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Abstract —In this paper, we study how users in a
multi-channel wireless network can select frequency
channels in a distributed and autonomous manner for
transmitting their multimedia data such that their utilities
(multimedia qualities) are maximized. In the multi-user
network, the users’ transmission actions (the channel
selection) are coupled by their mutual interference.
However, most of the current channel selection solutions
respond myopically to the aggregate interference
experienced in each frequency channel. Instead, it is
important to develop accurate prediction models which
enable multimedia users to predict the interference from
the other users and, based on the models, foresightedly
optimize their decisions to maximize multimedia qualities.
Such foresighted decision making is crucial for multimedia
users, since they care more about long-term multimedia
qualities rather than instantaneous throughput. In this
paper, we discuss two multi-user interaction scenarios —
non-collaborative and collaborative communication. In the
non-collaborative scenario, users adapt the prediction
models to maximize their own utilities. In the collaborative
setting, users cooperatively maximize the same system
utility (e.g. the sum of users’ utilities). A user needs to
decide in which setting (collaborative or non-collaborative)
it should operate, and which models it should use to predict
the response of the other users, such that its own utility is
maximized. We show that whether a user obtains a
performance gain or experiences performance degradation
depends on the prediction models adopted by the other
users in different interaction settings. Therefore, to
maximize its own multimedia quality, a user needs to adapt
its prediction model depending on the models adopted by
the other users. Hence, we propose an adaptive algorithm
for the multimedia users to determine their prediction
models that outperform the conventional channel selection
schemes in the multi-channel wireless networks.

Index Terms -multi-user spectrum access, multimedia
users, autonomous decision making, collaborative
and non-collaborative interaction

l. INTRODUCTION

Multi-user spectrum access is an important problem in
multi-channel wireless networks [1][2], where users
compete for the limited spectrum resources to transmit
their applications. The majority of this research focuses
on centralized settings [3][4], where the spectrum is
allocated by a central moderator (e.g. an access point or
a base station), which gathers information from all the
users and makes spectrum allocation decisions for each
of them. These centralized approaches are able to
provide Pareto efficient allocations in the utility (e.g.
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multimedia quality) domain [4][5]. However, such
centralized approaches can have two limitations that
make them undesirable for practical implementations.
First, the centralized approaches are usually very
complicated and potentially inefficient, especially when
users possess various utilities for the multimedia
applications which have various traffic characteristics
(e.g. required bit rates, delay deadlines, etc.). This
disadvantage of centralized solutions further intensifies
as the number of users and frequency channels increase.
Secondly, due to the informationally decentralized
nature of the wireless network, it is impractical to
assume that all the wusers’ information and the
time-varying application requirements can be relayed to
the central moderator in a timely manner. To cope with
this, distributed suboptimal solutions that adapt the
transmission strategies based on well-designed localized
information exchanges among users should be adopted
for the multimedia applications [28][29].

Hence, in this paper, we focus on decentralized
solutions, where users autonomously make their own
spectrum access decisions based on locally gathered
information [7]-[12]. For instance, an interference
minimization algorithm for users to access the frequency
channels in the multi-channel networks was proposed [7].
These users individually measure the signal power in
each channel and select the frequency channel that
contains the minimum energy. In [8], the authors
proposed heuristic channel selection strategies where
users select the previously available channel for data
transmission. Local bargaining solutions were studied in
[9], where users self-organize into bargaining groups
with their neighbors, and adaptively negotiate the
spectrum division. The negotiation and coordination
schemes for users to access the spectrum in a
collaborative manner were studied in [10] and [11].
These prior works allow the users to coordinate with
others and locally negotiate the spectrum access.
However, in these decentralized solutions, users only
respond to a measurement of the aggregate interference
without predicting the channel selection strategies of the
other users. Such myopic decisions may result in a
significant performance degradation compared to the
centralized solutions [12].

An important issue for these decentralized approaches
is that the users’ transmission actions are coupled, i.e. a
user’s channel selection impacts and is impacted by the
channel selection of the other users in the network.
Hence, it is important to develop an appropriate
prediction model for wireless users to predict the
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channel selection of the other users [16][17]. his t
paper, we study how the performancesaofonomous
multimedia users can be improved by adopting models
that predict the channel selection strategies efathner
users. To the best of our knowledge, the advantafes
such predictive spectrum access for autonomous
multimedia users have not been addressed yet. We
assume a simple interference model, where usermtan

Users adapt its prediction model
to maximize its own utility

N

Collaborative settings

Interaction . .
settings: Non-collaborative settings

Prediction Myopic Empirical Conditional Queuing
use the same frequency channel at the same time.models:  model  frequency —empirical model
e . model frequency
Specifically, a user selects the optimal frequency model

channel to transmit its traffic based on the prialicof —

the other users’ transmission strategies (i.e. the Myopic prediction Foresighted prediction

expectation of the other users’ channel selectiBaked Fig. 1. Users’ selections of the interaction settiand the

on these prediction models, users are able totstlec prediction models.

frequency channels to maximize their resulting foresighted multimedia users. Hence, we propose an

multimedia qualities. adaptive algorithm to determine what prediction eied
The goal of the paper is to study how a multimedia an autonomous multimedia user should adopt acaprdin

user can maximize its own utilities by adapting to different user interaction scenarios.

prediction models in different interaction settingsich The contributions of this paper are listed as folio

is illustrated in Figure 1. We show that the perfance e Predictive spectrum access framework for

of a user depends on the prediction models addpyed autonomous multimedia users.

the other users in different interaction settingbis is We propose the predictive spectrum access

because these prediction models can lead to differe framework for multimedia users to model the other

channel selection strategies (i.e. decisions by its  ysers’ channel selection strategies. By using these

competing users), which influence the resulting prediction models, users are able to select their
multimedia qualities. Hence, the prediction modheitta frequency channels to transmit multimedia

user should adopt also depends on the predictiatelno applications in a foresighted manner.

adopted by the other users. e Comparisons of various prediction models in the
Importantly, different prediction models can have collaborative or non-collaborative setting.

different complexities and lead to different preidio We analyze the performance of various prediction

accuracies and various application performances in  models in the two interaction settings. We compare

different interaction settings. In this paper, wefide these prediction models in terms of the size of

two classes of users. One class is the myopic ustis
select the frequency channels by myopically respand
to the aggregate interference to maximize theirequr
utilities, as in [8][12]. The other class is thedsighted
users, who adopt various prediction models for nban
selection, as in [15][16]. Based on the compositidn
these two classes of users, we investigate theaittien

memory used for the prediction results as welhas t
computational complexity. We show the pros and
cons by analyzing each of the prediction models,
which provide important insights that can guide the
design of wireless spectrum access protocols for
multimedia transmission.

