), where Z = (Zk) now denotes
uncorrelated noise plus interference at the receiver nodes.
Similar to Appendix A, assuming Z is i.i.d. Gaussian, and
perfect CSI available at both transmit- and receive-ends,
the sum capacity of this MIMO-MAC is lower bounded
by

Csum ≥ E

[
log det

(
IN + SINR

M∑
i=1

FiF
H
i

MN

)]
(25)

where SINR := GP/(PI + N0), and PI , N0 denote
interference power and noise power, respectively; while
all other parameters are as in (20). This leads to

Csum ≥ N log(1 + M
a

2
SINR)

(a2 − a/2)2

2b4
(26)

and the capacity scaling depends on the scaling of the
interference power as in Lemma 2.

If α > 2, then PI is upper bounded by O(M), which
gives Csum at least a capacity scaling of N from (26).
But for α = 2, PI is upper bounded by MKI2 log n with
a constant KI2 independent of n. As a consequence, the
sum capacity scales as O(N/ log n) for n large enough.

D. Proof of Lemma 4

We will establish the lemma for the MIMO-MAC. The
proof for the MIMO-BC follows similar steps. We first

consider α > 2 and prove that the power received by each
node in the relay cluster is bounded below and above by
constants P1 and P2, respectively, that are independent of
M and n. The signal received by a relay node r located
in cluster R during the MIMO-MAC transmission from
source clusters Si is given by

Yr =
M∑
i=1

N∑
s=1

Hs
riX

s
i + Zr (27)

where Xs
i denotes the signal sent by a source node s ∈ Si

with power constrained to P (rSiR)α

MN and Zr ∼ CN(0, N0).
The power of Yr is

E[|Yr|2] =
M∑
i=1

N∑
s=1

|Hs
ri|2

P (rSiR)α

MN
+ N0 (28)

=
M∑
i=1

N∑
s=1

GP

MN
(
rSiR

rsr
)α + N0 (29)

where we used the fact that Hs
ri, Xs

i and Zr are all
independent. It follows from [9] that

P1 ≡
( √

2√
2 + 1

)α

GP + N0

≤ E[|Yr|2]

≤
( √

2√
2 − 1

)α

GP + N0 ≡ P2 (30)

provided that the transmit power per node to be P/n.
Combining (30) with Lemma 2, we deduce that the
observations have bounded power P2 + MKI1 . If M is
bounded, one can use a fixed number of bits to encode the
observations without degrading the scaling performance
[9]. If M increases with n, the received signal can be
normalized by multiplying it with q1 =

√
P2

P2+MKI1
and

then proceed with quantization as before.
When α = 2, the signals are corrupted by interference

of increasing power MKI2 log n from Lemma 2. In
this case, the power received by the destination nodes
increases as P2 + MKI2 log n as n increases. Similarly,
it is also necessary to normalize the received signal by
q2 =

√
P2

P2+MKI2 log n before quantization. Notice that
the normalization here does not affect the SINR term in
the proof of Lemma 3. As a consequence, Lemma 3 still
holds true after encoding with a fixed rate of Q bits per
observation, which proves Lemma 4.

REFERENCES

[1] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Trans. on Info. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[2] M. Franceschetti, O. Dousse, D. N. C. Tse, and P. Thiran, “Closing
the gap in the capacity of wireless networks via percolation
theory,” IEEE Trans. on Info. Theory, vol. 53, no. 3, pp. 1009–
1018, Mar. 2007.

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009 839

© 2009 ACADEMY PUBLISHER



[3] L.-L. Xie and P. R. Kumar, “A network info. theory for wire-
less communications: Scaling laws and optimal operation,” IEEE
Trans. on Info. Theory, vol. 50, no. 5, pp. 748–767, May 2004.

[4] M. Franceschetti, J. Bruck, and L. J. Schulman, “A random
walk model of wave propagation,” IEEE Trans. on Antennas and
Propagation, vol. 52, no. 5, pp. 1304–1317, May 2004.

[5] A. Jovicic, P. Viswanath, and S. R. Kulkarni, “Upper bounds to
transport capacity of wireless networks,” IEEE Trans. on Info.
Theory, vol. 50, no. 11, pp. 2555–2565, Nov. 2004.

[6] O. Leveque and E. Telatar, “Info. theoretic upper bounds on the
capacity of large, extended ad-hoc wireless networks,” IEEE Trans.
on Info. Theory, vol. 51, no. 3, pp. 858–865, Mar. 2005.

[7] S. Ahmad, A. Jovicic, and P. Viswanath, “Outer bounds to the
capacity region of wireless networks,” IEEE Trans. on Info.
Theory, vol. 52, no. 6, pp. 2770–2776, June 2006.

