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Abstract— Distributing large video files or operating system
images over the Internet requires file servers with high
bandwidth and large storage capacity. Overlay networks,
including content distribution networks (CDN) and peer-to-
peer (P2P) systems, are promising network models for large
file distributions. Both CDN and P2P leverage bandwidth
and storage resources between content distribution servers
and individual nodes, so that they can scale to a larger
number of nodes easily. Previous work on large file distri-
bution mainly focused on minimizing the distribution time
of a fully connected overlay network. In a fully connected
overlay network, each individual node is connected to every
other node in the network. However, most practical CDN
and P2P systems are based on a partially connected mesh
topology, where nodes are typically connected to a subset
of other nodes. In this paper, the distribution time of
practical mesh-based overlay systems is analyzed and a
lower bound on the file distribution time is established. Our
algorithms consist of two steps. First, we decompose the
mesh network into multiple spanning trees so that the load
on each node is balanced. We show that the construction of
balanced spanning trees is NP-complete and propose a few
heuristics to tackle it. The second step, we derive the optimal
system distribution time based on the multiple spanning tree
topology, node bandwidths and file size. In this step, an
optimal file segmentation algorithm is developed, in which
a file is divided into unequal-sized pieces and allocated to
individual nodes based on the available bandwidth. We vali-
date our theoretical analysis via experiments and investigate
how system design parameters, such as node churning and
implementation complexity, affect system distribution time.

Index Terms— content distribution networks (CDN), peer-to-
peer networks (P2P), mesh network, file distribution, overlay
networks.

I. INTRODUCTION

As network bandwidth increases, the amount of large
files, such as video files and operating system updates,
distributed over the Internet has increased tremendously.
Traditional client-server architecture faces challenges for
large file distribution over the Internet. In the client-server
architecture, a server stores all the files and delivers them
to the clients. Such a system is susceptible to flash crowd
as the number of clients increases rapidly.

To alleviate overloading on an original content server,
two types of systems are deployed in practice: server-
assisted systems and peer-assisted systems.

Manuscript received February 5, 2010; revised June 25, 2010; ac-
cepted July 27, 2010.

In a server-assisted system, dedicated proxy or repli-
cation servers are installed at the edge of a network. In
most cases, the proxy or replication server close to the
clients provides a quick response to the clients, and there-
fore, the burden on the original servers is reduced. Two
main commercial server-assisted systems are pull-based
web cache and push-based content distribution network
(CDN). In cache-based solutions, only the first file request
is passed to the original content server. Once the file has
been “pulled” to the cache, subsequent requests for the
same file are handled by the proxy cache. CDNs consist
of a large number of replication servers that host files. The
files are proactively “pushed” to the replication servers
by original content servers. These replication servers are
owned and deployed by CDN companies, such as Akamai,
Limelight, and Amazon CloudFront. The client request for
a file is “redirected” to the closest CDN server by a smart
DNS remapping.

Compared to the organized nature of server-assisted
solutions, peer-assisted architecture leverages the comput-
ing and networking resources of every participating node
connected autonomously. No proxy or edge servers are
required.

The first peer-assisted system is developed by Napster.
Napster improves client-server systems by allowing file
sharing between peers. In Napster, popular files are fully
distributed throughput the network. In other words, a peer
can obtain such files from different sources, thus largely
increasing the availability of content. Napster separates
file-sharing process into two phases: file search and file
transfer. In Napster, file search uses a client-server model,
while file transfer uses a peer-to-peer model.

Following Napster, many other P2P file sharing pro-
tocols such as Gnutella, Freenet, FastTrack, KaZaA and
BitTorrent [1] are developed. Among them BitTorrent [2]
quickly gained popularity and became very successful.
BitTorrent systems consist of two types of peers: leechers
and seeders. Leechers are the peers who are in the
process of downloading file pieces, while seeders are the
peers who have already downloaded the whole file. Both
Leechers and seeders build up a mesh-based peer-to-peer
overlay network based on data requests.

Unlike other P2P systems, BitTorrent includes many
unique features. First of all, it provides a number of
incentive mechanisms such as tit-for-tat to fight against
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free-riding: a peer is not allowed to only download files
without uploading any files [3].

Second, BitTorrent splits a file into equal-sized pieces,
when the file is distributed. Each piece carries a crypto-
graphic hash-based checksum. A user can verify if the
requested piece is correctly downloaded.