Adaptive algorithm for selecting prediction

among users when there are different numbers of
foresighted users in the wireless networks. We @sem
metric based on the Kullback-Leibler Distance (KL
distance) [22] to evaluate the prediction accurafcthe
prediction models. We show that in the
non-collaborative setting, if only one user is &ighted,

a complex prediction model should be deployed by a
user, since it provides more accurate predictiontbér
users’ actions. Alternatively, if multiple usersear
foresighted and deploy complex prediction models fo
selecting their actions, all participating usersn ca selection strategies.

experience significant performance degradationabse This paper is organized as follows. In Sectionwé
they cannot accurately predict each others’ aclions present the adopted wireless multi-channel network
Hence, in this case, simple prediction models, Wiie  setting and formulate the spectrum access probtem f
easily inferred by other users, are desirable.@rother multimedia users. In Section Ill, we present our
hand, in the collaborative setting, since the figited  predictive spectrum access framework for users. We
users are having a common system utility, the gefine various prediction models for users to makdeir
performance can reach the Pareto boundary in thiy ut  competing users in different interaction settings.
domain for these foresighted users [17]. Howevélew  gection |V, the performance of the prediction meder
there are also myopic users in the network, maximiz gjfferent number of foresighted users is analyBabsed

the sum of utilities is not the optimal choice tiese o the performance analysis, in Section V, we psepn

models by foresighted users to maximize their
multimedia qualities.

Based on the KL distance metric, we propose an
adaptive algorithm for a foresighted multimedia
user to determine which prediction model it should
adopt to maximize its multimedia quality. Based on
the selected model, foresighted users can determine
which interaction scenarios they should deploy
(collaborative or non-collaborative) and what model
they should use for predicting other users’ channel
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Fig. 2. Queuing model of multiple users sharingr@lss multi-channel network.

algorithm for multimedia users to adapt their pc&idn respectively. Moreover, these users also posséesetit
models and based on it, apply predictive distribute application requirements, which will be discussed i
spectrum access to approach the performance of aSection IIC.

centralized solution. Section VI gives the simulati

results, and Section VII concludes the paper. B. Actions and strategies

Figure 2 illustrates the considered multi-chanregivork

and the queuing model for the users to evaluate the

utilities and access the multi-channel network. rUsge

A. Considered network settings first senses the frequency channels to check iktlee
We assume that there ar®& users {z;,..., 7y} other users accessing before transmitting its packets.

sharing the same wireless multi-channel network&hE  Subsequently, users estimate the “loading” already
user is composed of a transmitter-receiver paire Th existing in each frequency channel (see Appendix).
transmitters will select frequency channels to grait Based on the loading and the application requirésnen
their packets to the receivers. We assume that theuser z; can evaluate the packet loss rate and select an
multi-channel network has M traffic channels  optimal strategy to transmit the packets to itseieer
{fi,-...fu} as well as an additional control channel. RX,.

The traffic channels are used for data transmissitiile We denote the action of uset; as a vector
the control channel is used to enable users toasmgeh M _

their information in order to coordinate with eaather. @i = [ai,e ooy Ging] € A _ (A= {_0’1_} ), where
Section 1A will discuss how users can coordinate with % = 1 |nd|cates thatz; will transmit its packets
each other in more detail. If multiple users selda using frequency channef;. Otherwise, a; = 0. Let
same frequency channel at the same time, we asaume N-1)x M .

distribute(gl timey sharing MAC protocol (e.g. ALOHA, “F — [aj] € AP denote the actions of the other
Token Ring [24]) that coordinates the channel azads  users  except z; . Let A denote
these users. Hence, these users can take turnedssa  [qf af,....ak] € 4" as the overall action profile
the frequency channel. A user needs to wait fouits to
transmit the multimedia data. Once the user gets a
transmission opportunity, it can transmit the nmédia o Y
data in its queue. More sophisticated MAC protocals probabilities  s; = [si1,8;2,...,5i] € S, where
also be considered to deal with the spectrum s; € & (&8 €[0,1]) represents the probability of the
heterogeneity (such as HD-MAC in [10]). Different sor ;{5 take the actiona;; (i.e. to choose the
MAC protocols will have different overheads inclngdi
the time of waiting for the MAC acknowledgement,

Il. PROBLEM FORMULATION

Q

of all the users.
A strategy of a secondary user, is a vector of

frequency channelf; ). Hence, the summation over all

contention period, etc. that affect the experierseldys, the frequency channels |§: — 1. Note that s;
which are crucial for multimedia transmission (such
overheads are considered in SectiorA)ll. can also be viewed as the fract|on of data fram

Importantly, these users are located at different transmitted on frequency channef; , and hence,

locations and hence, a good frequency channel e b tiple frequency channels are selected for a withr
poor frequency channel for another user, i.e. feagy s> 0. Also, let's_; = [s;] € SNV denote the
channels are experienced differently by variousraise ¥ ' ' - Y

Hence, users may prefer different frequency chanimel  strategies of the other users except; . Let
transmit. We denote the experienced physical layer § = [slT’SQT’ SN] c SMxN denote the overall
transmission rate and average packet error rateider

z; in a frequency channelf; as T; and p; ,

strategy profile across all the users.
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C. Utilities of the multimedia users

We assume that the user possesseds; priority
classes for its multimedia applications. Henceretare

K = ZLKi priority classes Cj,...,Cx for all
multimedia applications, wher€'; is assumed to have
the highest priority andC the lowest priority. We
assume that the traffic in the higher priority skes can
preempt the transmission of the lower priority skss
Denote C; as the set of priority classes that belong to
the user z; . The priority affects a user’s ability to access
the channel. The multimedia application of a user
can be characterized by the following parameters:
- xi =[x, for Cp € C;]: The quality impact factors
of the application ofz; [14], where ;. represents the
guality impact for the packets in priority clags. . The
multimedia packets are prioritized based on thialigu
impact parameter, i.ex; > xo > ... > X > .- > XK -
- A =[N, for C, € C;]: The average packet arrival
rates of the application of;;, where )\, represents the
average packet arrival rate for priority clags .
- d; = [dy, for C, € C;]: The delay deadlines of the
application of z;, where d, represents the packet
delay deadline for the packets in priority claés .
Packets will be regarded useless if they are redeiv
after this delay deadline.
- I, = 1[I, for C, € C,]: The average packet lengths of
the application ofz;, where [, represents the average
packet length for the packets in priority clag .

