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Abstract –In this paper, we study how users in a 
multi-channel wireless network can select frequency 
channels in a distributed and autonomous manner for 
transmitting their multimedia data such that their utilities 
(multimedia qualities) are maximized. In the multi-user 
network, the users’ transmission actions (the channel 
selection) are coupled by their mutual interference. 
However, most of the current channel selection solutions 
respond myopically to the aggregate interference 
experienced in each frequency channel. Instead, it is 
important to develop accurate prediction models which 
enable multimedia users to predict the interference from 
the other users and, based on the models, foresightedly 
optimize their decisions to maximize multimedia qualities. 
Such foresighted decision making is crucial for multimedia 
users, since they care more about long-term multimedia 
qualities rather than instantaneous throughput. In this 
paper, we discuss two multi-user interaction scenarios – 
non-collaborative and collaborative communication. In the 
non-collaborative scenario, users adapt the prediction 
models to maximize their own utilities. In the collaborative 
setting, users cooperatively maximize the same system 
utility (e.g. the sum of users’ utilities). A user needs to 
decide in which setting (collaborative or non-collaborative) 
it should operate, and which models it should use to predict 
the response of the other users, such that its own utility is 
maximized. We show that whether a user obtains a 
performance gain or experiences performance degradation 
depends on the prediction models adopted by the other 
users in different interaction settings. Therefore, to 
maximize its own multimedia quality, a user needs to adapt 
its prediction model depending on the models adopted by 
the other users. Hence, we propose an adaptive algorithm 
for the multimedia users to determine their prediction 
models that outperform the conventional channel selection 
schemes in the multi-channel wireless networks. 
Index Terms –multi-user spectrum access, multimedia 
users, autonomous decision making, collaborative 
and non-collaborative interaction  

I. INTRODUCTION 
Multi-user spectrum access is an important problem in 

multi-channel wireless networks [1][2], where users 
compete for the limited spectrum resources to transmit 
their applications. The majority of this research focuses 
on centralized settings [3][4], where the spectrum is 
allocated by a central moderator (e.g. an access point or 
a base station), which gathers information from all the 
users and makes spectrum allocation decisions for each 
of them. These centralized approaches are able to 
provide Pareto efficient allocations in the utility (e.g. 

multimedia quality) domain [4][5]. However, such 
centralized approaches can have two limitations that 
make them undesirable for practical implementations. 
First, the centralized approaches are usually very 
complicated and potentially inefficient, especially when 
users possess various utilities for the multimedia 
applications which have various traffic characteristics 
(e.g. required bit rates, delay deadlines, etc.). This 
disadvantage of centralized solutions further intensifies 
as the number of users and frequency channels increase. 
Secondly, due to the informationally decentralized 
nature of the wireless network, it is impractical to 
assume that all the users’ information and the 
time-varying application requirements can be relayed to 
the central moderator in a timely manner. To cope with 
this, distributed suboptimal solutions that adapt the 
transmission strategies based on well-designed localized 
information exchanges among users should be adopted 
for the multimedia applications [28][29]. 

Hence, in this paper, we focus on decentralized 
solutions, where users autonomously make their own 
spectrum access decisions based on locally gathered 
information [7]-[12]. For instance, an interference 
minimization algorithm for users to access the frequency 
channels in the multi-channel networks was proposed [7]. 
These users individually measure the signal power in 
each channel and select the frequency channel that 
contains the minimum energy. In [8], the authors 
proposed heuristic channel selection strategies where 
users select the previously available channel for data 
transmission. Local bargaining solutions were studied in 
[9], where users self-organize into bargaining groups 
with their neighbors, and adaptively negotiate the 
spectrum division. The negotiation and coordination 
schemes for users to access the spectrum in a 
collaborative manner were studied in [10] and [11]. 
These prior works allow the users to coordinate with 
others and locally negotiate the spectrum access. 
However, in these decentralized solutions, users only 
respond to a measurement of the aggregate interference 
without predicting the channel selection strategies of the 
other users. Such myopic decisions may result in a 
significant performance degradation compared to the 
centralized solutions [12]. 
  An important issue for these decentralized approaches 
is that the users’ transmission actions are coupled, i.e. a 
user’s channel selection impacts and is impacted by the 
channel selection of the other users in the network. 
Hence, it is important to develop an appropriate 
prediction model for wireless users to predict the Manuscript received February 27, 2009; revised June 23, 2009;
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channel selection of the other users [16][17]. In this 
paper, we study how the performances of autonomous 
multimedia users can be improved by adopting models 
that predict the channel selection strategies of the other 
users. To the best of our knowledge, the advantages of 
such predictive spectrum access for autonomous 
multimedia users have not been addressed yet. We 
assume a simple interference model, where users cannot 
use the same frequency channel at the same time. 
Specifically, a user selects the optimal frequency 
channel to transmit its traffic based on the prediction of 
the other users’ transmission strategies (i.e. the 
expectation of the other users’ channel selection). Based 
on these prediction models, users are able to select the 
frequency channels to maximize their resulting 
multimedia qualities. 

The goal of the paper is to study how a multimedia 
user can maximize its own utilities by adapting 
prediction models in different interaction settings, which 
is illustrated in Figure 1. We show that the performance 
of a user depends on the prediction models adopted by 
the other users in different interaction settings. This is 
because these prediction models can lead to different 
channel selection strategies (i.e. decisions by its 
competing users), which influence the resulting 
multimedia qualities. Hence, the prediction model that a 
user should adopt also depends on the prediction models 
adopted by the other users. 

Importantly, different prediction models can have 
different complexities and lead to different prediction 
accuracies and various application performances in 
different interaction settings. In this paper, we define 
two classes of users. One class is the myopic users, who 
select the frequency channels by myopically responding 
to the aggregate interference to maximize their current 
utilities, as in [8][12]. The other class is the foresighted 
users, who adopt various prediction models for channel 
selection, as in [15][16]. Based on the composition of 
these two classes of users, we investigate the interaction 
among users when there are different numbers of 
foresighted users in the wireless networks. We propose a 
metric based on the Kullback-Leibler Distance (KL 
distance) [22] to evaluate the prediction accuracy of the 
prediction models. We show that in the 
non-collaborative setting, if only one user is foresighted, 
a complex prediction model should be deployed by a 
user, since it provides more accurate prediction of other 
users’ actions. Alternatively, if multiple users are 
foresighted and deploy complex prediction models for 
selecting their actions, all participating users can 
experience significant performance degradation, because 
they cannot accurately predict each others’ actions. 
Hence, in this case, simple prediction models, which are 
easily inferred by other users, are desirable. On the other 
hand, in the collaborative setting, since the foresighted 
users are having a common system utility, the 
performance can reach the Pareto boundary in the utility 
domain for these foresighted users [17]. However, when 
there are also myopic users in the network, maximizing 
the sum of utilities is not the optimal choice for these 

foresighted multimedia users. Hence, we propose an 
adaptive algorithm to determine what prediction models 
an autonomous multimedia user should adopt according 
to different user interaction scenarios. 

The contributions of this paper are listed as follows: 
• Predictive spectrum access framework for 

autonomous multimedia users. 
We propose the predictive spectrum access 
framework for multimedia users to model the other 
users’ channel selection strategies. By using these 
prediction models, users are able to select their 
frequency channels to transmit multimedia 
applications in a foresighted manner. 