Third, BitTorrent implements a piece selection strategy
called rarest-piece-first algorithm. According to the algo-
rithm, a BitTorrent user downloads the file pieces that are
held by the least number of peers in its peer list. The
algorithm, therefore, promotes even distribution of file
pieces to available peers. However, for a BitTorrent user,
its rarest piece is calculated based on the piece numbers
provided by the peers in the user’s peer list. It will not
be the same piece if calculated from the piece numbers
provided by all the peers in the system. This “local” view
of file piece availability makes it possible for some file
pieces to be held by more peers than other pieces.

Peer-assisted file transfer and server-assisted CDNs
have gained huge popularity in practice. A key research
question is: can an optimal performance be achieved for
all the peers or servers in a mesh-based overlay network?
In this paper, we measure performance using system
distribution time, which is defined as the time for every
node in a system to receive a complete copy of a file.
In order to answer the above question, we investigate
the following fundamental issues on mesh-based overlay
networks.

• What is the optimal system distribution time when
file pieces are assigned to different nodes without
duplication? Clearly, the study of this question would
provide a lower bound on practical mesh-based file
distribution since piece redundancy in an overlay
network will increase system transfer time.

• How shall files be segmented into pieces to achieve
the optimal distribution bound? Is equal size-based
file split an optimal way?

• How to deal with peer churning and how does
peer dynamics impact the optimal system distribution
time?

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes our P2P
file distribution model. In Section IV, we analyze the min-
imum system distribution time and optimal file segmen-
tation scheme. Section V investigates the impact of peer
churning on system performance. Section VI proposes a
decentralized node forwarding algorithm to reduce the
complexity and states of nodes . Section VII validates our
analysis and evaluates the proposed algorithms through
extensive simulation experiments. Finallly, Section VIII
summarizes the work in this paper and describes future
work.

II. RELATED WORK

Peer-to-peer file sharing performance has been exten-
sively evaluated through measurement studies [4]–[7].
The free-riding problem first discussed in [7] has mo-
tivated many incentive schemes for P2P applications [8]–

[11]. Besides free-riding, measurement studies have also
discovered other limitations of P2P systems. Guo et. al.
performed traffic analysis and found that in a single tor-
rent, service availability decreases rapidly as peer arrival
rate drops exponentially. Moreover, peer performance
fluctuates with the torrent size [12]. These observations
motivate the development of multi-torrent systems and
encourage collaboration among multiple torrents.

There are some other works on performance modeling
and analysis of BitTorrent systems. Qiu and Srikant use
a deterministic fluid model to study how the number of
seeders and leechers evolves over time, as a function of
peer arrival and departure rates and uploading bandwidth.
They have also analyzed average downloading time, based
on the above three network parameters [13]. Ramachan-
dran and Sikdar evaluate the average file downloading
time for a participant in the P2P network by many other
parameters, including file search time, queueing delays
at network routers, number of simultaneous downloads at
an individual peer, and number of available copies of a
particular file. File downloading time is modeled from an
end user’s perspective [14]. Both modeling work in [13],
[14] does not optimize the system distribution time.

There are some work on file distribution in CDNs. For
example, FastReplica [15] is an algorithm to replicate
a large file from a source node to CDN nodes. For a
small group of CDNs consisting of k nodes, it divides
the large file into k equal-sized subfiles and hands each
subfile to a CDN node, which subsequently forwards the
subfile to the remaining k−1 nodes. FastReplica has been
combined with application layer multicast to reduce its
file distribution time [16]. However, FastReplica does not
optimize the overall system distribution time. Moreover, it
assumes a complete connection topology in which nodes
are fully connected to each other.

Previous work that explicitly addresses the minimum
system distribution time include the fluid-based analysis
by Kumar and Ross [17] and by Mundinger et. al. [18].
In [17], the minimum system distribution time is de-
rived using a bit-based fluid model and expressed as a
function of file size, peers’ uploading and downloading
bandwidths. In [18], the optimal time to distribute a file
of M chunks to N end users with uniform bandwidth
is studied. The analysis is chunk-based. It assumes that
the downloading bandwidth is infinite. Both analyses
use a network topology of a complete graph, where
every node is connected to each other. The complete
topology is difficult to achieve in a large-scale distributed
environment, such as the Internet.

Chan et. al. develop several scheduling algorithms to
decide the piece request sequences and their correspond-
ing supplying peers. They also study minimizing system
distribution time, when files are divided into equal-sized
pieces [19].

To authors’ knowledge, none of the work discussed in
the above investigates the case where a file is divided
into pieces with unequal size. In this paper, we propose
an algorithm to optimally divide a file into unequal-
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sized pieces to minimize the system distribution time.
Furthermore, Our work analyzes the minimum system
distribution time using a realistic mesh-based topology,
usually found in BitTorrent-like P2P systems, where every
node is not connected to each other.
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Figure 1. A file distribution network.