For multimedia applications, a packet in prioritgss
C, will be regarded useless if it misses its delay
deadline d;, . This will result in significant quality
degradation for such delay-sensitive applicatiofise
utility of user z; is defined as the probability that the
packets can be successfully received by the receige

Ui(siss—i) =1 — P (si,8), 1)

where P, (s;,s_;) represents the packet loss rate of the
most important priority class of user;. Based on the
multimedia parameters|x;,\;,d;,;] , sophisticated
multimedia quality models can be applied basedhan t
packet loss rates (as in [14][29]). For simplicity,this

paper, we assume that each user intends to minitméze
packet loss rate for the most important prioritggssl of

643

z;. Denote Dy, as a random variable of the packet
delay (including the queuing delay and the transiors
delay) for the packets in priority clas€) using a
frequency channelf; . The packet loss probability

Prob(D;; > d;) is the same asProb(Dj. > dy.) if

Cip€eC;, and x = max x - The decentralized
rEG;

spectrum access problem can be formulated as:

sjfpt = argma%(Ui(si,s_i) = argmir;Pi (8i,8_;), Va;.

$; €S;

3)
Throughout this paper, we discuss hawy can model
the strategies of the other usess;, and select an
optimal strategys?’ to minimize this packet loss rate,
and hence maximize its utility. In the Appendix, wil
briefly present how to evaluate this packet loste ra
P, (s;,s_;) , when the strategiegs;,s_;) are known
using a queuing analysis similar to that preserited
[14][18].

D. Predictive spectrum access framework

Although the strategies of the other users are
necessary to solve equation (3) and determine the
optimal spectrum access strategy for the usersy the
cannot be easily obtained in
informationally-decentralized wireless networks.
Conventionally, the users will measure some aggeega
effects of other users’ strategies on the utilgych as
the aggregate interference in [12]. These autonemou
users then myopically respond to these measurements
Such solutions are not efficient and lead to poor
multimedia users’ utilities (as shown in Table bf
Section VI). Hence, we propose a predictive speattru
access framework for a multimedia user to directly
predict the strategies of the other users based on
observed information about the other users andydan
it, determine its optimal spectrum access strategy

Let B (Z,7' ) e sNDM  denote 2, s
prediction results (belief) ors_; at time slot¢. Note
that the prediction resultsB’; are based on the
gathered informationZ;' ! at the previous time slot
t—1 and the adopted prediction model, . Then,
equation (3) can be modified as:

s{(BL;(Z;,Z/7")) = arg }neiilpi (si,BL(Z:, Z'71)) .(4)

8 €S

their applications, due to the content dependencywhere s! is the optimal strategy of;, based on the

characteristic of multimedia applications (as ir0]j3
The lower priority class traffic usually highly demds
on the higher priority class traffic. Note thaf; (s;,s_;)
is also a function of the other users’ strategées. The
packet loss rateP, (s;,s_;) can be calculated by:

M

‘PZ' <S7;,S,Z') = ZSMPI'Ob(D“ > di): (2)
j=1

where D;; and d; denotes the packet delay and the
delay deadline of the highest priority class of trser

© 2009 ACADEMY PUBLISHER

prediction results BL,(Z;,Z;'7!) .
initial prediction resultsB’,, the strategies of the other
users s_; are modeled using the prediction modg|
based on constantly gathered informatiofy . The
predictive spectrum access procedure for useris

presented in Algorithm 1.
The performance of the predictive spectrum access
procedure relies on how accurate the predictionltes

B',(Z;,Z'") are. Surprisingly, this depends not only

Starting from an
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transmission) and announce its traffic specificatidhen
it first joins the networks. The traffic specificat for

z; is denoted asTS; = [b;,l;,X;,X?], where b,
represents the required bit rates of each prialags of

Algorithm 1 The predictive spectrum access for user z;
with a fixed prediction model Z; :
Step 1.Initialization: Set BY, =1/ M x I, where I

is an (N — 1) x M matrix in which all the user z; and [, represents the average packet length.
elements are 1. T Assume X, = [E[X;;],j = 1,..,M,YC, € C;] and
Step 2 Gather the information: Z;". 2 21 . 4
Step 3 Utility evaluation: Evaluate the utility for the Xi = [BElXip),j =1, M,¥C, € C;] . Let E[Xy]
highest priority classC}, of user z; . and E[X?j | represent the first two moments of the
Step 4.0Optimize the channel selection strategiedJse packet transmission time for user, to transmit a
B, in equation (4) to optimizeS that packet in priority classC;, using the frequency channel
minimizes F; and select an actiom] from f;. From the TS;, the packet arrival rate ig; = b
I .. J ‘ lk
the S for packet transmission.

for each priority classC), € C;. Each user retransmits
the packets when the packets are not correcthivede
(as the ARQ protocol in [19][25]). Specifically,packet
prediction model Z; and the availablg will be retransmitted until it is correctly recetveor
information Z;' 1. exceeds the application delay deadline. Hence, the
packet transmission timeX,; (packet service time in

on user z;'s prediction modelZ; , but also on the  Appendix) can be modeled as a geometric random
prediction models adopted by the other users in thevariable. The first two moments ofX;; can be
network. In Section Ill, we will discuss how to @bruct calculated as: '

these prediction modelsZ; in order to build the i

Step 5. Update the prediction results: Set time slot
t:=t+1 and update B’; using the

prediction results B*,(Z;,Z!"') as well as the E[Xy] = Ta—p)" and (5)
. . . . Ui pz,]

required information for these models. Then, inti®ec -

IV, we will analyze the performance of these prédic B[X2) = L+ py) (6)

T3(1—py)*
l;- =1, +1° represents the effective packet length of
the user z; , where [° represents the overhead
including the traffic information exchange overhgad

and the overheads introduced by the MAC protodtis.

