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Abstract— This paper proposes a Quality of Experience
(QoE) based cross-layer design (CLD) framework for High
Speed Downlink Packet Access (HSDPA). The proposed
scheme aims at maximizing the user satisfaction by taking
advantage of the link adaptation mechanism of HSDPA and
the rate adaptation capability of multimedia applications.
The main contributions of the paper are as follows. First, we
describe the multiuser rate region of HSDPA by constructing
a long-term radio link layer model. Next, we formulate
multimedia QoE by constructing long-term utility function s,
describe the multiuser utility space and derive its properties.
We show analytically that the maximization of the sum
of utility (max-MOS) can be efficiently solved by a fast
greedy algorithm which searches only through the boundary
of the utility space. We investigate two alternatives to the
max-MOS approach, which introduce additional fairness
in the system. We compare our proposed QoE-based cross
layer optimization schemes to a system that is configured to
maximize the overall throughput. For the sake of complete-
ness, we also compare our approaches to a non-optimized
HSDPA system. The performance comparison is made by
simulation using a software implementation of an actually
deployed HSDPA system. Results show that our QoE-based
approach leads to significantly improved user perceived
quality compared to the other approaches.

Index Terms— Quality of Experience (QoE), High Speed
Downlink Packet Access (HSDPA), Application-driven cross
layer optimization.

I. I NTRODUCTION

The increased usage of a wide variety of cellular mul-
timedia services is putting an ever increasing demand for
high data rates on the wireless interface. As the downlink
of the cellular system often acts as the bottleneck link, an
efficient usage of downlink wireless resources becomes
essential in order to provide high quality of services to
the largest possible number of users. The time varying
transmission conditions of the wireless channel and the
dynamic changes of application requirements of multime-
dia services make the optimization of downlink resources
a challenging task. Cross-layer design (CLD) has been
proposed to address this issue [1]. By exchanging key
parameters across the layers [2], a CLD scheme can
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enable a highly efficient wireless resource allocation [3],
[4], [5].

High Speed Downlink Packet Access (HSDPA) pro-
vides a shared packet-switched service with variable bi-
trate [6]. Thus, HSDPA allows for the concurrent usage
of diverse, resource demanding applications such as video
streaming, video conferencing, network gaming and 3D
navigation, which all require variable data rates. However,
an efficient distribution of the HSDPA resources to the
concurrent applications is still a challenging task. When
traditional Quality of Service (QoS) measures, such as
Guaranteed Bit Rate (GBR) are used for these services,
it either results in congestion due to the increase of data
rates from the initial rates, or underutilization of resources
due to rate decrease. In both cases, the users suffer from
unsatisfactory services.

This paper proposes a Quality of Experience (QoE)
based CLD approach for resource allocation in HSDPA.
The CLD framework is integrated into an OPNET-based
HSDPA simulator, although it would be equally applicable
to other future packet based services as well. We use
an application-driven approach which considers the QoE
accross multiple different applications. This framework
takes into account the total resource constraint of the
system and periodically reassigns the resources with the
aim of maximizing the user satisfaction. In this way
our CLD framework adds a software-based optimizer
component to an existing system but does not violate the
protocol layering.

Remark: QoE-based resource allocation for future cel-
lular multimedia networks is important for several rea-
sons. Firstly, current throughput-based optimization only
makes sense in case of packet-based charging. High
cellular bitrates, e.g. 3GPP Long Term Evolution (LTE),
which is expected to approach a peak bit rate of 100
Mbps [7], would further push a flat-rate billing model
or models based on quality guarantees. In that scenario,
the operators would find a clear motivation to maximize
the satisfaction of their customers, irrespective of the
requirements of their services. Secondly, user satisfaction
is gaining importance to the operators who realize that
unsatisfied users would usually quit the network without
ever complaining to the operator, and would possibly
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share their experience with other potential customers,
resulting in severe loss of revenues. Thirdly, QoE-based
optimization allows potentially more customers to be
served simultaneously without a loss of user perceived
quality.

QoE-based resource allocation as presented in this
paper is performed at intervals of seconds. It fills a
gap between physical layer transmission intervals (2ms
in HSDPA) and long term application layer mechanisms
such as adaptive streaming or TCP congestion control
(10s of seconds).

Literature Review: The challenge of downlink resource
optimization across multiple applications has been treated
mainly in the form of throughput maximization [8],
[9]. Multimedia applications such as video streaming
and voice telephony are highly sensitive to changes in
data rate, delay, delay jitter and packet losses. Even the
importance of a packet changes dynamically depending on
the transmission history of previous packets. Due to these
reasons, throughput maximization leads to performance
which is usually not optimal with respect to user perceived
quality for multimedia applications.