III. FILE DISTRIBUTION MODEL

In a file distribution network, n nodes are connected in
a mesh. As illustrated in Fig. 1, a content server divides an
original file S into n segments, s1, s2, · · · , sn, and assigns
each of these segments to a different node. Each node is
then responsible for propagating its assigned segment to
the rest of nodes in the network. This distribution model
is different from BitTorrent in two aspects. First, there
is no duplication of file segments in different nodes, and
each node has a unique segment. Second, file segments
are “pushed out” from the source node, rather than “pulled
in” by a requesting node. This forces each node to fully
utilize its uploading bandwidth and make a significant
contribution to file distribution process. By removing
segment redudancy in different nodes and fully utilizing
nodes’ uploading bandwidth, we achieve a lower bound
on the file distribution time of a practical mesh-based
system.

In this paper, system distribution time is used as one
main performance metric. It is defined as the time for
every node in a system to receive a complete copy of a
file.

IV. OPTIMAL FILE DISTRIBUTION IN MESH-BASED

NETWORKS

We explain the file distribution process through a
simple example. Fig. 2 shows a mesh network consist-
ing of 4 nodes with their connections, uploading and
downloading bandwidths. When a node is assigned to

u1: 300 kbps

d1: 600 kbps

u2: 400 kbps

d2: 750 kpbs

u3: 350 kbps

d3: 500 kbps

Media object: S = 27 Mbits
S1

S2

S3

u4: 500 kbps

d4: 800 kbps

S4

-- ui: uploading bandwidth

-- di: downloading bandwidth

Figure 2. A non-tree topology with 4 nodes and their uploading and
downloading bandwidths.

distribute its segment to every other node in the network,
its distribution paths make a tree, including every node in
an acyclic way. To ensure that the file segment originated
at a node traverses the least network distance to reach all
the other nodes in the network, a shortest path spanning
tree (SPST) rooted at the node needs to be constructed.

Therefore, in a network of n nodes, the file forwarding
paths constitute n shortest path spanning trees. In a given
SPST, a node could be a leaf node, where it does not
need to forward the segment any further, whereas a node
may be s a root or an internal node, responsible for
forwarding the segment down the distribution tree. To find
the completion time of a node, we need to calculate its
forwarding time as a non-leaf node in each SPST. An
example SPST construction is shown in Fig. 3, where
node 2 is responsible for forwarding segment s1 in the
SPST rooted at 1, and forwarding s2 in the SPST rooted
at node 2 itself. It does not need to forward any segment
in SPSTs rooted at 3 and 4. Let us define the system
distribution time as

T = max{t1, t2, · · · , tn}

where ti is the completion time of node i that includes
the time to download its assigned segment, si, from the
server and the time to forward segments in SPSTs as a
non-leaf node.

For example, if the original file is divided into 4 equal-
sized segments, i.e., s1 = s2 = s3 = s4 = 6750 kbits,
then it takes T = 67.5 seconds for every node to receive
all the file segments. T is calculated as follows.

T = max{
6750

600
+ 2×

6750

300
,
6750

750
+ 3×

6750

400
+

6750

400
,

6750

500
+ 2×

6750

350
,
6750

800
+ 3×

6750

500
+

6750

500
}

= max{56.25, 76.5, 52.07, 63.44} = 76.5s

(1)

Two questions arise when we closely inspect the ex-
ample. First, as in Fig. 3, there are multiple ways to
constructed a SPST rooted at a particular node. For
example, an alternative SPST rooted at node 1 could
reach node 3 through node 4, instead of node 2. The
question is how we should construct the n SPSTs so that
the distribution load is balanced for all the n participating
nodes? Second, given SPSTs in place, how to divide a file
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node 4
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S1
S1

S1
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node 4 node 2

node 1
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node 4

node 1

node 2

node 3
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S2

S2

S2

node 1

node 2

node 4

node 3

Figure 3. An example construction of shortest path spanning trees.

S into s1, s2, · · · , sn to minimize the system distribution
time? We address these two questions in the rest of this
section.

A. Spanning Tree Constructions

Let us model a mesh network with n nodes as a
graph G = (V,E), where n = |V |. The challenge is
to find n spanning trees so that the load for each node
in the network is “balanced.” The distribution load of a
node can be estimated by its sum of outgoing degrees
in these n SPSTs. Therefore, our problem reduces to
collaboratively constructing n SPSTs to balance every
node’s sum of outgoing degrees in these n trees. We
prove, In the following, that the problem of constructing
balanced spanning trees is NP-complete by reducing it
to a known NP-complete problem – degree constrained
spanning tree problem [20].