• Comparisons of various prediction models in the 
collaborative or non-collaborative setting. 
We analyze the performance of various prediction 
models in the two interaction settings. We compare 
these prediction models in terms of the size of 
memory used for the prediction results as well as the 
computational complexity. We show the pros and 
cons by analyzing each of the prediction models, 
which provide important insights that can guide the 
design of wireless spectrum access protocols for 
multimedia transmission. 

• Adaptive algorithm for selecting prediction 
models by foresighted users to maximize their 
multimedia qualities. 
Based on the KL distance metric, we propose an 
adaptive algorithm for a foresighted multimedia 
user to determine which prediction model it should 
adopt to maximize its multimedia quality. Based on 
the selected model, foresighted users can determine 
which interaction scenarios they should deploy 
(collaborative or non-collaborative) and what model 
they should use for predicting other users’ channel 
selection strategies. 

This paper is organized as follows. In Section II, we 
present the adopted wireless multi-channel network 
setting and formulate the spectrum access problem for 
multimedia users. In Section III, we present our 
predictive spectrum access framework for users. We 
define various prediction models for users to model their 
competing users in different interaction settings. In 
Section IV, the performance of the prediction models for 
different number of foresighted users is analyzed. Based 
on the performance analysis, in Section V, we propose an 

 Users adapt its prediction model
to maximize its own utility

Non-collaborative settings Collaborative settings

Myopic
model

Prediction
models:

Empirical
frequency
model

Conditional
empirical
frequency
model

Queuing
model

Interaction
settings:

Myopic prediction Foresighted prediction

Users adapt its prediction model
to maximize its own utility

Non-collaborative settings Collaborative settings

Myopic
model

Prediction
models:

Empirical
frequency
model

Conditional
empirical
frequency
model

Queuing
model

Interaction
settings:

Myopic prediction Foresighted prediction  
Fig. 1. Users’ selections of the interaction settings and the 

prediction models. 
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algorithm for multimedia users to adapt their prediction 
models and based on it, apply predictive distributed 
spectrum access to approach the performance of a 
centralized solution. Section VI gives the simulation 
results, and Section VII concludes the paper. 

II.  PROBLEM FORMULATION 

A. Considered network settings 

  We assume that there are N  users 1{ ,..., }Nx x  

sharing the same wireless multi-channel networks. Each 
user is composed of a transmitter-receiver pair. The 
transmitters will select frequency channels to transmit 
their packets to the receivers. We assume that the 
multi-channel network has M  traffic channels 

1{ ,..., }Mf f  as well as an additional control channel. 

The traffic channels are used for data transmission, while 
the control channel is used to enable users to exchange 
their information in order to coordinate with each other. 
Section III.A will discuss how users can coordinate with 
each other in more detail. If multiple users select the 
same frequency channel at the same time, we assume a 
distributed time sharing MAC protocol (e.g. ALOHA, 
Token Ring [24]) that coordinates the channel access of 
these users. Hence, these users can take turns to access 
the frequency channel. A user needs to wait for its turn to 
transmit the multimedia data. Once the user gets a 
transmission opportunity, it can transmit the multimedia 
data in its queue. More sophisticated MAC protocols can 
also be considered to deal with the spectrum 
heterogeneity (such as HD-MAC in [10]). Different 
MAC protocols will have different overheads including 
the time of waiting for the MAC acknowledgement, 
contention period, etc. that affect the experienced delays, 
which are crucial for multimedia transmission (such 
overheads are considered in Section III.A).  

Importantly, these users are located at different 
locations and hence, a good frequency channel can be a 
poor frequency channel for another user, i.e. frequency 
channels are experienced differently by various users. 
Hence, users may prefer different frequency channels to 
transmit. We denote the experienced physical layer 
transmission rate and average packet error rate for user 
ix  in a frequency channel jf  as ijT  and ijp , 

respectively. Moreover, these users also possess different 
application requirements, which will be discussed in 
Section II.C.  

B. Actions and strategies 

Figure 2 illustrates the considered multi-channel network 
and the queuing model for the users to evaluate their 
utilities and access the multi-channel network. User ix  
first senses the frequency channels to check if there are 
other users accessing jf  before transmitting its packets. 

Subsequently, users estimate the “loading” already 
existing in each frequency channel (see Appendix). 
Based on the loading and the application requirements, 
user ix  can evaluate the packet loss rate and select an 
optimal strategy to transmit the packets to its receiver 
RXi .  

We denote the action of user ix  as a vector 

1[ ,..., ,..., ] M
i i ij iMa a a= ∈a A  ( {0,1}=A ), where 

1ija =  indicates that ix  will transmit its packets 

using frequency channel jf . Otherwise, 0ija = . Let 
( )-1[ ] N M

i ija
×

− = ∈a A  denote the actions of the other 

users except ix . Let A  denote 

1 2[ ,..., ]T T T M N
N, ×∈a a a A  as the overall action profile 

of all the users. 
A strategy of a secondary user ix  is a vector of 

probabilities 1 2[ , ,..., ] M
i i i iMs s s= ∈s S , where 

ijs ∈ S  ( [0,1]∈S ) represents the probability of the 

user ix  to take the action ija  (i.e. to choose the 

frequency channel jf ). Hence, the summation over all 

the frequency channels is 
1

1
M

ijj
s

=
=∑ . Note that ijs  

can also be viewed as the fraction of data from ix  
transmitted on frequency channel jf , and hence, 

multiple frequency channels are selected for a user with 
0ijs > . Also, let ( )-1[ ] N M

i ijs
×

− = ∈s S  denote the 

strategies of the other users except ix . Let 

1 2[ , ,..., ]T T T M N
N

×= ∈S s s s S  denote the overall 

strategy profile across all the users. 

jf

1x

�

Nx

�

�

1a

Na

1jkρ

Njkρ

1 1 1 1[ , , , ]d λ χ l

[ , , , ]N N N Nd λ χ l
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Fig. 2. Queuing model of multiple users sharing a wireless multi-channel network. 
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C. Utilities of the multimedia users 

We assume that the user ix  possesses iK  priority 
classes for its multimedia applications. Hence, there are 

1

N

ii
K K

=
=∑  priority classes 1,..., KC C  for all 

multimedia applications, where 1C  is assumed to have 
the highest priority and KC  the lowest priority. We 
assume that the traffic in the higher priority classes can 
preempt the transmission of the lower priority classes. 
Denote iC  as the set of priority classes that belong to 
the user ix . The priority affects a user’s ability to access 
the channel. The multimedia application of a user ix  
can be characterized by the following parameters: 
- [ ,  for ]i k k iCχ= ∈ Cχ : The quality impact factors 

of the application of ix  [14], where kχ  represents the 

quality impact for the packets in priority class kC . The 
multimedia packets are prioritized based on this quality 
impact parameter, i.e. 1 2 ... ...k Kχ χ χ χ≥ ≥ ≥ ≥ ≥ . 

- [ ,  for ]i k k iCλ= ∈ Cλ : The average packet arrival 

rates of the application of ix , where kλ  represents the 
average packet arrival rate for priority class kC . 

- [ ,  for ]i k k id C= ∈d C : The delay deadlines of the 

application of ix , where kd  represents the packet 
delay deadline for the packets in priority class kC . 
Packets will be regarded useless if they are received 
after this delay deadline. 
- [ ,  for ]i k k il C= ∈ Cl : The average packet lengths of 

the application of ix , where kl  represents the average 
packet length for the packets in priority class kC . 