In the proposed predictive spectrum access framewor denote TS ; as the traffic specification of all the other
we endow the users with the ability to broadcast or users except the user; .

exchange information with each other as in [14]. We E i 5 d (6 N qditional
also assume that users are truthfully declaringr the rom equation (.) and (6), costs ‘additional
. . X . transmission bandwidth for exchanging the traffic
information. Based on the gathered informaticf; , . . . . "
information. Importantly, since the traffic specétion

:ig;isbu!?raTeog?SE ?afn:jheiiiwﬁ)?(;nrr?ggtr]gtr?eserrsr;osdgnl;;se 4TS is assumed to stay unchanged for the duratiomof a
spectrum access in equation (4). We first dischss t application session, other users do not need thegat
required information in Section' A which also such traffic information often. This is importargdause
includes how frequently users need to gather this gi nri](‘aig:rC\t(TSastzﬁow?];(r)\rgfll}lon exchange overhead
information. Then, we present the definitions ofi@as 9 y '

prediction models in the two different interaction ° Action mfo_rmatlon : .
In the considered multi-channel wireless networks,

models when different prediction models are adojted
the other users in the network.

I1l. PREDICTIONMODELS INVARIOUS INTERACTION
SETTINGS

scenarios. . ; )
users can change their channel selection duringyeve
A. Required information for the prediction models time slot. In this paper, we assume that the action
In order to evaluate the packet loss rate and build information is observed at the beginning of evenyet

models for the other users, a user needs to gatheS'ot s in [14]. We denote the actiong; at the

information about the other users. We classify the specific time slott as afj. Similarly, a; at time slot
required information in the following two classdbe

; . o .
traffic information and the action information. t are denoted as;. Besides the traffic information,

e Traffic information the required infc_eration for the.predicti\_/e spentru
The traffic information includes the parametersttha access —at time slot ¢ is  defined as
characterize the application deployed by each user. Zi' = {al;,7 =1..,t} . In the non-collaborative
Based on the traffic information, a user is able to setting, such information is observed by every user
construct its traffic specification as in [14] (sian to the through the control channel over time. In the
TSPEC in current IEEE 802.11e [19] for multimedia collaborative setting, additional information isquired

© 2009 ACADEMY PUBLISHER
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and such information will be exchanged through the
control channel as well, which will be discussed in
Section IlIC. In this paper, we refer generically to either
observed information and exchanged information gisin

this notation Z;' . Figure 3 provides a block diagram for

the proposed predictive spectrum access framework.

B. Prediction modelsin the non-collaborative setting

In the non-collaborative setting, users gather the
observed information

Zt = 7% = {a’;,r = 1,...,t} and adopt the
prediction modelsZ; to maximize their own utilities
U/ . The optimization formulation is:

si(Z;, Z'7!) = arg max Ur(si 2, 1) . (@)
8 €5

In this paper, we define the following three préidic
models.
Definition 1: Myopic Model (Z; = MP)

In this model, userz; does not predict the other
users’ actions. It myopically selects the bestaachased
on the other users’ actions it observed, i.e.

B, (MP,Z/™") = a!3'. ®)
The resulting channel selection strategy in equa(4)
is also called the myopic best response stratebighnis
widely applied in current multi-user spectrum asces
solutions, such as in [8][12].
Definition 2: Empirical Frequency Moddl (Z; = EF')

By counting the empirical frequency of the other
users’ actions a_; based on the gathered action
information, z; can derive the prediction results

B',(EF,Z/™') on s_; attimeslott as:

_ 1 _
B',(EF, Z! ™) = m(ali +a?, + ...+ a3

1 t—1 =2 t—1 t—2

-1 % Ty B (EF,Z{77)
9)

Such prediction models are also termed fictitiolesy p
[23] in the multi-agent learning literature, whidk
applied in [14][15].
Definition 3: Conditional Empirical Frequency Model

From equation (3), we know that the packet loss rat
P, (s;,s_;) is also a function of other users’ strategies.

On the other hand, uset;’s action can also influence

© 2009 ACADEMY PUBLISHER

the packet loss rate of_; as well as their channel
selection strategies_; . Hence, to perform equation (4)

using the conditional empirical frequency modelerss
count the empirical frequencies of other usergitsfyies
conditioned on its own actions, i.e. instead of eher
counting a_; in the empirical frequency model, the

users count a_;(f;) for each possible frequency

channel f; that it can select. The prediction results

[B",(CE, Z'7 1, ), Vf;] € SM*N-M now become a

vector of the prediction result®’;(CE, 7!, f;) for

each frequency channef;. Each B',(CE,Z/™',f;)

can be updated as follows:

t%l ~a't + i%f -BSNCE, Z! 7% f)
, if a7t select [

BN CE, Z!72, f;), otherwise

B',(CE.Z'7\ f) =

. (10)
The conditional empirical frequency model considers
both the empirical frequency calculation as welltlas
coupling effects among users and thus, createsra mo
sophisticated model than the empirical frequencgaho
The resulting prediction results of the other users
strategies become:
Bt—?(CE‘v -Zit_l) = si.[Bii(CEa -Zit_lhfj)avfj]
M
= Zsij x BL,(CE, 77, f;)
j=1
where s,+[B',(CE, Z'"", f;),Vf;] represents the inner
product of the strategy vectos; and the vector
[B',(CE, Z;'7, ),V f] different  frequency
channels. Hence, the resulting utility maximization
becomes:

SE (BT—L (CE7 -Z;fil))
- argmaxUZTLC(ShSi.[BEi(CEa-Zit_lafj)’vfj]) ,

5 €S

. (11)

over

(12)
This prediction model is similar to the predictiorodel
used in [16].
C. Prediction modelsin the collaborative setting

In the collaborative setting, users maximize aeayst
utility U = F(U{,...,U§), which is a function of
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the users’ utilities andU;{° represents the utility of user
x; using the collaborative prediction model. The
optimization formulation is:

si(Z;, Z'7") = argmaxU""(s;,BL;(Z;, Z' ")) .

5 €S8
(13)
Importantly, although a user; maximizes the system
utility, the user will only adopt this collaboragiv
prediction model, if it can benefit in terms oflimi (i.e.
Uf? > UP). The system utility is determined by the

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 9, OCTOBER 2009

B.,(Z;,Z'™") wil converge to s_; over time.
However, in a real network, all the other users
dynamically optimize their channel selection swyés
based on their own prediction models. In [5][6]hés
been shown that when the myopic prediction model is
performed by all the users, the considered proldam
be regarded as a channel selection game that will
converge to Nash equilibrium. By allowing the user
to make foresighted decisions, the game convemtset
Stackelberg equilibrium [16] when the belief of thser

system designer or assigned by the communication z; is correct. However, in a practical system, therus

protocols. A possible system utility can be the sofm
the users’ utilities, the max-min of the userslitigis or
comply with the proportional fairness among users’
utilities (as in [10]). In this paper, we assumattkthe
system utility is the sum of the users’ utilitiés.order to

do so, in addition to the mentioned traffic infortina

TS, and the action information
Zt = {a7,,7 =1,..,1} , users need also to
exchange their applications’ delay deadlines, i.e.