HSDPA throughput performance results are presented
and compared with the WCDMA Release ’99 dedicated
channel in [10], [11], [12] and [13]. The packet multiplex-
ing of HSDPA provides a significant multiuser diversity
gain when combined with a channel aware scheduling
scheme. Performance of several channel aware schedul-
ing schemes, e.g., max C/I, proportional fair (PF) and
modified largest weighted delay first (M-LWDF) have
been shown for HSDPA [14], [15], [16]. [14] gives a
comparison of several scheduling schemes for streaming
and non-realtime applications. [14] and [15] propose to
use the M-LWDF scheduler to ensure uninterrupted media
playout. [16] proposes a scheduling scheme to improve
wireless TCP performance over HSDPA. [17] and [18]
propose using queue length information in scheduling in
order to ensure fairness.

Specific scheduling schemes for different applications,
e.g., video streaming and voice over IP (VoIP) over
HSDPA, are proposed in [19] and [20], respectively. [21]
and [22] propose quality-driven access control and the use
of the 3GPP QoS framework [23] in HSDPA.

A QoE-based application-layer adaptation for HSDPA
has not been proposed so far in the literature. A utility-
based optimization framework was first proposed in [24],
where the utility function is assumed to capture the user
satisfaction with respect to data rate. For a comprehensive
overview of the Network Utility Maximization (NUM)
framework please refer to [25] and the references therein.
Contrary to most of the NUM literature where only
concave, continuously differentiable utility functions and
theoretical link models are assumed, our scheme proposes
a framework considering realistic utility functions and
applies the framework to a standardized system.

Main Results: In this paper we present details of our
QoE-based CLD framework for HSDPA and its evalua-
tions. First, we propose long term link layer and applica-

tion layer models by extracting key parameters from the
respective layers. The parameters are communicated to a
cross-layer optimizer which acts as a downlink resource
allocator. The optimizer periodically reviews the total
system resources and makes an estimate of the time-share
needed for each user for each possible application-layer
rate. If necessary, the optimizer suggests re-adaptation of
the application rates. This adaptation of the application-
layer rate is motivated by the following arguments:

1) Admission control policies are traditionally used to
detect violation of QoS. With the advent of new
demanding applications it becomes challenging to
maintain reasonable user satisfaction without com-
promising too much on efficiency. The proposed
CLD framework goes beyond admission control
by continuously adapting the network and thereby
ensuring both good user experience and efficient
utilization of spectrum.

2) Unlike the second and third generation wirless
standards, HSDPA is inherently a variable bit rate
channel. Dynamic adaptation of the application-
layer streams is thus attractive to use in this context,
which can take advantage of the high bit rate
provided by the standard. A media stream can be
adapted by using transcoding and packet dropping.
Transcoding is flexible but computationally inten-
sive, whereas packet dropping leads to lower com-
plexity at the cost of reduced quality. Adaptation
in our work is performed by transcoding, which
is performed on a node close to the base station.
The transcoding is applied to the voice and video
streams and its impact on the utility function is also
taken into account. (see Fig. 6)

The rest of the paper is organized as follows. Section
II introduces our long term link layer and application
layer models. Section III shows the problem formulation
of our QoE-based CLD framework. Section IV describes
the greedy algorithm in detail. Section V gives simulation
results and our conclusions are drawn in Section VI.

II. PRELIMINARIES

A. HSDPA Overview

The key concept of HSDPA is to increase the packet
data throughput using link adaptation and fast retransmis-
sion from the base station (Node B). Link adaptation of
HSDPA uses Adaptive Modulation and Coding (AMC)
with two modulation schemes, QPSK and 16-QAM, and
a rate1/3 turbo code with variable amount of puncturing.
AMC adapts to the radio condition based on the Channel
Quality Indicator (CQI) report from the receiver every
Transmission Time Interval (TTI) which is fixed at 2ms.

Figure 1 shows the scenario considered in this pa-
per, with the three main network elements involved in
HSDPA: Radio Network Controller (RNC), Base Station
or Node B, and the User Equipment (UE). The RNC
is responsible for the control of the radio resources.
The Node B schedules the packets to the UEs, taking
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Figure 2. TBS estimation process adapted from the standard [26] and
extended for the deployed HSDPA system.

advantage of AMC. At the RNC, IP packets are received
from the core network and each of them is encapsulated
into one Radio Link Control (RLC) Service Data Unit
(SDU). The RLC-SDU is then segmented into fixed-size
RLC-PDUs. At the Node B, one transport block (TB) is
sent over the air each TTI. The number of information bits
that can be sent in each TB is denoted as the Transport
Block Size (TBS) which depends on the CQI of the user.

The process of estimating the TBS is shown in Fig. 2.
Each TTI one or more users are selected to be scheduled.
When multiple users are allowed to be scheduled within
the same TTI, the available power and code resources are
calculated using a resource-allocation algorithm. When
user multiplexing is not used, all the available power and
code resources can be allocated to a single user during
the TTI. Look-Up Tables (LUT) are used to get the TBS,
given the available power, code and CQI values. The
UE also sends ACK/NACK messages associated to the
previous TB. This helps to estimate the actual Block Error
Rate (BLER) of the user. An appropriate TBS is chosen
for a target BLER of 10%. The difference between the
target and the current BLER is used to update the power,
code and CQI values to be used in the LUT.