For multimedia applications, a packet in priority class 

kC  will be regarded useless if it misses its delay 
deadline kd . This will result in significant quality 
degradation for such delay-sensitive applications. The 
utility of user ix  is defined as the probability that the 
packets can be successfully received by the receiver, i.e. 

( , ) 1 ( , )i i i i i iU P− −= −s s s s ,         (1) 

where ( , )i i iP −s s  represents the packet loss rate of the 

most important priority class of user ix . Based on the 

multimedia parameters [ , , , ]i i i id lχ λ , sophisticated 

multimedia quality models can be applied based on the 
packet loss rates (as in [14][29]). For simplicity, in this 
paper, we assume that each user intends to minimize the 
packet loss rate for the most important priority class of 
their applications, due to the content dependency 
characteristic of multimedia applications (as in [30]). 
The lower priority class traffic usually highly depends 
on the higher priority class traffic. Note that ( , )i i iU −s s  

is also a function of the other users’ strategies i−s . The 

packet loss rate ( , )i i iP −s s  can be calculated by: 

 
1

( , ) Prob( )
M

i i i ij ij i

j

P s D d−
=

= >∑s s ,    (2) 

where ijD  and id  denotes the packet delay and the 

delay deadline of the highest priority class of the user 

ix . Denote jkD  as a random variable of the packet 

delay (including the queuing delay and the transmission 
delay) for the packets in priority class kC  using a 
frequency channel jf . The packet loss probability 

Prob( )ij iD d>  is the same as ' 'Prob( )jk kD d>  if 

'k iC ∈ C  and ' max
k i

k k
C

χ χ
∈

=
C

. The decentralized 

spectrum access problem can be formulated as: 

-argmax ( , ) arg min ( , ),  
i i i i

opt
i i i i i i ii

s s
U P x−

∈ ∈
= = ∀s s s s s

S S
.

 (3) 
Throughout this paper, we discuss how ix  can model 
the strategies of the other users -is  and select an 

optimal strategy optis  to minimize this packet loss rate, 

and hence maximize its utility. In the Appendix, we will 
briefly present how to evaluate this packet loss rate 

( , )i i iP −s s , when the strategies ( , )i i−s s  are known 

using a queuing analysis similar to that presented in 
[14][18]. 

D. Predictive spectrum access framework 

Although the strategies of the other users i−s  are 
necessary to solve equation (3) and determine the 
optimal spectrum access strategy for the users, they 
cannot be easily obtained in 
informationally-decentralized wireless networks. 
Conventionally, the users will measure some aggregate 
effects of other users’ strategies on the utility, such as 
the aggregate interference in [12]. These autonomous 
users then myopically respond to these measurements. 
Such solutions are not efficient and lead to poor 
multimedia users’ utilities (as shown in Table III of 
Section VI). Hence, we propose a predictive spectrum 
access framework for a multimedia user ix  to directly 
predict the strategies of the other users i−s  based on 
observed information about the other users and, based on 
it, determine its optimal spectrum access strategy is . 

Let ( )1 -1( , )t t N M
i i iZ − ×
− ∈B I S  denote ix ’s 

prediction results (belief) on i−s  at time slot t . Note 

that the prediction results t i−B  are based on the 

gathered information 1t
i
−

I  at the previous time slot 

1t −  and the adopted prediction model iZ . Then, 
equation (3) can be modified as: 

1 1( ( , )) argmin ( , ( , ))
i i

t t t t t
i i i i i i i i i

s
Z P Z− −

− −
∈

=s B s B
S

I I ,(4) 

where t
is  is the optimal strategy of ix  based on the 

prediction results 1( , )t t
i i iZ −
−B I . Starting from an 

initial prediction results 0
i−B , the strategies of the other 

users i−s  are modeled using the prediction model iZ  

based on constantly gathered information iI . The 
predictive spectrum access procedure for user ix  is 
presented in Algorithm 1. 
  The performance of the predictive spectrum access 
procedure relies on how accurate the prediction results 

1( , )t t
i i iZ −
−B I  are. Surprisingly, this depends not only 
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on user ix ’s prediction model iZ , but also on the 
prediction models adopted by the other users in the 
network. In Section III, we will discuss how to construct 
these prediction models iZ  in order to build the 

prediction results 1( , )t t
i i iZ −
−B I  as well as the 

required information for these models. Then, in Section 
IV, we will analyze the performance of these prediction 
models when different prediction models are adopted by 
the other users in the network. 

III.  PREDICTION MODELS IN VARIOUS INTERACTION 

SETTINGS 

In the proposed predictive spectrum access framework, 
we endow the users with the ability to broadcast or 
exchange information with each other as in [14]. We 
also assume that users are truthfully declaring their 
information. Based on the gathered information iI , 
users build models of their competing users’ spectrum 
access strategies and implement the model-based 
spectrum access in equation (4). We first discuss the 
required information in Section III.A, which also 
includes how frequently users need to gather this 
information. Then, we present the definitions of various 
prediction models in the two different interaction 
scenarios. 

A. Required information for the prediction models 

In order to evaluate the packet loss rate iP  and build 
models for the other users, a user needs to gather 
information about the other users. We classify the 
required information in the following two classes: the 
traffic information and the action information. 
• Traffic information 

The traffic information includes the parameters that 
characterize the application deployed by each user. 
Based on the traffic information, a user is able to 
construct its traffic specification as in [14] (similar to the 
TSPEC in current IEEE 802.11e [19] for multimedia 

transmission) and announce its traffic specification when 
it first joins the networks. The traffic specification for 

ix  is denoted as 2[ , , , ]i i i i i= b X XTS l , where ib  

represents the required bit rates of each priority class of 
user ix  and il  represents the average packet length. 

Assume [ [ ], 1,..., , ]i ijk k iE X j M C= = ∀ ∈X C  and 
2 2[ [ ], 1,..., , ]i ijk k iE X j M C= = ∀ ∈X C . Let [ ]ijkE X  

and 2[ ]ijkE X  represent the first two moments of the 

packet transmission time for user ix  to transmit a 
packet in priority class kC  using the frequency channel 

jf . From the iTS , the packet arrival rate is k
k

k

b

l
λ =  

for each priority class k iC ∈ C . Each user retransmits 
the packets when the packets are not correctly received 
(as the ARQ protocol in [19][25]). Specifically, a packet 
will be retransmitted until it is correctly received or 
exceeds the application delay deadline. Hence, the 
packet transmission time ijX  (packet service time in 

Appendix) can be modeled as a geometric random 
variable. The first two moments of ijX  can be 

calculated as: 
ˆ

 [ ]
(1 )

i
ij

ij ij

l
E X

T p
=

−
, and         (5) 

2
2

2 2

ˆ (1 )
 [ ]

(1 )

i ij
ij

ij ij

l p
E X

T p

+
=

−
.            (6) 

ˆ o
i il l l= +  represents the effective packet length of 

the user ix , where ol  represents the overhead 
including the traffic information exchange overheads 
and the overheads introduced by the MAC protocols. We 
denote i−TS  as the traffic specification of all the other 

users except the user ix . 
From equation (5) and (6), ol  costs additional 

transmission bandwidth for exchanging the traffic 
information. Importantly, since the traffic specification 

iTS  is assumed to stay unchanged for the duration of an 
application session, other users do not need to gather 
such traffic information often. This is important because 
it reduces the information exchange overhead 
significantly as shown in [14].  
• Action information 

In the considered multi-channel wireless networks, 
users can change their channel selection during every 
time slot. In this paper, we assume that the action 
information is observed at the beginning of every time 
slot, as in [14]. We denote the actions ija  at the 

specific time slot t  as t
ija . Similarly, ia  at time slot 

t  are denoted as tia . Besides the traffic information, 
the required information for the predictive spectrum 
access at time slot t  is defined as 

{ , 1,..., }t
i i tτ τ−= =I a . In the non-collaborative 

setting, such information is observed by every user 
through the control channel over time. In the 
collaborative setting, additional information is required 

Algorithm 1 The predictive spectrum access for user ix  

with a fixed prediction model iZ : 

Step 1. Initialization: Set 0 1/i M− = ×B I , where I  

is an ( 1)N M− ×  matrix in which all the 

elements are 1.  