Zleh — {d,} for evaluating other users’ utilities.
Based on the delay deadline information exchargge, t
expected delaysE[D;;] at time ¢ for user z; to use

frequency channelf; as well as its utility U;* can be

x; can only build its belief based on the proposed
prediction models, and the belief may not be perfec
Such interactions among users, which are baseden t
users’ beliefs, are referred to as Bayesian gag#isajnd
the associated equilibrium concept is the Bayesian
Bayesian Stackelberg equilibrium.

V. PERFORMANCE OF THEPREDICTION MODELS FOR
DIFFERENTNUMBER OFFORESIGHTEDUSERS

As discussed previously, in a multi-channel network
users can have different capabilities to modeldtieer
users, meaning that they may adopt different ptiedic
models to predict the other users’ transmissicategies.
Some of the users have the ability to adopt high

evaluated. Hence, all the queuing parameters arecomplexity prediction models, while some of the rese

available through the information exchange to eatsu
the utility function of each user (see Appendixgnde,
the required information now becomes
_Z;t — {‘Z;t,()bS"Z;t,CCL'Ch}'

Definition 4: Queuing Model (7, = QM)

In this model, userz; not only evaluates its own
utility used in equation (4), it also evaluates tiiities
U_;(s;,s.;) (packet loss rateP ;(s;,s_;)) of the other
users based onZ; . Then, instead of maximizing its
own utility as in equation (4), a user; collaboratively
maximizes the summation of the utilities, i.e.

st(BL,(QM, Z'™1))

N
_ co t t—1
= argma;;; Ui (s, BL (QM, 7' 1))

s €

» (14)

where the prediction resultsB',(QM, Z;™1) s
updated by counting the empirical frequency af; :
1 t—2 i o2
- 1 BLQM, 7
. (15)
Note that all the above prediction models can be
plugged into the Algorithm 1 to provide the

corresponding prediction resul’,;(Z;, Z;'!). Finally,
we compare the differences of the four prediction
models in Table I.

B, (QM, 7Y = cals! +

D. Convergence of the predictive spectrum access
framework

If the other users adopt stationary channel sielec
strategies, i.e.s_; is fixed, the prediction results

© 2009 ACADEMY PUBLISHER

are only capable of taking myopic best response
strategies. However, as mentioned before, in the
decentralized settings, the different predictiondeile
adopted by a user can influence the decisions f it
competing users. Hence, the prediction model a user
should adopt also depends on the prediction models
adopted by the other users in the various inteyacti
settings. To address this issue, we define twosekaof
users. One class is the myopic users, who adopt the
myopic model (selecting the frequency channels by
myopically responding to the interference from ttleer
users, as in [8][12]). The other class is the figfeed
users, who adopt one of the other mentioned piiedict
models for channel selection. In this section, we
investigate the performance of using the presented
prediction models when different numbers of forbsigl
users exist in the multi-channel wireless networks.

A. Considered network compositions

A simple illustration of the interaction among sés
shown in Figure 4. In this figure, we emphasize the
interaction between a uset; and the rest of the users

z_,; with different prediction models. A foresightedeus

Predictive
Spectrum

Access

Belief
Update

Fig. 4 . Asimple illustration of the interactiomang users.
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can adopt three prediction model = {EF,CE,QM} adopts to model the other users, the more acctinate

that perform prediction on other users’ transmissio prediction resultsB’; will be. Hence, if the usen;

strategies. A myopic user, on the other hand, ady o adopts the non-collaborative prediction models, i.e
adopt the myopic model; = MP that best responds 7, = {MP,EF,CE} , the more accurate prediction
to the current measurement of the other usersomEti  regyits B, will lead to a better performance (as shown

Next, we discuss two extreme cases to anal)_/ze thein SectionV.B). As shown in Section VI, the foresighted
performance when multimedia users adopt different

. user using the conditional empirical frequency niode
prediction models. . . .
has the most accurate prediction resuBs;, since it
e Homogeneous network counts the empirical frequencies of other users’
In common decentralized communication scenarios, Strategies conditioned on its own actions.
users are usually assumed to adopt the same poedict Remark 4: The two presented networks are the two
model. To verify the performance in this scenari® extreme cases in the sense of the number of fdresig
define the homogeneous network to construct an users in the network. Denote the number of forasih
environment in which every user applies the same users in the network ad.. The SFU network has

prediction model, i.e. both user; and usersz_, L =1, while the homogeneous network hds= N .
adopt the same prediction model A more general case whel <L <N will be
Z; = {MP,EF,CE,QM} . The concept of the discussed in Section VI.

homogeneous network was similarly adopted in [26]. B. Prediction accuracy analysis of prediction models

Remark 1: When all the users take the same prediction  The yiility metric in this paper, which is the patk
model, the prediction accuracy will not increasettees
complexity of the adopted prediction model increases
shown in Section VI). In a non-collaborative seftin

while users adopt the same prediction model ) : :

Z; = {MP,EF,CE}, the interaction leads to the Nash ]Icn order to provide a practical performance cormguari
Y or the prediction models, we discuss the predictio

equilibrium [5][6]. _ _ accuracy as an alternative metric for evaluating th

Remark 2: In the collaborative setting when each user pregiction models. To quantify the prediction acmy;

adopts the same collaborative prediction model ¢ adopt the KL distance [22] to represent the iptizoh

Z; = QM , all the users will maximize the same accuracy. The KL distance is defined as:

objective function in equation (14) and comply witie ) - q

resulting spectrum access decisions. This collatvera Distf(a’; || B5Y) = 3 am logfr:’ (16)

interaction drives the optimization solution to fRareto

boundary in the utility domain, which can lead to a . i )

better overall performance than the Nash equilioriu a@~; and BZ" vectors, respectively. We then

loss rate P, (s;,s_;) in equation (3), is a highly
complex function. Therefore, it is impractical teatuate
the prediction models using the packet loss ratecty.

h

where ¢,, and 7, represent them! entry in the

[31]. accumulate the KL distanc@ist! (a’; || B'5') for K
e SFU (Single-Foresighted-User) network time slots, i.e.