Let K be the set of users,K = {1, 2, · · · , K}. Let ki

be the user who is given access to the channel at timei,
where i is the index of TTI,k ∈ K, i ∈ Z+ with Z+
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Figure 3. TBS vs. CQI for a category 6 receiver [26]. A variable TBS
is attained by using adaptive modulation and coding, combined with a
variable number of spreading codes. The category 6 receivercan use
either QPSK or 16QAM and a maximum of five spreading codes.

being the set of positive integers. LetQ be the set of
possible CQI,Q = {1, 2, · · · , 30}, andQi

k be the CQI of
userk at time i, Q1

k ∈ Q.
Using AMC the Node B chooses a transmission format

for a fixed target BLER resulting into a TBS ofBi
k which

depends onQi−d
k :

Bi
k = g(Qi−d

k ) (1)

whered is the link adaptation delay. The relationship in
(1) is standardized by 3GPP [26].

B. Radio Link Layer Model

In this paper we adopt the long term link layer model
originally proposed in [27]. We estimate the long term
average rate of each userk, denoted byRmax,k, k ∈
K, that the user can support when all the resources are
allocated to the user. LetRk be the long term data rate
provided to userk, given the time shareαk. Then the
radio-link layer is described as:

Rk = αk ·Rmax,k, 0 ≤ αk ≤ 1, ∀k (2)

(2) defines the HSDPA rate region. In the following
the estimation ofRmax,k is performed for HSDPA. For
the analysis we consider an individual user at some time
instant. Hence, we drop the user and the time index. Letr
be the instantaneous data rate of the user. Assuming that
the scheduler selects only the users who have packets to
send, andQ is slowly varying, r = B, and from (1)
follows:

r = g(Q) (3)

Taking expected values on both sides of (3):

E{r} = E{g(Q)} (4)

Assuming only one user is scheduled at a TTI, all the
resources are allocated to the user, so that

E{r} = Rmax (5)

Within the time interval of interest, it can be assumed
that the mean ofCQI does not change considerably.
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Therefore, although (3) is a non-linear function when the
whole domain of the function is taken into account, it can
be approximated by a piecewise linear curve, as shown
in Figure 3. Hence,

E{g(Q)} = g(E{Q}) = g(Q̄) (6)

whereE{Q} = Q̄. From (4), (5) and (6):

Rmax = g(Q̄). (7)

Hence,Rmax can be estimated by observing the mean
CQI values over a period of time.

C. Application Layer Model

We use utility functions to describe the Quality of Ex-
perience (QoE) for different applications as a function of
lower or radio link layer parameters, e.g., rate or through-
put, time share, power, spreading code, bandwidth, etc.
As a measure of utility, we use the Mean Opinion Score
(MOS), as proposed in [28]. The utility functions in
[28] are described as a function of transmission data
rate and packet loss rate. Due to the HSDPA MAC-layer
retransmission mechanism, we assume that all packets are
transmitted successfully and therefore, the utility function
can be simplified as a function of transmission data rate
as given below:

U = f(R), f : R →MOS (8)

whereR is the set of possible rates, andMOS = [1 :
4.5]. MOS 4.5 means that the user would rate the service
with an excellent quality, while MOS 1 means the service
is expected to be rated by all users with a very poor
quality. Below we describe the derivation of the utility
functions of different applications and the multiuser utility
space in details.

1) Voice call application: Assessment of voice quality
can be done by performing subjective tests with panels
of human listeners. Such tests are not suitable for online
system optimization. Alternatively, objective measures
predicting the one-way voice quality scores (MOS) given
by the user such as the ITU-T Perceptual Evaluation of
Speech Quality (PESQ) [29] can be used. However, the
algorithms are computationally expensive and require the
original speech signal, and hence are also not suitable
for dynamic online system optimization. To solve this
we precompute voice utility functions that estimate MOS
by using the PESQ algorithm. Previous work on mea-
suring voice quality has shown that the QoE for voice
applications depend on the encoding rate, packet loss
rate and delay [30]. For simplicity and considering the
retransmission at the MAC-layer, we define MOS as a
function of the transmission rate R as depicted in Fig.4.
Each point represents a different codec (G.723, iLBC,
SPEEX and G.711) and the MOS is measured from a
set of speech files with different contents for the case of
error-free transmission. Due to distortion imposed by the
source codec, every voice codec leads to a different MOS
value. This utility curve can be stored at the base station
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Figure 4. PESQ-based MOS as a function of the available data rate
for different voice codecs [28]. The utility curve consistsof 4 discrete
points since the 4 codecs operate at fixed bit rates of 6.4kbps, 15.2kbps,
24.6kbps, and 64kbps, respectively.

for information when performing QoE-based optimization
for resource allocation.