Step 2. Gather the information:  t
iI . 

Step 3. Utility evaluation:  Evaluate the utility for the 
highest priority class kC  of user ix . 

Step 4. Optimize the channel selection strategies: Use 
t
i−B  in equation (4) to optimize st

i  that 

minimizes iP  and select an action tia  from 

the st
i  for packet transmission. 

Step 5. Update the prediction results: Set time slot 

: 1t t= +  and update  t
i−B  using the 

prediction model iZ  and the available 

information 1t
i
−

I .  
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and such information will be exchanged through the 
control channel as well, which will be discussed in 
Section III.C. In this paper, we refer generically to either 
observed information and exchanged information using 
this notation t

iI . Figure 3 provides a block diagram for 
the proposed predictive spectrum access framework. 

B. Prediction models in the non-collaborative setting 

In the non-collaborative setting, users gather the 
observed information  

, { , 1,..., }t obst
i ii tτ τ−= = =I I a  and adopt the 

prediction models iZ  to maximize their own utilities 
nc
iU . The optimization formulation is:  

1 1( , ) argmax ( , , )
i i

t t nc t
i i i i i i i

s
Z U Z− −

∈
=s s

S
I I .   (7)  

In this paper, we define the following three prediction 
models. 
Definition 1: Myopic Model ( iZ MP= ) 
  In this model, user ix  does not predict the other 
users’ actions. It myopically selects the best action based 
on the other users’ actions it observed, i.e. 

1 1( , )t t t
i i iMP − −
− −=B I a .        (8) 

The resulting channel selection strategy in equation (4) 
is also called the myopic best response strategy, which is 
widely applied in current multi-user spectrum access 
solutions, such as in [8][12]. 
Definition 2: Empirical Frequency Model ( iZ EF= ) 

By counting the empirical frequency of the other 
users’ actions i−a  based on the gathered action 
information, ix  can derive the prediction results 

1( , )t t
i iEF −
−B I  on i−s  at time slot t  as: 

    
1 1 2 1

1 1 2

1
( , ) ( ... )

1
1 2

                   ( , )
1 1

t t t
i i i i i

t t t
i i i

EF
t

t
EF

t t

− −
− − − −

− − −
− −

= + + +
−

−
= ⋅ + ⋅
− −

B

B

I

I

a a a

a

.        

       (9)  
Such prediction models are also termed fictitious play 
[23] in the multi-agent learning literature, which is 
applied in [14][15]. 
Definition 3: Conditional Empirical Frequency Model 
( iZ CE= ) 

From equation (3), we know that the packet loss rate 
( , )i i iP −s s  is also a function of other users’ strategies. 

On the other hand, user ix ’s action can also influence 

the packet loss rate of ix−  as well as their channel 
selection strategies i−s . Hence, to perform equation (4) 
using the conditional empirical frequency model, users 
count the empirical frequencies of other users’ strategies 
conditioned on its own actions, i.e. instead of merely 
counting i−a  in the empirical frequency model, the 

users count ( )i jf−a  for each possible frequency 

channel jf  that it can select. The prediction results 
( )1 -1[ ( , , ), ]t t M N M

i i j jB CE f f− × ×
− ∀ ∈I S  now become a 

vector of the prediction results 1( , , )t t
i i jB CE f−
− I  for 

each frequency channel jf . Each 1( , , )t t
i i jB CE f−
− I  

can be updated as follows: 
1 1 2

1 1

1 2

1 2
( , , )

1 1
( , , )                       ,   if  select 

( , , ),  otherwise            

t t t
i i i j

t t t
i i j i j

t t
i i j

t
B CE f

t t
B CE f f

B CE f

− − −
− −

− −
−

− −
−

− ⋅ + ⋅ − −= 


I

I

I

a

a

.             (10)  
The conditional empirical frequency model considers 
both the empirical frequency calculation as well as the 
coupling effects among users and thus, creates a more 
sophisticated model than the empirical frequency model. 
The resulting prediction results of the other users’ 
strategies become: 

1 1

1

1

( , ) [ ( , , ), ]

                  ( , , )

t t t t
i i i i i j j

M
t t

ij i i j

j

CE B CE f f

s B CE f

− −
− −

−
−

=

= ∀

= ×∑

B s iI I

I
. (11) 

where 1[ ( , , ), ]t t
i i i j jB CE f f−

− ∀s i I  represents the inner 

product of the strategy vector is  and the vector 
1[ ( , , ), ]t t

i i j jB CE f f−
− ∀I  over different frequency 

channels. Hence, the resulting utility maximization 
becomes: 

1

1

( ( , ))

argmax ( , [ ( , , ), ])
i i

t t t
i i i

nc t t
i i i i i j j

s

CE

U B CE f f

−
−

−
−

∈
= ∀

s B

s s i
S

I

I
,

(12) 
This prediction model is similar to the prediction model 
used in [16]. 

C. Prediction models in the collaborative setting 

In the collaborative setting, users maximize a system 
utility 1( ,..., )tot co co

NU F U U= , which is a function of 

i−BBelief
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Fig. 3. Block diagram of the proposed predictive spectrum access framework. 
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the users’ utilities and coiU  represents the utility of user 

ix  using the collaborative prediction model. The 
optimization formulation is: 

1 1( , ) argmax ( , ( , ))
i i

t t tot t t
i i i i i i i

s
Z U Z− −

−
∈

=s s B
S

I I . 

(13) 
Importantly, although a user ix  maximizes the system 
utility, the user will only adopt this collaborative 
prediction model, if it can benefit in terms of utility (i.e. 
co nc
i iU U≥ ). The system utility is determined by the 

system designer or assigned by the communication 
protocols. A possible system utility can be the sum of 
the users’ utilities, the max-min of the users’ utilities or 
comply with the proportional fairness among users’ 
utilities (as in [10]). In this paper, we assume that the 
system utility is the sum of the users’ utilities. In order to 
do so, in addition to the mentioned traffic information 

i−TS  and the action information 
, { , 1,..., }t obs

ii tτ τ−= =I a , users need also to 

exchange their applications’ delay deadlines, i.e.  
, { }t exch

ii = dI  for evaluating other users’ utilities. 

Based on the delay deadline information exchange, the 
expected delays [ ]ijE D  at time t  for user ix  to use 

frequency channel jf  as well as its utility co
iU  can be 

evaluated. Hence, all the queuing parameters are 
available through the information exchange to evaluate 
the utility function of each user (see Appendix). Hence, 
the required information now becomes 

, ,{ , }t obs t excht
i i i=I I I . 