Theorem 1: Constructing M balanced spanning trees is
NP-complete.
PROOF: It is well known that changing an optimization
problem into a search problem doesn’t change its diffi-
culty level. Hence, we rephrase this optimization problem
as the following search problem: given graph G = (V,E)
and positive integers M and L, are there M spanning trees
derived from G so that every node’s sum of outgoing
degrees in these M spanning trees is not larger than L?

First, it is easy to see that constructing M balanced
spanning trees is in NP, since a nondeterministic algorithm

can randomly pick M spanning trees and check in poly-
nomial time whether the sum of every node’s outgoing
degrees in these M trees is smaller than L or not.

Second, let us reduce the degree constrained spanning
tree problem to M balanced spanning tree problem. The
degree constrained spanning tree problem is defined as
follows. Given a graph G = (V,E) and a positive integer
K ≤ |V |, the question is whether there is a spanning
tree for G in which no vertex has degree larger than K .
By setting M to 1 and K to L, the problem of finding a
degree constrained spanning tree for G = (V,E) in which
no vertex has degree larger than K can be solved as a
special instance of M balanced spanning tree problem.

As finding a degree constrained spanning tree is
NP-complete, constructing M balanced spanning tree
problem is also NP- complete.

Intuitively, constructing “balanced” SPSTs is hard due
to two factors. First, there are multiple SPSTs rooted at
some nodes, thus one challenge is how to select a SPST
from these choices. Second, the order of choosing the root
nodes of the n SPSTs results in different load allocation to
nodes. Exhaustive enumeration needs to test n! different
orders of choosing root nodes.

We, therefore, consider three heuristic algorithms to
build balanced SPSTs, and all of them apply Dijkstra’s
algorithm to generate an SPST rooted at a single node.
The Dijkstra’s algorithm maintains a distance value for
each node. Initially, the source node has a distance zero,
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and all the other nodes have distance of infinity. At each
step, it chooses the node with shortest distance as the next
node to be marked permanent and updates the distance
values of all its neighbors. A permanent node is the one
whose shortest distance from the source node has been
determined. The algorithm proceeds until all nodes have
been marked permanent.

1. Randomly order and number the nodes from 1 to n
2. for each node i from 1 to n do
3. using Dijkstra’s algorithm to build a SPST

rooted at node i.
4 at each iteration, when multiple nodes have

the same distance, randomly choose a node
to label permanent.

5. end-for

Figure 4. A random algorithm to construct n SPSTs.

1. Randomly order and number the nodes from 1 to n
2. initialize bal[i] to zero, for node i from 1 to n.
3. for each node i from 1 to n do
4. using modified Dijkstra’s algorithm to build

SPST rooted at node i.
5 at each iteration, when multiple nodes have

the same distance, choose a node with
minimum bal to label permanent.

6. for each internal node k of SPST rooted at i do
7. increase bal[k] by the sum of its outgoing

degrees in the SPST rooted at i.
8. end-for
9. end-for

Figure 5. A balanced algorithm to construct n SPSTs.

1. Number the nodes from 1 to n in an increasing order
of uploading bandwidth per connection

2. Follow steps 2 to 8 in Balanced Algorithm.

Figure 6. A ordered balanced algorithm to construct n SPSTs.

The first algorithm (Rand-SPST) is based on a random
ordering of source nodes to build SPSTs. Moreover, it
chooses a random node as the next permanent node, when
multiple nodes have the same distance. This algorithm is
simple, but is likely to result in uneven forwarding load
at nodes. The steps are outlined in Fig. 4.

The second algorithm (Balanced-SPST) keeps track of
outgoing degree sums of every node in SPST construc-
tions, in order to balance the load of every node. Like the
Rand-SPST algorithm, it randomly selects a node to be
the root node of the next SPST. The steps are shown in
Fig. 5.

The third algorithm (Ordered-SPST) arranges the nodes
in an increasing order of its uploading bandwidth per
connection. This is motivated by the observation that the
later a node is chosen as a root node in the algorithm,

the more likely it has a large sum of outgoing degrees,
i.e., large distribution load. Therefore, putting more load
on high capacity nodes instead of slower ones helps
reduce the overall system distribution time. Similar to
the Balanced-SPST algorithm, Ordered-SPST balances
the number of outgoing degrees for all of the nodes. The
steps are listed in Fig. 6.