2) File download application: File transfer or web
browsing applications are considered to be elastic ser-
vices, for which the utility function is an increasing,
strictly concave, and continuously differentiable function
of throughput [24]. Based on this assumption, the data
transfer utility function is assumed to be logarithmic with
respect to rate as following.

MOS = a · log10 (b ·R) (9)

where a and b are determined from the maximum and
minimum user perceived quality. If a user has subscribed
for a specific rate service R and receives this service
rate R when downloading the file, then in case of no
packet loss user satisfaction on the MOS scale should
be maximum, i.e, 4.5. On the other hand, we define a
minimum transmission rate (e.g., 10kbps in Fig.5) and
assign to it a MOS value of 1. Using the parameters
a and b, we fit the logarithmic curve in (9) for the
estimated MOS. Fig.5 presents the MOS curve by varying
the actual transmission rate R. In fact, data transfer uses
TCP as its transport protocol, which has its own end-
to-end mechanisms between the sender and the receiver
such as the flow control and the congestion control. The
flow control adapts the sending data rate in order to
prevent a fast sender from over running a slow receiver,
while the congestion control keeps the data flow below
a rate that would trigger a network congestion, which
makes the network performance fall. In order to adapt the
transmission rate to optimize the transmission in a base
station, the cross-layer optimizer might contact the sender
or simply, e.g., slow down the TCP flow. If this happens
on a small time scale (e.g., seconds) TCP will not notice.
If this situation pertains then TCP will react accordingly
by adapting its sending rate. We assume that the TCP
rate adaptation process, which is for example modeled by
the TCP Friendly Rate Control (TFRC) equation, has no
significant impact on the user perceived throughput (as
shown in (9)).
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Figure 5. MOS as a function of transmission rate for file download
applications [28].

3) Video streaming application: Peak Signal to Noise
Ratio (PSNR) has been used widely to measure the full-
reference video quality due to its simplicity of calculation.
However, many studies [31], [32], [33] show that PSNR
does not match well to perceived visual quality. Due to
the fact that the human visual system is highly adapted
to extract structural information, we use the Structural
SIMilarity (SSIM) index [33] to assess perceptual video
quality, which measures the structural information change.
In principle, SSIM measures the similarity of the two
signals (the original signal and the distorted signal) by
comparing the luminance, the contrast and the structure.
The luminance is the mean intensity from the signal.
The contrast is the standard deviation of the signal. The
structure is the signal after luminance subtraction and
variance normalization. These two signals are taken from
a local window, which is just a part of the whole image.
To evaluate the overall image quality, we calculate a mean
SSIM (MSSIM).

MSSIM(X, Y) =
1

M

M
∑

j=1

SSIM(xj, yj) (10)

whereX and Y are the reference and distorted images,
respectively;xj and yj are the image contents at thej-
th local window; andM is the number of local windows
of the image. To obtain the utility functions for video
streaming, we vary the quantization steps for encoding
the raw video and measure the average data rate of the
video and the average MSSIM of all images in the video.
For simplicity, the video utility functions assume a linear
mapping from MSSIM of the entire video to MOS. Fig.
6 depicts an example of a video utility curve for the
’Foreman’ video sequence. The dotted line and the solid
line are the utility curves considering the distortion caused
by the source encoding and the distortion caused by using
a simple transcoding with the same codec (re-encoding)
in the core network, respectively. In this example, we
transcode the video with a high data rate (450kbps)
to a lower data rate. Obviously, the transcoding causes
an additional video quality degradation due to the re-
encoding process. We assume that the utility functions
are precomputed at the streaming server and signalled as

0 100 200 300 400 500
2.5

3

3.5

4

4.5

Bit rate (kbps)

M
ea

n 
M

O
S

(M
S

S
IM

)

 

 

No transcoding
Transcoding with H.264

Figure 6. MOS for a video streaming application with the ’Foreman’
video sequence.
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side information along with the video bitstreams.

4) Multiuser Utility Space: The multiuser utility space,
U , defines a set of feasible utility vectors constrained by
the total system resources:

U ⊆ RK ,
∑

k

αk ≤ 1, (11)

where RK is the K dimensional Euclidean Space and
αk is some normalized resource share to userk. Since
HSDPA is a time division multiplexed (TDM) channel,
in the rest of the paper we assumeαk to be the time
share given to userk.