In the SFU network, only one user is a foresighted K
user adopting a prediction model, while the remeiraf Al =" x DistF (a3 || B, (17)
the users are myopic users, i.e. they only take pieyo k=0

best response strategies (see equation (8)). Suclwhere o > 0 represents the exponential decay rate for

networks are also discussed in [16]. This scenario accumulating the KL distances of the previous time
enables the performance evaluation of various ptiedi slots.

models a user can gain while the other users aopimy  Claim 1: If the KL distance Al > 0, user z; will
Since all the other users are non-collaborative pityo ’ '

users, if the foresighted userr; adopts the
collaborative prediction model, i.eZ;, = QM , the optimal  performance U;"" :EflgéfUi(si’S-i) ;e
performance of the user; will be even worse than AU! > 0, where

merely taking a myopic best response strate o

(Z; :yMP ). Tghis is beiaﬁse the utility fEnction of use?y AU = U —Ui(si(BLi), ). (18)
z; is not directly maximized, while the other users; Recall that s!(B’,) is the adopted channel selection
always deploy their best response strategies. Herses strategy of z; in equation (4).U,(s!(B';),s,) is the

z; will only adopt the non-collaborative prediction actual expected utility that user; will experience.
model Z; = {MP,EF,CE}. The rest of the users:_, Proof: Since s; cannot be observed by the user, it
make myopic decisions using equation (4) with the can only predicts,; using the prediction result8';.

myopic model Z; = MP . Note that the other users_; will select their actions
Remark 3: Since the other userg_; adopt the same .

X a'; according to their strategies;. Hence, if the
myopic model, the more complex model the user o ; i .
prediction resultsB?; deviate from the strategies,; ,

experience performance degradatiahU! from the

© 2009 ACADEMY PUBLISHER
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Obtain the other users’
prediction models

Algorithm 2: The APM spectrum access for user z; that
dynamically adapt prediction model  Z!

Adapt the prediction
model of z;

Non-collaborative
yﬁl

Fig. 5. Rules to adapt the prediction model ingteposed APM
algorithm.

Other users’
prediction models
Zt; C {QM,CE,EF,MP}

Foresighted
neighbors
A

Collaborative
model

Other users’
prediction models
zt; ¢ {CE,EF,MP}

Other users’
prediction models
2t; C {EF,MP}

\
Myopic
neighbors

Other users’
prediction models
71, includes only MP

the KL distance Dist!(a’; || B';') will become
positive and so will Al. Once the prediction results
B', deviate from the strategies;, s!(B’;) will be
that

s = argma}(Ui(si,s_i) ). Hence, the performance
’ 8 €6

opt

different from s; (recall

degradation AU! will be positive.

Claim 2: The larger KL distanceA! results in a larger
expected performance degradation
AU, =37 AUL/T.

Proof: The KL distance A! is measured over time.
The larger Al means that the prediction resul@’
keep deviating from the strategies; . Due to Claim 1,
the expected performance degradation/; will also
be larger over time. Thus, the metrit! measures the

prediction accuracy of the prediction models aricés
the expected performance degradatid; .

V. ADAPTIVE-PREDICTION-MODEL ALGORITHM FOR
FORESIGHTEDUSERS

In this section, we present an algorithm for the
foresighted users in the network to adapt theidiste®n
models, such that these users are able to selfizma
themselves to maximize their utilities. We call sthi

adaptive algorithm the Adaptive-Prediction-Model

Step 1.Initialization: Set Z) = MP and
B, =1/MxI , I
(N —1)x M matrix in which all the elements

are 1.
Step 2. Gathers Traffic information: User z;
traffic information TS_; from other users.

Step 3. Gathers action information as well as the
prediction model parameter: User x; gathers its

where is an

gathers

>

action information a’; and the adopted predictid
models Z'; from other users.

Step 4.Update the prediction model: If A! < 6,,, keep
the prediction model Z/™' = Z! . Otherwise,
select a new modelZ'™! using the following
rules:

If Z', C{CE,QM} and QM is feasible for
user z;, then Z!™ = QM .

Else if Z'; C{MP,EF} and CE is feasible
for user z;, then Z!™! = CE .

Else if EF
7t = EF .
Else Z!™ = MP.

Step 5. Predict the other users’ strategiesBased on the

required information Z;' = {TS_;,a’;} and the

is feasible for userz; , then

selected prediction modef! ™!, user z; builds its

prediction resultsB' 1 (Z!™) Z;') about the othe
users x_; (using equation(8), (9), (10), (15), wh
Z!*' = MP,EF,CE,QM , respectively).

Step 6. Utility evaluation: Evaluate the utility for the highe

priority class C, of user z; .

Step 7. Optimize the channel selection strategyJdser z;
then updates its strategy.™ (B'T1(Z!*! 7))
based on equation (4) foZ/*' = MP,EF,CE .
Otherwise, based on equation (14) fZ[f“ = QM.

Step 8.Select a frequency channel according to the

strategy: User z; selects its actionaf+1 according
to the strategys! ™! (B"*1(Z! 1, 7;1)).

Step 9.Set t .=t + 1. Go back tcStep 3

—

(APM) spectrum access. Figure 5
proposed rules for updating the new prediction rhade
APM algorithm. The algorithm starts with selectitige

myopic model in Section IIB and then determining the

illustrates the

the other users are also foresighted. As latereictiGn
VI, we will show that the performance of usef can

be enhanced when adopting the prediction model

new prediction model based on the prediction models Z!*! = CE and the other users in the network adopt

7', adopted by the other users in the networks. Hence,

the required informationZ;"“*" in Section Ill needs to

include 7', as well. The rules set the prediction model

of user z; to a non-collaborative prediction model

the prediction modelZ’;, = {MP,EF} . Importantly, if
user z; adopt the prediction modef!*! = CE, this

will make the other users that also apply the APM
algorithm to choose a collaborative prediction mode

Z!*' = CE, when the other users are myopic, while set Z!*' = QM . This shows that in a homogeneous

to a collaborative prediction modet!™ = QM , when

© 2009 ACADEMY PUBLISHER

network, when all the foresighted users are abledtupt
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Zt' = QM , the APM algorithm allows them to

collaborate with each other in order to operatettum
Pareto boundary.