B. Optimizing System Distribution Time

Once SPSTs have been built, how to divide a file into
smaller segments and assign them to the nodes need to be
determined. We formulate the segment assignment prob-
lem as a constrained optimization problem to minimize
the system distribution time. Let ui represent node i’s
uploading bandwidth, di its downloading bandwidth, and
pk
i

as node k’s number of forwarding paths in tree i. If
k is a leaf node in tree i, then pk

i
is equal to 0. Given

the above notations, the general optimization problem is
formulated as follows.

min max{tk, k = 1, 2, · · · , n} (2)

s.t. tk =
sk
dk

+

n∑

tree i=1

pk
i
×

si
uk

, for k = 1, 2, · · · , n

n∑

k=1

sk = S

sk ≥ 0, k = 1, 2, · · · , n

It is easy to see that Eq. (2) is essentially a linear
programming formulation, when we rewrite it as follows.

min T (3)

s.t.
sk
dk

+

n∑

tree i=1

pk
i
×

si
uk

≤ T, for k = 1, 2, · · · , n

n∑

k=1

sk = S

sk ≥ 0, k = 1, 2, · · · , n

Eq. (3) can be efficiently solved by any linear program-
ming solver, such as lp solve [21]. When we apply Eq. (3)
to the example shown in Fig. 2, we get the following
optimization problem.

min T

s.t. s1/600 + 2s1/300 ≤ T

s2/750 + 3s2/400 + s1/400 ≤ T

s3/500 + 2s3/350 ≤ T

s4/800 + 3s4/500 + s3/500 ≤ T

s1 + s2 + s3 + s4 = 27000

s1, s2, s3, s4 ≥ 0

By solving the above problem, we have
(s1, s2, s3, s4) = (7516.6, 4963.79, 8119.78, 6399.83)
kbits. The resulted system distribution time T is 62.6
seconds, clearly shorter than the distribution time of 76.5
seconds when we assign equal-sized segments to the
nodes, as in Eq. (1).
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V. NODE CHURNING

In a dynamic overlay network, nodes are expected to
join and leave frequently. Let us discuss the effect of node
churning on the system. We assume that time is divided
into time slots and a node joins at the beginning of a time
slot and can leave at any time. When a node leaves the
system, he leaves behind two types of unfinished media
segments: one originating from itself and the other being
forwarded by the node as an internal node. In effect, we
can treat these unfinished segments as a new object to be
delivered by the remaining nodes in the next time slot.

At the end of transmission slot 1, every node has a
record of missing segments. When a departure node, i,
is a forwarding node in a spanning tree rooted by k,
then nodes in the upstream of the spanning tree have
already received sk. There is no need to request sk
from the original server. We call such segments partially
distributed segments. For such a segment sk, there are
a set of supplying nodes that already have sk and a set
of demanding nodes that are waiting for sk. We need
to set up forwarding paths from the set of supplying
nodes to the set of demanding nodes. In the process, we
need to minimize the total number of forwarding edges.
We borrow part of Dijkstra’s algorithm for this purpose:
initializing the permanently marked set to contain all
the supplying nodes and repeating this process for every
partially distributed segment. Once this step is completed,
for each node i, we will calculate the total size of such
partially distributed segments to be forwarded by node
i, mci, i = 1, 2, · · · ,m, where m is the number of
remaining nodes.

For segments that are needed by all the nodes, we
request the server to divide them and re-distribute to
the remaining nodes. The server needs to solve a linear
programming problem to find out the distribution size
for every remaining node, smk, k = 1, 2, · · · ,m. In this
problem, the size of the media object is the sum of all
missing segments, SM . Recall that mck is the size of
partially distributed segments to be forwarded by node
k, and we assume that node k sends mck to the original
server. Given uk, dk, mck and SM , the server solves smk

from the following optimization problem.

min T (4)

s.t.
mck
uk

+
smk

dk
+

m∑

tree i=1

pki ×
smi

uk

≤ T,

for k = 1, 2, · · · ,m
m∑

k=1

smk = SM

smk ≥ 0, for k = 1, 2, · · · ,m

VI. DECENTRALIZED REVERSE PATH FORWARDING

The server solves the optimization problems defined in
Eq. (3) and Eq. (4) to find an optimal media allocation
scheme, si, for i = 1, 2, · · · , n. The server keeps the
topology of an overlay network, so that it can calculate

spanning trees based on its complete information about
the overlay network. Every node needs to keep the fol-
lowing states for every spanning tree: whether it is an
internal node, and if so, its descendant nodes in the tree.
To communicate the state information from the server
to every node consumes additional bandwidth and makes
the server the only bottleneck in the system. Therefore,
the solution of Eq. (3) serves as a lower bound on the
system distribution time of a mesh-based overlay network.
However, the deployment of this centralized algorithm is
not scalable.