Definition 4: Queuing Model ( iZ QM= ) 
In this model, user ix  not only evaluates its own 

utility used in equation (4), it also evaluates the utilities 

-( , )i i iU− s s  (packet loss rate -( , )i i iP− s s ) of the other 

users based on iI . Then, instead of maximizing its 
own utility as in equation (4), a user ix  collaboratively 
maximizes the summation of the utilities, i.e.  

1

1

1

( ( , ))

argmax ( , ( , ))
i i

t t t
i i i

N
co t t
i i i i

s
i

QM

U QM

−
−

−
−

∈
=

= ∑

s B

s B
S

I

I
, (14) 

where the prediction results 1( , )t t
i iQM −
−B I  is 

updated by counting the empirical frequency of i−a : 

1 1 1 21 2
( , ) ( , )

1 1
t t t t t
i i i i i

t
QM QM

t t
− − − −

− − −
−

= ⋅ + ⋅
− −

B BI Ia

.                    (15) 
  Note that all the above prediction models can be 
plugged into the Algorithm 1 to provide the 
corresponding prediction results 1( , )t t

i i iZ −
−B I . Finally, 

we compare the differences of the four prediction 
models in Table I. 

D. Convergence of the predictive spectrum access 
framework 

  If the other users adopt stationary channel selection 
strategies, i.e. i−s  is fixed, the prediction results 

1( , )t t
i i iZ −
−B I  will converge to i−s  over time. 

However, in a real network, all the other users 
dynamically optimize their channel selection strategies 
based on their own prediction models. In [5][6], it has 
been shown that when the myopic prediction model is 
performed by all the users, the considered problem can 
be regarded as a channel selection game that will 
converge to Nash equilibrium. By allowing the user ix  
to make foresighted decisions, the game converges to the 
Stackelberg equilibrium [16] when the belief of the user 

ix  is correct. However, in a practical system, the user 

ix  can only build its belief based on the proposed 
prediction models, and the belief may not be perfect. 
Such interactions among users, which are based on the 
users’ beliefs, are referred to as Bayesian games [23] and 
the associated equilibrium concept is the Bayesian or 
Bayesian Stackelberg equilibrium. 

IV.  PERFORMANCE OF THE PREDICTION MODELS FOR 

DIFFERENT NUMBER OF FORESIGHTED USERS 

As discussed previously, in a multi-channel network, 
users can have different capabilities to model the other 
users, meaning that they may adopt different prediction 
models to predict the other users’ transmission strategies. 
Some of the users have the ability to adopt high 
complexity prediction models, while some of the users 
are only capable of taking myopic best response 
strategies. However, as mentioned before, in the 
decentralized settings, the different prediction models 
adopted by a user can influence the decisions of its 
competing users. Hence, the prediction model a user 
should adopt also depends on the prediction models 
adopted by the other users in the various interaction 
settings. To address this issue, we define two classes of 
users. One class is the myopic users, who adopt the 
myopic model (selecting the frequency channels by 
myopically responding to the interference from the other 
users, as in [8][12]). The other class is the foresighted 
users, who adopt one of the other mentioned prediction 
models for channel selection. In this section, we 
investigate the performance of using the presented 
prediction models when different numbers of foresighted 
users exist in the multi-channel wireless networks. 

A. Considered network compositions 

A simple illustration of the interaction among users is 
shown in Figure 4. In this figure, we emphasize the 
interaction between a user ix  and the rest of the users 

ix−  with different prediction models. A foresighted user 

ix ix−

ia i−a

i−I

iB i−B

iI

 
Fig. 4 . A simple illustration of the interaction among users. 
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can adopt three prediction models { , , }iZ EF CE QM=  

that perform prediction on other users’ transmission 
strategies. A myopic user, on the other hand, can only 
adopt the myopic model iZ MP=  that best responds 
to the current measurement of the other users’ actions. 
Next, we discuss two extreme cases to analyze the 
performance when multimedia users adopt different 
prediction models. 

• Homogeneous network 
In common decentralized communication scenarios, 

users are usually assumed to adopt the same prediction 
model. To verify the performance in this scenario, we 
define the homogeneous network to construct an 
environment in which every user applies the same 
prediction model, i.e. both user ix  and users ix−  
adopt the same prediction model 

{ , , , }iZ MP EF CE QM= . The concept of the 

homogeneous network was similarly adopted in [26]. 
Remark 1: When all the users take the same prediction 
model, the prediction accuracy will not increase as the 
complexity of the adopted prediction model increases (as 
shown in Section VI). In a non-collaborative setting, 
while users adopt the same prediction model 

{ , , }iZ MP EF CE= , the interaction leads to the Nash 

equilibrium [5][6].  
Remark 2: In the collaborative setting when each user 
adopts the same collaborative prediction model 

iZ QM= , all the users will maximize the same 
objective function in equation (14) and comply with the 
resulting spectrum access decisions. This collaborative 
interaction drives the optimization solution to the Pareto 
boundary in the utility domain, which can lead to a 
better overall performance than the Nash equilibrium 
[31]. 
• SFU (Single-Foresighted-User) network 

In the SFU network, only one user is a foresighted 
user adopting a prediction model, while the remainder of  
the users are myopic users, i.e. they only take myopic 
best response strategies (see equation (8)). Such 
networks are also discussed in [16]. This scenario 
enables the performance evaluation of various prediction 
models a user can gain while the other users are myopic. 
Since all the other users are non-collaborative myopic 
users, if the foresighted user ix  adopts the 
collaborative prediction model, i.e. iZ QM= , the 
performance of the user ix  will be even worse than 
merely taking a myopic best response strategy 
( iZ MP= ). This is because the utility function of user 

ix  is not directly maximized, while the other users ix−  
always deploy their best response strategies. Hence, user 

ix  will only adopt the non-collaborative prediction 

model { , , }iZ MP EF CE= . The rest of the users ix−  

make myopic decisions using equation (4) with the 
myopic model iZ MP= . 
Remark 3: Since the other users ix−  adopt the same 
myopic model, the more complex model the user ix  

adopts to model the other users, the more accurate the 
prediction results t i−B  will be. Hence, if the user ix  
adopts the non-collaborative prediction models, i.e. 

{ , , }iZ MP EF CE= , the more accurate prediction 

results t
i−B  will lead to a better performance (as shown 

in Section V.B). As shown in Section VI, the foresighted 
user using the conditional empirical frequency model 
has the most accurate prediction results t i−B , since it 
counts the empirical frequencies of other users’ 
strategies conditioned on its own actions.  
Remark 4: The two presented networks are the two 
extreme cases in the sense of the number of foresighted 
users in the network. Denote the number of foresighted 
users in the network as L . The SFU network has 

1L = , while the homogeneous network has L N= . 
A more general case when 1 L N< <  will be 
discussed in Section VI. 