A multiuser utility space can be formed by combining
the transmission policies of every user. First, for sim-
plicity, we show an example for a two user case, where
the users are using video and file download services. If
we assume that the mean receiver-side Signal-to-Noise-
Ratio (SNR) of the video and file download user are
15dB and 5dB, respectively, the utility space (U) and
its boundary (BU ) for this scenario can be illustrated as
depicted in Fig. 7.a–b andd–e correspond to user rates
of (0, Rmax,1) and (0, Rmax,2). c is the optimum point
with respect to the objective function described in the next
section.
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III. Q OE-BASED CROSS-LAYER OPTIMIZATION

A. Utility-based optimization

The utility functions introduced in Section II-C provide
the information about the required transmission rate at
the application-layer in order to achieve a certain level
of QoE. The representation of the lower-layers depends
on the channel quality of each user. Information about the
channel quality is obtained by CQI feedback from the UE
as described in Section II-B. Depending on the selected
objective function, the optimizer allocates the wireless
system resources differently. Below we discuss two QoE-
based objective functions applied in our work.

1) Utility maximization: The optimizer maximizes the
objective function which is defined as the average utility
of all users:

F(x̃) =
1

K
·

K
∑

k=1

Uk(x̃) (12)

whereF(x̃) is the objective function with the cross-layer
parameter tuplẽx ∈ X̃. K is the total number of users
in the system,̃X is the set of possible parameter tuples
abstracted from the protocol layers representing the set of
candidate operation modes. The decision of the optimizer
can be expressed as:

x̃opt = arg max
x̃∈X̃
F(x̃) (13)

where x̃opt is the parameter tuple which maximizes the
objective function. After selection of the optimal values
of the parameters, those parameters are sent back to the
individual layers, which are responsible for translating
them back into actual layer-specific modes of operation.
Further details of parameter abstraction can be found in
[2], [34] and [35].

Depending on the type of appplication, we create differ-
ent sets of transmission policies, which specify possible
transmission data rates. We denote the set of transmis-
sion policies for a userk by Tk. With utility-based
optimization, the optimizer chooses a combination of
resource allocation that maximizes the following objective
function:

F(x̃) =

K
∑

k=1

|Tk|
∑

j=1

E{Ikj · Ukj(x̃)} (14)

wherek denotes the user index,j refers to the index of
the transmission policy.Ikj is the indicator function. Its
value is 1 when the transmission policyj is chosen for
userk, and 0 otherwise.

2) Max-min utility: The max-min fairness concept [36]
applied to our QoE-based cross layer optimization means
that the optimizer allocates the resources such that all
users experience the maximally possible same level of
quality. The max-min objective function is defined as:

x̃opt = arg max
x̃∈X̃

{

min
k∈K

Uk(x̃)

}

(15)

A drawback of using max-min fairness is the unequal
quality loss. For instance, when a single user runs a

very demanding application or has a very poor channel
quality, the optimizer tries to give this user more resources
and therefore forces all other users to share this poor
experience. A modified max-min technique [37] has been
proposed to allow for setting a minimum guarantee of
service quality. It first checks whether there is enough
resources to provide all users with that guaranteed quality.
If not, the system will drop the user with the highest
resource consumption, meaning that no resources are
given to this user until the next optimization loop. After
checking the constraint, it performs a usual max-min
utility based optimization as described in (15). In the
following, we discuss the objective function in (13).
Later in our experimental results, we then compare the
performance using (13) and (15).

B. Rate adaptation

At each TTI, a number of data blocks or RLC PDUs
are passed from the higher layers to the radio link layer.
The size of a data block to be transmitted in one TTI
depends on the Channel Quality Indicator (CQI), which
is carried via the uplink High Speed-Dedicated Physical
Control Channel (HS-DPCCH). The TTI is set to 2ms,
meaning that there are 500 TTI slots available in one
second period to be shared among users.

The optimizer decides the best combination of all user’s
operation modes, which maximizes the selected objective
function. To assure the data rate of each user, the number
of TTI slots must be assigned correctly. Estimation of the
required number of TTI is done by using the following
equation:

Sk = ⌈
Aapp,k + OHk

B̄k

⌉ (16)

whereSk is the number of transmission opportunities to
be allocated to userk. Aapp,k is the number of bits to
be sent in one second. We assume that the application is
sending with a constant bit rate (CBR) during the time
interval of interest.B̄k is the mean size of a transport
block. OHk is the amount of overhead due to transport
and network layer headers.

The use of the proposed framework does not exclude
the possibility of setting Guaranteed Bit Rate (GBR),
Scheduling and Priority Indicator (SPI) and Discard Timer
(DT) for quality control, as proposed in [21]. GBR can
be set at once as the values out of the optimization or
periodically reconfigured during optimization. Setting SPI
would be essential in order to ensure delay guarantees.
In this paper we assume that the streaming and realtime
traffic are prioritized with respect to file download traffic.
The exact priority indices would largely depend on the
scheduler used. The approach taken in this paper does
not rely on any particular scheduling scheme, and hence
can be used with any scheduler.

IV. GREEDY OPTIMIZATION

A greedy algorithm [38] makes a locally optimal choice
at each step with the hope of finding the global optimum.
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Greedy algorithms are in general not guaranteed to find
the optimal solution since they usually do not operate
exhaustively through the whole constraint space. Because
of this, greedy algorithms are usually much faster than the
full search. In this paper we propose a greedy algorithm
to solve the utility maximization problem. First, we derive
some properties of the constraint space which we call the
utility space. Next we describe the algorithm in detail.
Then we derive the worst case properties of the algorithm
and compare it with that of the full search approach.