By measuring the KL distance metrid! presented

in the previous section, we propose a predictive

spectrum access algorithm that dynamically addps t
prediction model in Algorithm 2. Note that in the
proposed algorithm, userz; will select a new

prediction model Z; to predict the other users’

transmission strategies once the measured larger
than a certain threshold,;, (due to Claim 2). As the
result, if all the prediction models are selectalite
algorithm has the following three properties:

1) If the other usersz_; cannot change their actions (or

no other users exists in the network), the userwill
continue using theMP model, since Al will always

be 0 (due toB; = a’;, = a!;'). This allows userz;

to perform the best response strategy to maximize i
own utility.

2) If the other usersr_; are myopic (i.e. they only
adopt myopic best response strategies as in [8¢), u;
will try to adopt prediction models with high
complexities as much as possible and henge,is able
to predict the other users’ actions more accurately

3) If the other usersz_; also have the capability to
adopt high complexity prediction models, the user
will try to collaborate with these foresighted usdyy
adopting the collaborative@QM prediction model.
When all the users in the network adopt the progose
algorithm, all the users will eventually change ithe
prediction models from non-collaborativé/P model
to the collaborative@QM model.

VI. SIMULATION RESULTS

We simulate a network with 25 users and 15 availabl
frequency channels. We assume that all users stiigam
same video sequence (“Coastguard”, frame rate ¢80
CIF format, delay deadline 500ms) compressed uaing
scalable video codec [27]. The average packet terigt
is 1000 bytes for all the users and the requireddte
b; is ranging from 1 Mbps to 2Mbps. For each user

Dense Packet Error Rate Distribution

Probability Mass Function

0 0.02 0.04 0.06 008 01
Packet Error Rate

0.12 014 016 0.18 0.2

Fig. 6. Packet error rate distribution
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Fig.7 (a) Packet loss rate af; for different network efficiencies

(the other users using MP model in a SFU network).
(b) KL distance ofz; for different network efficiencies (the

other users using MP model in a SFU network).

and frequency channef;, we assume that the physical
transmission rate7;; ranges from 2.5 to 5 Mbps. We

define the network efficiencies in the simulatiGassthe
physical transmission ratd;; (the higher transmission

rate T; gives a multi-channel network with higher

network efficiency) and we model the packet eriaer
p; using a dense probability mass function (PMF)

centered at 0.1 shown in Figure 6. The simulation
parameters are listed in Table II.

We first simulate various prediction models in the
extreme networks — the SFU network (the number of
foresighted users L. =1 ) and the homogeneous
network (L = N ). Then we extend our simulation to a
more general case, witHh < L < N . Finally, we
provide comparisons of the proposed predictive
spectrum access algorithm with the state-of-the-art
spectrum access algorithms.

A. SFU network

In the SFU network, one foresighted user and sévera
myopic users jointly operate. We compare the
performance (packet loss rate) of the foresightser u
x; when all the other users are using the myopic hode
with various network efficiencies. Figure 7 shovre t
packet loss rate of the user; using different prediction
models Z;, = {EF,CE,QM} under various network
efficiencies while the rest of the users apply itingopic
model Z_, = MP . The results are averaged over 100
different realizations of packet error rates. Fegui(a)
shows the performance (packet loss rates) and é-igi)
shows the prediction accuracy (KL distan¢€ ) under



650 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 9, OCTOBER 2009

@) oo (@ e ' ' j —e— QM
—b— EE 08 e i;

0.7

0.6

0.5

0.4

Packet Loss Rate
Packet Loss Rate

0.3

0.2

0.05 \ 1 01
P I N L o L L A
25 3 35 4 4.5 .5 3 35 4 4.5
Transmission Rate (Mbps) Transmission Rate (Mbps)

no

(b) () = o am
20 —+—EF
——CE

18|

B p—p—p—b—Pp—p—p—p D3
14}

12

KL Distance
KL Distance

0.1

NO. N B o

P
0.05

25 3 35 4 4.5 5
Transmission Rate (Mbps)

Fig. 8 (a) Packet loss rate af; for different network efficiencies

i i b i S bt S S
5 3 35 4 4.5 5
Transmission Rate (Mbps)

(the other users using EF model in a SFU network). Fig. 9 (a) Packet loss rate af; for different network efficiencies
(b) KL distance of z; for different network efficiencies (in a homogeneous network).
(the other users using EF model in a SFU network). (b) KL distance of z; for different network efficiencies in

. o . . (in a homogeneous network).
various network efficiencies. It is shown that the

non-collaborative prediction models; = {EF,CE} measured KL distanceA! of z;. Compared to the
perform significantly better than the collaborative performances in the SFU network in the previouarfg,
prediction model Z, = QM against the myopic the packet loss rates increase, since now all thero
models. This simulation results verify that a useould users are foresighted and are able to competehtor t
always maximize their own utility (adopt spectrum resources. Importantly, Figure 9(a) shthas
non-collaborative prediction models) when the other the conditional empirical frequency modél, = CE
users are all myopic users. Both the empiricalfes®y  now performs even worse than the empirical frequenc
model and the conditional empirical frequency model model. Even though the conditional empirical freumye
are able to achieve zero packet loss rates for themodel intends to increase the prediction accuragy b

simulated network efficienciesl}; = 2.5 ~ 5 Mbps). increasing the prediction complexity, Figure 9(hpws
Next, we change the prediction models of the other that the resulting KL distance\! of the conditional
users to the empirical frequency model, i2.;, = EF', empirical frequency model increases drastically.teNo

and simulate the performance and the predictionthat the collaborative prediction modef; = QM
accuracy of z; to evaluate again these prediction provides the best performance in the homogeneous
models. Figure 8 shows that the conditional emgiric network, which confirms the validity of Remark 2 in
frequency model still gives the smallest KL distanc Section IV.