B. Prediction accuracy analysis of prediction models 

The utility metric in this paper, which is the packet 
loss rate ( , )i i iP −s s  in equation (3), is a highly 

complex function. Therefore, it is impractical to evaluate 
the prediction models using the packet loss rate directly. 
In order to provide a practical performance comparison 
for the prediction models, we discuss the prediction 
accuracy as an alternative metric for evaluating the 
prediction models. To quantify the prediction accuracy, 
we adopt the KL distance [22] to represent the prediction 
accuracy. The KL distance is defined as: 

1( || ) log mt t t
i i i mm

m

q
Dist q

r
−

− − = ∑Ba ,   (16) 

where mq  and mr  represent the thm  entry in the 
t
i−a  and 1t

i
−
−B  vectors, respectively. We then 

accumulate the KL distance 1( || )t t t
i i iDist −
− −Ba  for K  

time slots, i.e. 

1

0

( || )
K

t k t k t k t k
i i i i

k

e Distα− − − − −
− −

=

∆ = ×∑ Ba ,   (17) 

where 0α >  represents the exponential decay rate for 
accumulating the KL distances of the previous time 
slots.  
Claim 1: If the KL distance 0t

i∆ > , user ix  will 

experience performance degradation t
iU∆  from the 

optimal performance -max ( , )
i i

opt
i i ii

s
U U

∈
= s s

S
, i.e. 

0t
iU∆ > , where 

-( ( ), )optt t t
i i i i iiU U U −∆ ≡ − s B s .       (18) 

Recall that ( )t t
i i−s B  is the adopted channel selection 

strategy of ix  in equation (4). -( ( ), )t t
i i i iU −s B s  is the 

actual expected utility that user ix  will experience. 
Proof: Since -is  cannot be observed by the user ix , it 

can only predict -is  using the prediction results t i−B . 
Note that the other users ix−  will select their actions 
t
i−a  according to their strategies -is . Hence, if the 

prediction results t i−B  deviate from the strategies -is , 
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the KL distance 1( || )t t t
i i iDist −
− −Ba  will become  

positive and so will t
i∆ . Once the prediction results 

t
i−B  deviate from the strategies -is , ( )t t

i i−s B  will be 

different from opt
is  (recall that 

-argmax ( , )
i i

opt
i i ii

s
U

∈
=s s s

S
). Hence, the performance 

degradation t
iU∆  will be positive. 

Claim 2: The larger KL distance ti∆  results in a larger 
expected performance degradation 

1
/

T t
i it

U U T
=

∆ = ∆∑ . 

Proof: The KL distance t
i∆  is measured over time. 

The larger t
i∆  means that the prediction results t i−B  

keep deviating from the strategies -is . Due to Claim 1, 

the expected performance degradation iU∆  will also 

be larger over time. Thus, the metric ti∆  measures the 
prediction accuracy of the prediction models and reflects 
the expected performance degradation iU∆ . 

V. ADAPTIVE-PREDICTION-MODEL ALGORITHM FOR 

FORESIGHTED USERS 

  In this section, we present an algorithm for the 
foresighted users in the network to adapt their prediction 
models, such that these users are able to self-organize 
themselves to maximize their utilities. We call this 
adaptive algorithm the Adaptive-Prediction-Model 
(APM) spectrum access. Figure 5 illustrates the 
proposed rules for updating the new prediction model in 
APM algorithm. The algorithm starts with selecting the 
myopic model in Section III.B and then determining the 
new prediction model based on the prediction models 
t
iZ−  adopted by the other users in the networks. Hence, 

the required information ,t exch
iI  in Section III needs to 

include t
iZ−  as well. The rules set the prediction model 

of user ix  to a non-collaborative prediction model 
1t

iZ CE+ = , when the other users are myopic, while set 

to a collaborative prediction model 1t
iZ QM+ = , when 

the other users are also foresighted. As later in Section 
VI, we will show that the performance of user ix  can 
be enhanced when adopting the prediction model 

1t
iZ CE+ =  and the other users in the network adopt 

the prediction model { , }t
iZ MP EF− = . Importantly, if 

user ix  adopt the prediction model 1t
iZ CE+ = , this 

will make the other users that also apply the APM 
algorithm to choose a collaborative prediction model 

1t
iZ QM+ = . This shows that in a homogeneous 

network, when all the foresighted users are able to adopt 

Other users’
prediction models

{ , , , }t
iZ QM CE EF MP− ⊆

Set 
1t

iZ QM+ =
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Other users’
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Fig. 5. Rules to adapt the prediction model in the proposed APM 
algorithm. 

Algorithm 2: The APM spectrum access for user ix  that 

dynamically adapt prediction model t
iZ  

Step 1. Initialization:  Set 0
iZ MP=  and 

0 1/i M− = ×B I , where I  is an 

( 1)N M− ×  matrix in which all the elements 

are 1. 
Step 2. Gathers Traffic information:  User ix  gathers 

traffic information i−TS  from other users. 
Step 3. Gathers action information as well as the 

prediction model parameter: User ix  gathers its 

action information t
i−a  and the adopted prediction 

models t
iZ−  from other users. 

Step 4. Update the prediction model: If t
i thθ∆ ≤ , keep 

the prediction model 1t t
iiZ Z+ = . Otherwise, 

select a new model 1t
iZ
+  using the following 

rules: 

      If { , }t
iZ CE QM− ⊆  and QM  is feasible for 

user ix , then 1t
iZ QM+ = . 

Else if { , }t
iZ MP EF− ⊆  and CE  is feasible 

for user ix , then 1t
iZ CE+ = . 

      Else if EF  is feasible for user ix , then 
1t

iZ EF+ = . 

      Else 1t
iZ MP+ = . 

Step 5. Predict the other users’ strategies: Based on the 

required information { , }t t
i i i− −=I aTS  and the 

selected prediction model 1t
iZ
+ , user ix  builds its 

prediction results 1 1( , )t t t
ii iZ

+ +
−B I  about the other 

users ix−  (using equation(8), (9), (10), (15), when 
1 , , ,t

iZ MP EF CE QM+ = , respectively).  

Step 6. Utility evaluation: Evaluate the utility for the highest 
priority class kC  of user ix . 
Step 7. Optimize the channel selection strategy: User ix  

then updates its strategy 1 1 1( ( , ))t t t t
ii i iZ

+ + +
−s B I  

based on equation (4) for 1 , ,t
iZ MP EF CE+ = .  

Otherwise, based on equation (14) for 1t
iZ QM+ = .  

Step 8. Select a frequency channel according to the 
strategy: User ix  selects its action 1t

i
+
a  according   

to the strategy 1 1 1( ( , ))t t t t
ii i iZ

+ + +
−s B I .  

Step 9. Set : 1t t= + . Go back to Step 3. 
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1t
iZ QM+ = , the APM algorithm allows them to 

collaborate with each other in order to operate on the 
Pareto boundary.  

By measuring the KL distance metric ti∆  presented 
in the previous section, we propose a predictive 
spectrum access algorithm that dynamically adapts the 
prediction model in Algorithm 2. Note that in the 
proposed algorithm, user ix  will select a new 

prediction model iZ  to predict the other users’ 

transmission strategies once the measured t
i∆  larger 

than a certain threshold thθ  (due to Claim 2). As the 
result, if all the prediction models are selectable, the 
algorithm has the following three properties: 
1) If the other users ix−  cannot change their actions (or 
no other users exists in the network), the user ix  will 

continue using the MP  model, since t
i∆  will always 

be 0 (due to 1t t t
i i i

−
− − −= =B a a ). This allows user ix  

to perform the best response strategy to maximize its 
own utility.  
2) If the other users ix−  are myopic (i.e. they only 
adopt myopic best response strategies as in [8]), user ix  
will try to adopt prediction models with high 
complexities as much as possible and hence, ix  is able 
to predict the other users’ actions more accurately.  
3) If the other users ix−  also have the capability to 
adopt high complexity prediction models, the user ix  
will try to collaborate with these foresighted users by 
adopting the collaborative QM  prediction model. 
When all the users in the network adopt the proposed 
algorithm, all the users will eventually change their 
prediction models from non-collaborative MP  model 
to the collaborative QM  model. 