In practice, we can decentralize the algorithm by lever-
aging reverse path forwarding (RPF) algorithm [22], a
widely used multicast routing protocol, to avoid forward-
ing loops. Every node uses RPF to decide whether to
forward a segment received from a source node i. If node
k receives a segment from a link that is on node k’s
shortest path to the source node i, then it knows that
the segment arrives to him via the shortest path spanning
tree. He will flood it to the rest of his outgoing links.
Otherwise, node k will stop forwarding the segment.
When every node implements RPF algorithm, a mesh-
based overlay network is inherently decomposed into
shortest path spanning subgraphs originated at each node
in the network. The subgraphs are no longer trees, because
there are cycles in the distribution paths.

To implement RPF, every node needs to know the
shortest path to every other node in the network and the
outgoing link for each shortest path. This is the well-
known all-pairs shortest path problem, that underlies the
construction of Internet routing tables. Applying Floyd-
Warshall algorithm [23], we can solve the problem in
O(n3), where n is the number of nodes in the network.

Fig. 7 outlines the RPF algorithm implemented by
every node in the system. Fig. 8 shows the forwarding
graphs, when RPF is applied by each node. The dashed
edges are non-SPST edges and the dashed arrows repre-
sent the “redundant” packets that will be silently discarded
in the network. By sending “redundant” packets and cost-
ing additional bandwidth, every node can independently
decide where to forward packets. It does not rely on the
server to transmit its forwarding path in every spanning
tree.

for every node k in the system do
set seen[k] to 0

end-for
upon receiving segment sa

if sa is received along a path in SPST rooted at
node a

1. forward it to every outgoing link except
the one sa is received;
2. set seen[a] to 1

else
don’t forward sa

end-if

Figure 7. Reverse path forwarding algorithm implemented at every
node.
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node 4

node 2

S1
S1

S1

node 3

SPST1 rooted at node 1

SPST3 rooted at node 3

S3

S3
S3

node 4

node 3

node 2

node 1

SPST4 rooted at node 4

S4

S4

S4

node 1

node 4

node 3

node 2

SPST2 rooted at node 2

S2

S2

S2

node 1

node 2

node 3

node 4

Figure 8. Packet forwarding paths by applying RPF at every node.

By employing RPF as outlined in Fig. 7, a node
forwards every media segment to its neighboring nodes
only once. Let us use rlk

i
to represent the number of

copies of media segment si (originated from node i) to
be sent by a node k to its neighbors. An optimal media
segment vector based on RPF paths can be solved using
Eq. (5) as follows.

min y (5)

s.t.
sk
dk

+
n∑

source node i=1

rlk
i
×

si
uk

≤ y,

for k = 1, 2, · · · , n
n∑

k=1

sk = S

sk ≥ 0, for k = 1, 2, · · · , n

where rlk
i

is calculated as

rlk
i
=

{
number of links if i = k

number of links minus 1 if i �= k

Applying Eq. (5) to the example in Fig. 8, we have the

following numerical problem.

min T

s.t.
s1
600

+ 2
s1
300

+
s2
300

+
s3
300

+
s4
300

≤ T

s2
750

+ 3
s2
400

+ 2
s1
400

+ 2
s3
400

+ 2
s4
400

≤ T

s3
500

+ 2
s3
350

+
s1
350

+
s2
350

+
s4
350

≤ T

s4
800

+ 3
s4
500

+ 2
s1
500

+ 2
s2
500

+ 2
s3
500

≤ T

s1 + s2 + s3 + s4 = 27000

s1, s2, s3, s4 ≥ 0

The resulted optimal media segment vector is
(sa, sb, sc, sd) = (9000, 0, 11911.8, 6088.2) kbits,
and the optimal system distribution time is 135 seconds.
It is clearly longer than 62.6 seconds needed by SPST-
based distribution, when a node forwards a media
segment along its spanning tree edges.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed optimal file
distribution algorithms. In particular, we study the impact
of different SPST construction algorithms on system
distribution time, evaluate the optimal file segmentation
algorithm, and measure the trade-off of performance and
scalability between the centralized and distributed file
distribution schemes. Lastly, we show how node churning
rate affects system distribution times of different algo-
rithms.
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Figure 9. System distribution time of Rand-SPST, Balanced-SPST, and
Ordered-SPST, when varying the number of nodes in the system (file
size = 1000 Mbits).