A. Properties of the utility space

Theorem 1. Let P be a set of points in the utility
space corresponding to

∑

k αk(p) = 1, P = {p ∈
U s.t.

∑

αk(p) = 1}. Let x̃∗ be the optimum mode of
operation: x̃∗ = argmax

∑

k Uk. Then, x̃∗ ∈ P .

Theorem 2. The optimum of the objective function, x̃∗

lies on the boundary of the utility space, i.e., x̃∗ ∈ BU .

Proof: Let p be an interior point of the utility space
U , p ∈ U , p /∈ BU and letd(x, y) denote the Euclidean
distance between pointsx andy. Then there exists another
point q ∈ U , d(q, 0) − d(p, 0) > 0 such thatF(p) <
F(q). The existence ofq is guaranteed untilq lies on the
boundary ofU , i.e.,q ∈ BU . But

∑

k Uk(p) <
∑

k Uk(q),
so that an interior point ofU cannot be an optimum. In
other words, the optimum must lie on the boundary:x̃∗ ∈
BU .

Theorem 3. Assume monotonically increasing utility
functions, Uk(α) for ∀k. Let P be a set of points in
the utility space corresponding to

∑

k αk = 1, P =
{p s.t.

∑

k αk = 1}. Then P = BU .

Proof: First we show thatP ⊆ BU . Let q ∈ U ,
q ∈ P and q /∈ BU . Then there exists another point
r ∈ BU such thatd(r, 0)−d(q, 0) > 0. Hence,

∑

U(q) <
∑

U(r) andUk(q) < Uk(r) for somek. SinceUk(αi) >
Uk(αj) only if αi > αj (non-decreasing utility functions),
∑

α(q) <
∑

α(r) which implies
∑

α(r) > 1. But then
r /∈ U and hence,r /∈ BU . Therefore,q ∈ BU which
implies P ⊆ BU . Similarly, BU ⊆ P can be proved
by using the fact thatαi > αj only if U(αi) > U(αj)
(strictly increasing utility functions).P ⊆ BU andBU ⊆
P implies thatP = BU .

The proof of Theorem 1 follows from results of Theo-
rem 2 and Theorem 3.

Discussion: Theorem 1 implies that the optimum of the
utility maximization problem lies on the boundary of the
utility space, so that a search through the whole utility
space is not required. Hence, any algorithm that performs
an exhaustive search over the setBU would eventually
find the global optimum.

B. Algorithm description

We consider a time window ofSo TTI. Let Sk be
the number of TTI assigned to userk. Then we have,
∑K

k=1
Sk ≤ So.

The greedy algorithm for the utility maximization is
described below. Throughput maximization is performed
in a similar fashion. The algorithm is initialized by
assigning an amount of resource for every user such that
∑K

k=1
Sk = So. At each subsequent iteration a small

amount of resources is taken from the user with the lowest
sensitivity with respect to decrease of utility and assigned
to the user which receives the maximum benefit. This
process is repeated until there is no further improvement
in the objective function.

Let Uk denote the utility function andαk the fraction
of total TTI assigned to userk: αk = Sk

So

,
∑K

k=1
αk = 1.

We consider a discrete set ofαk:

αk ∈ {n ·∆α s.t. n ∈ Zo, 0 ≤ αk ≤ 1}, ∀k (17)

whereZo denotes the set of non-negative integers.
Let ∆Uk denote the change of utility for userk due to

a change of its resource share,∆α. The greedy algorithm
can be expressed as an iterative maximization of the
incremental utility values of two usersk+ andk−, k+ 6=
k− such that

k+ = argmax
k
{∆Uk|αk ← αk + ∆α} (18)

k− = arg min
k
{∆Uk|αk ← αk −∆α} (19)

The greedy algorithm is summarized in Algorithm 1.

C. Complexity

The worst case complexity of the greedy algorithm
described in the previous section depends on the number
of users and the granularity of the sampling ofα. It can
be shown that the cardinality of the constraint set, and
hence the number of points that have to be searched in
the worst case increases with both the number of users
and the granularity of sampling. Specifically, it is shown
that the cardinality of the constraint set stays constant
when the number of users and the number of samples are
interchanged.

Let h be the number of possible modes for each user,
h ∈ {1, 2, · · · }. We assume the modes to be equally
spaced, so that∆α = 1/(h−1). Let P be a set of vectors
such thatP = {(p1 · · · pK)

′

s.t.
∑K

k=1
pk = h, pk ∈

{0, 1, · · · , h}}. ThenP is the set of points corresponding
to

∑K

k=1
αk = 1. Hence the cardinality of the setP ,

|P | is the worst case number of iterations for the greedy
algorithm.