VI.  SIMULATION RESULTS 

We simulate a network with 25 users and 15 available 
frequency channels. We assume that all users stream the 
same video sequence (“Coastguard”, frame rate of 30 fps, 
CIF format, delay deadline 500ms) compressed using a 
scalable video codec [27]. The average packet length il  
is 1000 bytes for all the users and the required bit rate 

ib  is ranging from 1 Mbps to 2Mbps. For each user ix  

and frequency channel jf , we assume that the physical 

transmission rate ijT  ranges from 2.5 to 5 Mbps. We 

define the network efficiencies in the simulations as the 
physical transmission rate ijT  (the higher transmission 

rate ijT  gives a multi-channel network with higher 

network efficiency) and we model the packet error rate 

ijp  using a dense probability mass function (PMF) 

centered at 0.1 shown in Figure 6. The simulation 
parameters are listed in Table II. 

We first simulate various prediction models in the two 
extreme networks – the SFU network (the number of 
foresighted users 1L = ) and the homogeneous 
network (L N= ). Then we extend our simulation to a 
more general case, with 1 L N< < . Finally, we 
provide comparisons of the proposed predictive 
spectrum access algorithm with the state-of-the-art 
spectrum access algorithms. 

A. SFU network 

In the SFU network, one foresighted user and several 
myopic users jointly operate. We compare the 
performance (packet loss rate) of the foresighted user 

ix  when all the other users are using the myopic model 
with various network efficiencies. Figure 7 shows the 
packet loss rate of the user ix  using different prediction 

models { , , }iZ EF CE QM=  under various network 

efficiencies while the rest of the users apply the myopic 
model iZ MP− = . The results are averaged over 100 
different realizations of packet error rates. Figure 7(a) 
shows the performance (packet loss rates) and Figure 7(b) 
shows the prediction accuracy (KL distance ti∆ ) under 
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Fig.7 (a) Packet loss rate of ix  for different network efficiencies 

(the other users using MP model in a SFU network).  
     (b) KL distance of ix  for different network efficiencies (the 

other users using MP model in a SFU network). 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Packet Error Rate

P
ro

ba
bi

lit
y 

M
as

s 
F

un
ct

io
n

Dense Packet Error Rate Distribution

 
Fig. 6. Packet error rate distribution 

(a) 

(b) 

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 9, OCTOBER 2009 649

© 2009 ACADEMY PUBLISHER



 

various network efficiencies. It is shown that the 
non-collaborative prediction models { , }iZ EF CE=  

perform significantly better than the collaborative 
prediction model iZ QM=  against the myopic 
models. This simulation results verify that a user should 
always maximize their own utility (adopt 
non-collaborative prediction models) when the other 
users are all myopic users. Both the empirical frequency 
model and the conditional empirical frequency model 
are able to achieve zero packet loss rates for the 
simulated network efficiencies ( 2.5 5ijT = ∼  Mbps). 

Next, we change the prediction models of the other 
users to the empirical frequency model, i.e. iZ EF− = , 
and simulate the performance and the prediction 
accuracy of ix  to evaluate again these prediction 
models. Figure 8 shows that the conditional empirical 
frequency model still gives the smallest KL distance 
t
i∆ , and leads to the minimum packet loss rate for ix . 

However, the empirical frequency model gives a larger 
packet loss rate, since the user ix  uses the same 
prediction model as the other users and the prediction 
model can no longer provide an accurate prediction on 
the other users’ strategies. 

B. Homogeneous network 

For homogeneous networks, we simulate the same 
simulation environment as in the SFU network, except 
that now all the users adopt the same prediction model 

{ , , }iZ EF CE QM= . Figure 9(a) shows the packet loss 

rate of the user ix  using different prediction models 
under various network efficiencies. Figure 9(b) gives the 

measured KL distance ti∆  of ix . Compared to the 
performances in the SFU network in the previous figures, 
the packet loss rates increase, since now all the other 
users are foresighted and are able to compete for the 
spectrum resources. Importantly, Figure 9(a) shows that 
the conditional empirical frequency model iZ CE=  
now performs even worse than the empirical frequency 
model. Even though the conditional empirical frequency 
model intends to increase the prediction accuracy by 
increasing the prediction complexity, Figure 9(b) shows 
that the resulting KL distance ti∆  of the conditional 
empirical frequency model increases drastically. Note 
that the collaborative prediction model iZ QM=  
provides the best performance in the homogeneous 
network, which confirms the validity of Remark 2 in 
Section IV.  

C. Different number of foresighted users in the network 

We next simulate a different number of foresighted 
users that adopt the same prediction models 

{ , , }iZ EF CE QM=  in the networks, while the rest of 

the users are all myopic users iZ MP= . The number 
of users is set to 5 ( 5N = ), and we simulate the 
number of foresighted users L  from 2 to 5. The 
number of frequency channels is 3 ( 3M = ) and the 
network efficiency is fixed as 4Mbps. Figure 10 shows 
the average packet loss rate over the foresighted users 
using different prediction models. The results show that, 
when there are multiple foresighted users in the network 

2L ≥ , using a collaborative prediction model 
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Fig. 9 (a) Packet loss rate of ix  for different network efficiencies 

(in a homogeneous network).  
    (b) KL distance of ix  for different network efficiencies in 

 (in a homogeneous network). 

(a) 

    
(b) 

2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Transmission Rate (Mbps)

P
ac

ke
t 

Lo
ss

 R
at

e

 

 
QM

EF
CE

 

2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Transmission Rate (Mbps)

K
L 

D
is

ta
nc

e

 

 
QM

EF
CE

 
Fig. 8 (a) Packet loss rate of ix  for different network efficiencies  

(the other users using EF model in a SFU network).  
  (b) KL distance of ix  for different network efficiencies  

(the other users using EF model in a SFU network). 
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iZ QM=  is better than using a non-collaborative 

model { , }iZ EF CE=  for the foresighted users. 

Moreover, the cross-over in Figure 9 also implies that, 
when most of the users are myopic, it is better for the 
foresighted users to apply a complex conditional 
empirical frequency model in order to increase the 
prediction accuracy. However, when more and more 
users are foresighted, it is more beneficial for these users 
to collaborate with each other and perform a 
collaborative prediction model iZ QM= . The results 
also verify the rules for determining an adaptive 
prediction model in the propose algorithm in Section V.   