A. Simulation Setup

We implemented our own simulation program using
C++. First, we randomly generate the topology of a mesh
network, including how nodes are connected, each node’s
uploading and downloading bandwidths. Next, we use
different heuristic SPST construction algorithms to de-
compose the mesh network into multiple spanning trees.
Given the SPSTs, we construct the linear programming
problems defined in Eq. (3), Eq. (4), and Eq. (5), using
the library functions provided by lp solve. Last, we call
lp solve to find the optimal solutions to these problems.
Each data point reported in the below is an average of
more than 50 simulation runs.

In our experiments, we evaluate different algorithms in
two ways. One type of experiments fixes the distribution
file size and varies the number of nodes in the system,
and the other fixes the number of nodes and varies
the distribution file size. We have observed that typical
BitTorrent networks in the Internet usually consist of
tens to hundreds peer nodes. Therefore, we performed
our experiments for node sizes from 20 to 200, with
an increment of 20 nodes, in experiments that vary the
number of nodes. To see how the algorithms scale, we
also performed the experiments for larger systems, con-
sisting of 500 peers and 1000 peers, respectively. When
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Figure 10. System distribution time of Rand-SPST, Balanced-SPST, and
Ordered-SPST, when varying file size (n=200).

evaluating system distribution times with respect to file
sizes, we choose a typical network size of 200 nodes.

B. Comparing SPST construction algorithms

We have compared the three SPST construction algo-
rithms by varying the size of distribution files and the
number of nodes in a system. Fig. 9 compares system
distribution times of Rand-SPST, Balanced-SPST, and
Ordered-SPST, with different number of nodes in the
system. The size of the file to be distributed is 1000
Mbits. Fig. 9a shows that Balanced-SPST consistently
takes shorter time than Rand-SPST. Its distribution time
is almost constant, regardless of the number of nodes
in the system. On the other hand, the file distribution
time of Rand-SPST increases linearly with the number of
nodes. As a result, the difference in system distribution
time between Balanced-SPST and Rand-SPST signifi-
cantly increases as the number of nodes increases. The
reason is as follows. When a system becomes larger and
larger, the file transmission load resulted from Rand-SPST
construction becomes more unevenly distributed to nodes.
In contrast, the transmission load by Balanced-SPST algo-
rithm is approximately the same, because Balanced-SPST
monitors and balances the load distributed to each node.
Fig. 9b shows the impact of initial node orderings of SPST
construction on the file distribution time. By initially
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TABLE I.
COMPARISON OF OPTIMAL FILE SEGMENTATION AND EQUAL FILE DIVISION, WHEN VARYING NUMBER OF NODES, TO DISTRIBUTE A FILE OF

1000 MBITS.

n
Rand-SPST Balanced-SPST Ordered-SPST

optimal equal optimal equal optimal equal
20 2261.00 5906.40 1292.94 3864.00 1243.15 3061.92
40 3633.44 10409.47 1315.05 4371.54 1246.36 3187.99
60 4901.42 14661.56 1301.05 4526.82 1245.39 3189.07
80 6133.66 19027.18 1311.48 4665.80 1252.54 3247.69

100 7329.03 24661.79 1309.29 4845.38 1249.23 3291.12
120 8758.12 32052.46 1315.56 5081.92 1256.21 3342.08
140 9308.69 32726.02 1301.89 5045.95 1246.03 3383.71
160 10660.61 39868.16 1314.67 5196.82 1255.92 3394.06
180 12570.84 50780.51 1318.85 5250.28 1259.94 3427.84
200 13485.73 54130.83 1309.99 5336.70 1250.13 3427.49
500 25513.52 134160.00 1298.61 5602.61 1243.92 3390.72

1000 44227.03 215122.00 1269.55 5633.55 1228.79 3469.42

TABLE II.
COMPARISON OF OPTIMAL FILE SEGMENTATION AND EQUAL FILE DIVISION, WHEN VARYING THE SIZE OF FILE, IN A SYSTEM OF 200 NODES.