Let |P | = NG(h, K). Then,NG(h, K) =
(

h + K − 1
K − 1

)

=

(

h + K − 2
K − 1

)

+

(

h + K − 2
K − 2

)

= NG(h− 1, K) + NG(h, K − 1).
This results in a 2D symmetric matrix ofNG(h, K)

which implies that we can interchange the number of
users with the granularity of the sampling and yet the
worst case number of iterations for the algorithm stays
constant. This fact can be taken advantage of by using less
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Algorithm 1 Greedy Algorithm
Input : Utility function U , Transmission policiesT ,
number of userK, resource budgetSo, step size∆α,
increase of step size∆αinc, minimum expected utility
change∆Umin, maximum number of iterationsImax.

2: Output : Optimal operating modẽxopt;
Initialization : initial resource share: α =
[1, 0, 0, ·, 0], set ∆Umax,inc to a value greater
than∆Umin. Iteration index,I = 0.

4: for k = 1 to K do
get operating modẽxk from αk, x̃k ∈ Tk

ComputeUk

6: end for
loop

8: for k = 1 to K do
get operating modẽxinc,k from αk +∆α, where
x̃inc,k ∈ Tk;

10: get operating modẽxdec,k from αk−∆α, where
x̃dec,k ∈ Tk;
compute∆Uk(x̃inc,k) and∆Uk(x̃dec,k);

12: end for
if ∆Umax,inc < ∆Umin then

14: set∆α to ∆α + ∆αinc

else
16: find k+, k− using equations 18 and 19

∆Umax,inc = ∆Uk(x̃inc,k)−∆Uk(x̃dec,k)
set∆α to ∆αinc

end if
I + +;

18: if I > Imax then
break;

20: end if
end loop
output: x̃opt

granularity of sampling as the number of users grow, such
that the real-time computation of the optimum remains
feasible. In comparison, the number of iterations for a full
search ishK which becomes infeasible whenK ≫ 1.

V. EVALUATION RESULTS

In our simulation, we consider a single cell scenario.
We allocate all the resources to HSDPA users. We sim-
ulate a 10 user scenario: three voice users, four video
streaming users, two FTP users and one video conferenc-
ing user. In our simulation we compare five schemes as
follows:

1) No-adaptation: this is the default HSDPA mode
which uses GBR, SPI and DT as QoS parameters.
Application-layer rate adaptation is not performed
and the system is left to run into overload.

2) Max-Rate: System overload is avoided by adapting
the multimedia bit rate. Adaptation is done so as to
maximize the total cell throughput.

3) Max-MOS: Adaptation is done so as to maximize
the mean MOS (Quality of Experience) over all

TABLE I.
SIMULATION PARAMETERS

Total transmit power 15.8W

Power allocated to HS-DSCH 11W

Carrier Frequency 2GHz

User speed 3km/h

Distance from Node B 500m – 1.8km

UE category 6

Target BLER 10%

CQI averaging cycle 1sec

RLC PDU size 40byte

Scheduler Proportional Fair

Rvs {0, 30, ...,< 500}kbps

Rvc {0, 96}kbps

Rvoice {0, 6.4, 15.2, 24.6, 64}kbps

RF TP {0, 50, 100, · · · , 250}kbps

Video codec used H.264

Voice codec used G.723, iLBC, SPEEX, G.711

Loss concealment Copy previous frame

Video/Voice rate shaping Transcoding

DTvs, DTF TP 2sec

DTvc, DTvoice 150ms

Simulator OPNET 9.1 with NTT DoCoMo

HSDPA plugin

users, using both the full-search and the greedy
algorithm.

4) MaxMin-MOS: With the max-min fairness, the total
resources are allocated such that all users experi-
ence the same perceived quality (MOS).

5) MaxMin-MinMOSX.Y-MOS: Similar to the max-
min fairness approach, this scheme first sets a min-
imum guarantee of MOSX.Y for all users and then
adapts the resource allocation so as to achieve the
same MOS that is equal or higher than the guarantee
MOS. If the system cannot provide all users with
the guaranteed MOS, a user or more requiring the
highest amount of resources is dropped.

It should be noted that schemes 2) to 5) are application-
aware. Optimization is performed every five seconds. The
utility function of scheme 2 is:

Uk = R̄k, ∀k ∈ K (20)

whereas the utility function of scheme 3) to 5) is:

Uk = MOSk(R̄k), ∀k ∈ K (21)

whereMOSk is the MOS-based utility function of user
k.

The parameters used in our simulations are given in
Table I. A proportional fair scheduler is used. At the
scheduler, we assign lower priority to FTP with respect to
other services. A set of possible rates,Rvs, Rvc, Rvoice,
andRFTP for video streaming, video conferencing, voice
and FTP services, respectively, are chosen as shown in
Table I. Discard timer,DT are set as shown in the table.