Aj, and leads to the minimum packet loss rate for C. Different number of foresighted users in the network
However, the empirical frequency model gives adarg We next simulate a different number of foresighted

packet loss rate, since the usef uses the same qorq  that adopt the same prediction models

prediction model as the other users and the piedict , _ {EF,CE,QM} in the networks, while the rest of
model can no longer provide an accurate prediation ' T _ )
ger provi u predi the users are all myopic usetd = MP . The number

the other users’ strategies. ) ]
of users is set to 5/ =5), and we simulate the
B. Homogeneous network number of foresighted userd from 2 to 5. The
For homogeneous networks, we simulate the samenumber of frequency channels is 3/(= 3) and the
simulation environment as in the SFU network, excep network efficiency is fixed as 4Mbps. Figure 10 wiso
that now all the users adopt the same predictiodeino  the average packet loss rate over the foresighsedsu
. = {EF,CE,QMY} . Figure 9(a) shows the packet loss using different prediction models. The results shbat,
rate of the users; using different prediction models When there are multiple foresighted users in theowk

under various network efficiencies. Figure 9(b)egithe L'=z2, using a collaborative prediction model
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E. Discussion

] —e—om The APM algorithm starts with the MP prediction
model (Z; = MP ) in the non-collaborative setting,
which leads to a Nash equilibrium. In
two-channel-two-user case, Nash equilibrium is the
Pareto optimum. However, in our multi-user casés th
Nash equilibrium is worse than the Pareto optimum.
When multiple users are foresighted, Figure 10 show
that it is more beneficial for these users to duilate
with each other and deploy a collaborative predicti
model (Z; = @M ). Hence, the APM algorithm allows
them to exchange model parameters and to adapt thei

Performance of Foresighted Users
0.8

Packet Loss Rate

1 2 3 4 5 prediction models such that they can operate in a
Number of Foresighted Users H
_ _ collaborative manner. Note that although these
Fig. 10. Average packet loss rate of the foresigltars for foresighted users are not maximizing their ownitie

different numbe of foresiaghted users in the nork. . . . . .
in this collaborative scenario, the resulting perfance

Z; = QM is better than using a non-collaborative a¢ the pareto frontier using the collaborative futizh
model Z; = {EF,CE} for the foresighted users. model outperforms Nash equilibrium for all usersnide,
Moreover, the cross-over in Figure 9 also implieatt  the foresighted users will not deviate from the
when most of the users are myopic, it is betterthar collaborative setting [31], since they will experie a
foresighted users to apply a complex conditional utility degradation if they deviate from this cditarative
empirical frequency model in order to increase the setting, as shown in Figure 10. However, if thexists
prediction accuracy. However, when more and more non-collaborative users (adopting; = {MP,EF,CE})
users are foresighted, it is more beneficial festhusers  jn the network, the APM allows the foresighted sster

to collab.orate vynh each other and perform a a4opt non-collaborative models Z; = {(EF,CE)
collaborative prediction modek; = QM . The results depending on the number of foresighted users in the

also verify the rules for determining an adaptive aotvork (see the results in Section@)L.
prediction model in the propose algorithm in Sattb

D. Comparisons with the existing approaches VII. CoNcLusioNs

In this subsection, we compare the packet loss afte In this paper, we address the problem of distrithute
the proposed APM algorithm in Section V with two spectrum access by autonomous and multimedia irsers
other existing approaches — the Myopic Decentrdlize wireless networks. We study the multi-user spectrum
(MD) approach [8] and the Predictive Learning (PL) access problem, where each user selects an apgieopri
approach [15]. The MD approach allows the users to prediction model to build a belief on the channel
remember the frequency channels on which they mostselection strategies of the other users, and basetis
recently had successful transmission and then aseh belief, each user chooses a frequency channel to
performs the myopic best response strategy. The PLmaximize the users’ utilities. Based on the queuing
approach allows the users to learn the other users’analysis, we formulate the multimedia users’ paties
transmission strategies based on the action hisdbry rates, which are jointly determined by the channel
every other users and performs a no-regret learningselection strategies of all users. To minimize spatket
algorithm. To obtain a fair comparison, we only ptlo  |oss rates, a user needs to adapt its predictiaehand
the learning part of [15] without local bargainirigle keep building accurate prediction results for thibeo
look at the case with different number of usershvtite users’ transmission strategies. We presented four
same Coastguard video sequence sharing 8 frequencyrediction models with different complexities and
channels (/ = 8). The rest of the parameters are the prediction accuracy under various user interaction
same as previous simulations. The simulation resfit  scenarios.
the average packet loss rates (PLR) and Y-PSNR over |n summary, when most of the users are myopic it i
N multimedia users are shown in Table Il (X better for the foresighted user to apply a complex
represents PSNR below 26 dB, which is unacceptableprediction model to increase its prediction accyrand
for a viewer). The results show that the propos@&MA  hence, its resulting performance. However, when an
algorithm  significantly outperforms the other two increasing number of users are foresighted and diney
approaches. This is because when all the usenssarg deploying various prediction models, it becomes enor
the same approach, our proposed algorithm is able t beneficial for these users to collaborate with eaitter
adapt the prediction model and allow the users toand deploy a collaborative prediction model. We
collaborate with each other. Hence, the overall propose an adaptive algorithm for predictive speutr
performance of the multimedia users becomes clwser access over a wireless multi-channel network to
the centralized optimal solution, which operateshet dynamically adapt the user’s prediction model based
Pareto boundary in the utility domain. local information exchange among the users. The

simulation results show that the proposed algorithm
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outperforms the state-of-the-art
algorithms when transmitting delay-sensitive
applications over wireless multi-channel networks.

APPENDIX

We now briefly present how to evaluate this packet
loss rate P, (s;,s_;), when the strategie¢s;,s_;) are
known using queuing analysis. First, based on the
exchanged traffic specificatioS_; , a user z; is able
to calculate the normalized loading for all thergsée.
P = Sij - (M - B[ Xy ]) and pfy = s - (N - E[X7])
Note that the normalized loading parameter;,

represents the actual fraction of time for user to
transmit its packet in priority clas§’, in a frequency
channel f; .

Then, we adopt an M/G/1 queuing model (packet
arrival of each application is assumed to be Paisso
arrival as in [14][20]) and derive the average qeu
waiting time E[W;.] for packets in priority class’,
using frequency channef; according to the mean
value analysis [18]:

Zk p?jk‘
EU/VM] = k—1 el k : (19)
21— Zkyzlpzjk')(l - Zk|:lpijk‘)
The corresponding average delay[p;] for the

packets in priority clasC, using frequency channel
f; isthen:

E[Dji] = EWj] + E[Xyp ], for Cp € C;. (20)
Finally, given the delay deadlink, the approximate

packet loss rate of priority clas§) using frequency
channel f; can be approximated as [21][14]:

(Z:vzlpjk') : dk)

k
Prob(Dy > dy) = (., o) exp(— E[Dj]

(21)
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