D. Comparisons with the existing approaches 

In this subsection, we compare the packet loss rates of 
the proposed APM algorithm in Section V with two 
other existing approaches – the Myopic Decentralized 
(MD) approach [8] and the Predictive Learning (PL) 
approach [15]. The MD approach allows the users to 
remember the frequency channels on which they most 
recently had successful transmission and then each user 
performs the myopic best response strategy. The PL 
approach allows the users to learn the other users’ 
transmission strategies based on the action history of 
every other users and performs a no-regret learning 
algorithm. To obtain a fair comparison, we only adopt 
the learning part of [15] without local bargaining. We 
look at the case with different number of users with the 
same Coastguard video sequence sharing 8 frequency 
channels ( 8M = ). The rest of the parameters are the 
same as previous simulations. The simulation results of 
the average packet loss rates (PLR) and Y-PSNR over 
N  multimedia users are shown in Table III (X 
represents PSNR below 26 dB, which is unacceptable 
for a viewer). The results show that the proposed APM 
algorithm significantly outperforms the other two 
approaches. This is because when all the users are using 
the same approach, our proposed algorithm is able to 
adapt the prediction model and allow the users to 
collaborate with each other. Hence, the overall 
performance of the multimedia users becomes closer to 
the centralized optimal solution, which operates at the 
Pareto boundary in the utility domain. 

E. Discussion 

The APM algorithm starts with the MP prediction 
model ( iZ MP= ) in the non-collaborative setting, 
which leads to a Nash equilibrium. In 
two-channel-two-user case, Nash equilibrium is the 
Pareto optimum. However, in our multi-user case, this 
Nash equilibrium is worse than the Pareto optimum. 
When multiple users are foresighted, Figure 10 shows 
that it is more beneficial for these users to collaborate 
with each other and deploy a collaborative prediction 
model ( iZ QM= ). Hence, the APM algorithm allows 
them to exchange model parameters and to adapt their 
prediction models such that they can operate in a 
collaborative manner. Note that although these 
foresighted users are not maximizing their own utilities 
in this collaborative scenario, the resulting performance 
at the Pareto frontier using the collaborative prediction 
model outperforms Nash equilibrium for all users. Hence, 
the foresighted users will not deviate from the 
collaborative setting [31], since they will experience a 
utility degradation if they deviate from this collaborative 
setting, as shown in Figure 10. However, if there exists 
non-collaborative users (adopting { , , }iZ MP EF CE= ) 

in the network, the APM allows the foresighted users to 
adopt non-collaborative models { , }iZ EF CE=  

depending on the number of foresighted users in the 
network (see the results in Section VI.C).  

VII.  CONCLUSIONS 

In this paper, we address the problem of distributed 
spectrum access by autonomous and multimedia users in 
wireless networks. We study the multi-user spectrum 
access problem, where each user selects an appropriate 
prediction model to build a belief on the channel 
selection strategies of the other users, and based on this 
belief, each user chooses a frequency channel to 
maximize the users’ utilities. Based on the queuing 
analysis, we formulate the multimedia users’ packet loss 
rates, which are jointly determined by the channel 
selection strategies of all users. To minimize such packet 
loss rates, a user needs to adapt its prediction model and 
keep building accurate prediction results for the other 
users’ transmission strategies. We presented four 
prediction models with different complexities and 
prediction accuracy under various user interaction 
scenarios.  

In summary, when most of the users are myopic, it is 
better for the foresighted user to apply a complex 
prediction model to increase its prediction accuracy and 
hence, its resulting performance. However, when an 
increasing number of users are foresighted and they are 
deploying various prediction models, it becomes more 
beneficial for these users to collaborate with each other 
and deploy a collaborative prediction model. We 
propose an adaptive algorithm for predictive spectrum 
access over a wireless multi-channel network to 
dynamically adapt the user’s prediction model based on 
local information exchange among the users. The 
simulation results show that the proposed algorithm 
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Fig. 10. Average packet loss rate of the foresighted users for 

different number of foresighted users in the network. 
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outperforms the state-of-the-art spectrum access 
algorithms when transmitting delay-sensitive 
applications over wireless multi-channel networks.  

APPENDIX 
We now briefly present how to evaluate this packet 

loss rate ( , )i i iP −s s , when the strategies ( , )i i−s s  are 

known using queuing analysis. First, based on the 
exchanged traffic specification i−TS , a user ix  is able 
to calculate the normalized loading for all the users, i.e. 

( [ ])ijk ij k ijks E Xρ λ= ⋅ ⋅  and 2 2( [ ])ijk ij k ijks E Xρ λ= ⋅ ⋅ . 

Note that the normalized loading parameter ijkρ  

represents the actual fraction of time for user ix  to 
transmit its packet in priority class kC  in a frequency 
channel jf . 

Then, we adopt an M/G/1 queuing model (packet 
arrival of each application is assumed to be Poisson 
arrival as in [14][20]) and derive the average queue 
waiting time [ ]jkEW  for packets in priority class kC  

using frequency channel jf  according to the mean 

value analysis [18]: 
2

'' 1
1

' '' 1 ' 1

[ ]
2(1 )(1 )

k

ijkk
jk k k

ijk ijkk k

EW
ρ

ρ ρ

=
−

= =

=
− −

∑
∑ ∑

. (19) 

The corresponding average delay [ ]E Djk  for the 

packets in priority class kC  using frequency channel 

jf  is then: 

[ ] [ ] [ ],  for k iE D EW E X Cjk jk ijk ∈= + C .  (20) 

Finally, given the delay deadlinekd , the approximate 
packet loss rate of priority class kC  using frequency 
channel jf  can be approximated as [21][14]:  

'' 1
'' 1

exp
( )

Prob( ) ( ) ( )
[ ]

k

jk kk k
jk k jkk

jk

d
D d

E D

ρ
ρ =

=

⋅
> = −

∑
∑

.  (21) 
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TABLE I COMPARISONS OF THE DIFFERENT PREDICTION MODELS CONSIDERED 

Prediction Model 
(Ζ ) 

Myopic Model 
( )MPΖ =  

Empirical Frequency 
Model 

( )EFΖ =  

Conditional Empirical 
Frequency Model 

( )CEΖ =  

Queuing Model 
( )QMΖ =  

Setting Non-collaborative Collaborative 

Required 
information  

,, t obs
i i− ITS  ,, t obs

i i− ITS  ,, t obs
i i− ITS  , ,, ,t exch t obs

i i i− I ITS  

Size of memory 
for the prediction 

results 
1N −  ( 1)N M−  2( 1)N M−  ( 1)N M−  

Utility evaluation 
for the other users 

Not Required Not Required Not Required Required 

Complexity Low Medium High Highest 

Prediction on t i−s  No Prediction 
Independent prediction 

with current action tia  

Correlated prediction 

with current action tia  

Correlated prediction with 

current action tia  

 
TABLE II SIMULATION PARAMETERS 

Network 
users 
N  

Available 
channels 
M  

Packet 
length 

il  
(bytes) 

Delay 
deadline

id  
(sec) 

Physical 
transmission 

rate ijT  

(Mbps) 

Initial prediction results 
of other users 

0
iB−  

Conditional Unconditional

25 15 1000 0.5 2.5~5 1/15 
( )ijs m∀  

1/15 

ijs∀  

 
TABLE III PROPOSED ADAPTIVE PREDICTIVE ALGORITHM WITH THE OTHER APPROACHES  

MD [8] PL [15] 
Proposed APM 

Algorithm 
Centralized 

Optimal Solution Number of 
users 

PLR 
Y-PSNR 

(dB) 
PLR 

Y-PSNR 
(dB) 

PLR 
Y-PSNR 

(dB) 
PLR 

Y-PSNR 
(dB) 

5N =  0.28 31.08 0 35.61 0 35.61 0 35.61 
10N =  0.83 X 0.24 31.61 0.18 32.47 0.17 32.62 
15N =  0.96 X 0.55 28.27 0.42 29.48 0.40 29.69 
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