The evaluation methodology is of particular importance
to the quality-aware optimization framework, as we are
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Figure 8. Mean utility for the 10 user case as a function of simulation
time.
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Figure 9. Mean utility and the corresponding mean CQI valuesfor 10
users.

interested in characterizing the system performance in
terms of user perceived quality instead of only network-
related parameters.

The simulation of a particular scenario produces packet
traces which contain the time of generation and arrival of
each packet and the chosen rate/operating mode corre-
sponding to the packet. From this information, an offline
evaluation is performed. Each media type is encoded into
a set of possible rates. The packet trace file is used to infer
the rates chosen for each user. Errors introduced to the
bit-stream due to late arrival of the packets are simulated
using the packet arrival times. This distorted bitstream
is then decoded by the audio/video decoder with error-
concealment enabled. The distortion between the original
input stream and the output distorted stream is measured
and converted to MOS following the approach outlined in
Sec. II-C. For more details on the evaluation methodology
please refer to [28].

Fig. 8 shows the mean utility of all the users over
the simulation period of 3 min. From time 10sec to 35
sec, users join the system one by one. The rate-based
scheme and all utility-based schemes start at 40 sec.
We see a significant performance gain between the no-
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Figure 10. CDF of mean utility for the 10 user case using MSSIMas
a video quality assessment

adaptation scheme and the other schemes. It can also
be observed from Fig. 8 that the MOS-based utility
optimization scheme leads to an additional gain compared
to the rate-based scheme. From Figure 9 we see that
most of the gain for theMax-MOS scheme comes from
the users experiencing relatively bad channel conditions
and demanding applications (e.g. VS3). For theMaxMin-
MOS approach, all users experience a similar service
quality (around MOS 3.4). When setting a minimum
guarantee of service quality with MOS 3.5, the VS3 user
suffers the most, since VS3 requires the largest amount of
resources to reach a higher service quality and therefore
the optimizer does not allocate any resources to this
user. Nevertheless, the overall quality of the other users
increases due to the resources taken from the user VS3.
The average perceived service quality for the two FTP
users is slightly lower than for the other users due to the
lower priority setting at the scheduler and the TCP slow-
start behaviour.

Fig. 10 shows the Cumulative Distribution Function
(CDF) of mean MOS over all the users over 300 simula-
tion runs, each consisting of three minutes of simulation
time. Out of the three minutes, we take the results of
only the last two minutes to avoid the effects of startup.
For clarity of the picture, we have left out the results
of MaxMOS with full search, since the MaxMOS with
greedy optimization performs as good as MaxMOS with
full search. We see an average increase of 0.6 MOS
for the Max-Rate optimization scheme when compared
to the no-adaptation case. Using the MOS-based utility
optimization scheme gives a further gain of 0.4 MOS
on average. The CDF curves also show that the MOS-
based schemes have the lowest dispersion around the
mean value, which results in more stable user perceived
quality compared to the other schemes. Although using
Max-Rate approach would lead to the best result in terms
of throughput, it does not guarantee that the quality
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Figure 11. CDF of mean utility for the 10 user case using PSNR as a
video quality assessment

perceived by the end-user will be the best. With the MOS-
based scheme, the resources are allocated by considering
the cost and the gain when giving more or less resources
to the users running different multimedia applications.

By having more voice call users in the cell and less
users for other applications, the gain of MOS-based
scheme is expected to be less due to the smaller number
of steps in the voice utility function. This gives us fewer
operating points to adjust the data rate in the network,
and therefore, less possibility to find an operating point
that improves the quality.

All the results that we have discussed so far are
based on the MSSIM-based video quality assessment as
described in Sec. II-C.3. We have also run simulations for
the PSNR-based video quality measurement and the CDF
curve depicted in Fig. 11 shows a similar result as for
the case of the MSSIM-based CDF. We conclude from
the similarity of these two results that whichever video
quality assessment type we use, the MOS-based utility
optimization schemes outperform the no-adaptation and
the rate-based optimization scheme.

VI. CONCLUSION

We propose a QoE-driven optimization framework for
HSDPA in situations when the total resource of the system
is unable to support the system load. Conventionally,
this situation is avoided by a strict admission control
policy. But by doing this, users would suffer from high
blocking probability and operators would loose revenue.
We propose that the applications be re-adapted, taking
into account the utility functions of the applications. This
policy results in better mean quality of experience for
given system resources and a fixed number of users, and
the admission of more users for a given target quality.
The results from both video quality assessment types
(structural similarity and error sensitivity (e.g., PSNR))
show that all QoE-based utility optimization schemes

(maximization mean MOS, max-min MOS fairness and
max-min MOS with minimum MOS guarantee) outper-
form the no adaptation and the rate-based adaptation. The
selection of the particular objective function for QoE-
based utility optimization depends on the operator policy.
Although the proposed framework is applied to HSDPA
due to its current relevance, it can be also integrated into
future packet-based systems, e.g. in LTE, as well.
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