[8] L.-L. Xie and P. R. Kumar, “On the path-loss attenuation regime
for positive cost and linear scaling of transport capacity in wireless
networks,” IEEE Trans. on Info. Theory, vol. 52, no. 6, pp. 2313–
2328, June 2006.

[9] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation
achieves optimal capacity scaling in ad hoc networks,” IEEE Trans.
on Info. Theory, vol. 53, no. 10, pp. 3549–3572, October 2007.

[10] T. Wang and G. B. Giannakis, “Complex field network coding for
multiuser cooperative communications,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 3, pp. 561–571, Apr. 2008.

[11] J. Liu, D. Goeckel, and D. Towsley, “The throughput order of
ad hoc networks employing network coding and broadcasting,”
in Proc. of MILCOM Conf., Washington, DC, USA, Oct. 23-25,
2006, pp. 1–7.

[12] ——, “Bounds on the gain of network coding and broadcasting
in wireless networks,” in Proc. of INFOCOM Conf., Anchorage,
Alaska, USA, May 6-12, 2007.

[13] E. Yilmaz and M. O. Sunay, “Power controlled MIMO-MAC
capacity with diversity combining,” in Proc. of IEEE Signal
Processing and Communications Applications, Antalya, Turkey,
Apr. 17-19, 2006, pp. 1–4.

[14] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity
limits of MIMO channels,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 5, pp. 684–702, June 2003.

[15] J. Lee and N. Jindal, “High SNR analysis for MIMO broadcast
channels: Dirty paper coding versus linear precoding,” IEEE Trans.
on Info. Theory, vol. 53, no. 12, pp. 4787–4792, Dec. 2007.

[16] E. Ahmed, A. Eryilmaz, A. Ozdaglar, and M. Medard, “On the
scaling law of network coding gains in wireless networks,” in Proc.
of MILCOM,, Oct. 2007.

[17] U. Niesen, P. Gupta, and D. Shah, “On capac-
ity scaling in arbitrary wireless networks,” IEEE
Trans. on Info. Theory, 2007; downloadable from
http://arxiv.org/PS cache/arxiv/pdf/0711/0711.2745v1.pdf.

[18] G. B. Giannakis, Z. Liu, X. Ma, and S. Zhou, Space-Time Coding
for Broadband Wireless Communications. John Wiley & Sons,
Inc., Jan. 2007.

[19] D. Tse and P. Viswanath, Fundamentals of Wireless Communica-
tion. Cambridge University Press, 2005.

Tairan Wang received his B.S. degree in Elec-
trical Engineering and Information Science in
2003, from the University of Science and Tech-
nology of China (USTC). He got his Master
and Ph.D. in the Department of Electrical and
Computer Engineering at University of Min-
nesota (UMN), in 2006 and 2008, respectively.
He is now working at Seagate Technology.

His research interests lie in the areas of
communication theory, information theory and
networking. Current research focuses on wire-

less cooperative communications, relay transmissions, non-coherent
modulations, and wireless sensor networks.

Georgios B. Giannakis received his Diploma
in Electrical Engineering from the Ntl. Tech.
Univ. of Athens, Greece, 1981. From 1982 to
1986 he was with the University of South-
ern California (USC), where he received his
MSc. in Electrical Engineering, 1983, MSc.
in Mathematics, 1986, and Ph.D. in Electrical
Engineering, 1986. Since 1999 he has been a
Professor with the Univ. of Minnesota, where
he now holds an ADC Chair in Wireless
Telecommunications in the ECE Department

and serves as director of the Digital Technology Center.
His general interests span the areas of communications, networking

and statistical signal processing, subjects on which he has published
more than 275 journal papers, 450 conference papers, two edited books
and two research monographs. Current research focuses on complex-
field and network coding, cooperative wireless communications, cogni-
tive radios, cross-layer designs, mobile ad hoc networks and wireless
sensor networks. He is the (co-) recipient of six paper awards from the
IEEE Signal Processing (SP) and Communications Societies including
the G. Marconi Prize Paper Award in Wireless Communications. He also
received Technical Achievement Awards from the SP Society (2000),
from EURASIP (2005), a Young Faculty Teaching Award and the G.
W. Taylor Award for Distinguished Research from the University of
Minnesota. He is a Fellow of EURASIP, has served the IEEE in a
number of posts, and is currently a Distinguished Lecturer for the IEEE-
SP Society.

840 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 11, DECEMBER 2009

© 2009 ACADEMY PUBLISHER