S (Mbits) Rand-SPST Balanced-SPST Ordered-SPST
optimal equal optimal equal optimal equal

10 129.73 491.23 13.11 52.64 12.53 34.41
100 1292.93 5237.78 131.49 527.89 125.47 345.87
200 2686.47 9864.05 263.39 1080.03 251.35 689.60
300 3876.99 15138.31 397.72 1576.51 379.23 1034.62
400 5351.63 18881.27 528.45 2109.63 504.06 1377.23
500 6454.40 24408.97 661.63 2633.99 632.05 1737.29
600 7537.73 27556.82 788.85 3142.40 753.74 2059.98
700 9343.12 35061.79 921.38 3671.59 880.04 2430.72
800 10989.09 42211.90 1046.93 4281.31 998.96 2787.88
900 11727.25 44831.47 1184.13 4775.24 1130.51 3130.84

1000 12774.70 43850.75 1310.90 5297.73 1251.91 3431.24

ordering the nodes in an increasing order of its uploading
capacity, the system distribution time decreases by 4.5%
compared to Balanced-SPST without node ordering.

Fig. 10 compares the system distribution times of Rand-
SPST, Balanced-SPST, and Ordered-SPST, when files of
different sizes are distributed. In the experiments, there
are 200 nodes in the P2P system. We see similar results
as in Fig. 9. Both Balanced-SPST and Ordered-SPST
significantly outperform Rand-SPST, as the distributed
file size increases. Moreover, Ordered-SPST consistently
takes approximately 5% less time than Balanced-SPST.

Therefore, among the three SPST construction algo-
rithms, Ordered-SPST achieves the best system distribu-
tion time.

C. Optimal File Segmentation

We evaluate the optimal file segmentation algorithm
discussed in Section IV-B by comparing it with a simple
scheme that divides a file into equal-sized segments. This
simple scheme is commonly used in practical BitTorrent-
like overlay systems. Table I gives a side-by-side compar-
ison of the two schemes when three SPST construction
algorithms are used. We observe that with increasingly
balanced load in the topologies based on Rand-SPST,
Balanced-SPST, and Ordered-SPST, both equal file divi-
sion scheme and the optimal file segmentation algorithm
achieve smaller system distribution time. We can observe
similar results in Table II, which compares the two file

segmentation schemes, when varying the size of file to be
distributed, in a system of 200 nodes.

In all the experiments listed in two tables, optimal file
segmentation algorithm consistently outperforms equal
file division scheme. The optimal file segmentation al-
gorithm only takes 25-35% of the time used by equal file
division scheme. The optimal file segmentation solution
is obtained from a linear programming formulation based
on Eqn. (3). It is solved very efficiently by lp solve, taking
only a fraction of a second. Hence the performance gain
is achieved with negligible computational overhead.

D. Reverse Path Forwarding

The three SPST based algorithms require every node
in a system to keep track of its forwarding paths in all
the SPSTs. To reduce the amount of state information
kept in every node, reverse path forwarding can be used
independently by each node to determine whether to for-
ward a segment, and if so, the set of nodes to forward the
segment. To evaluate RPF’s performance, we compared
the system distribution time of Rand-SPST, Ordered-
SPST, and SPF, when varying the number of nodes in the
system (see Fig. 11a) and varying the size of distributed
files (see Fig. 11b). As the size and distribution load in the
system increase, RPF takes about 7-8 times longer than
Rand-SPST, and 75 times longer than Ordered-SPST to
complete a file distribution. This suggests that BitTorrent-
like systems, in which file pieces can be duplicated among
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Figure 11. System distribution time of Rand-SPST, Ordered-SPST, and
RPF, when (a) varying number of nodes in the system (file size = 1000
Mbits) and (b) varying file size (n=200).

peers, take much longer system distribution time than the
file distribution model without piece redundancy.

The comparisons present an interesting trade-off be-
tween the performance of system distribution and scalabil-
ity in implementation. Adopting a controlled flooding ap-
proach like RPF makes an overlay system easy to deploy
and scale. On the other hand, using this scalable algorithm
compromises system performance. The selection of an
algorithm largely depends on system setup, application
requirements, and deployment considerations.

E. Impact of Node Churning

In this section, we study how different distribution
methods react to peer churning. We model peer departure
as a random process and evaluate how the distribution
algorithms perform with different departure rates.

In the experiments, given a departure rate, nodes are
chosen at random to leave the system at random intervals.
In Fig. 12, we plot the increase ratios of distribution times
of four algorithms: Rand-SPST, Balanced-SPST, Ordered-
SPST, and RPF. We have done extensive comparisons
using different distribution file sizes, ranging from 10
Mbits to 1000 Mbits. Due to space limits, we only include
the comparisons of two representative cases here: a small
file size of 100 Mbits in Fig. 12a and a large file size
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Figure 12. Increase ratio of Rand-SPST, Balanced-SPST, Ordered-
SPST, and RPF when varying peer churning rates: (a) file size = 100
Mbits, and (b) file size = 1000 Mbits.

of 1000 Mbits in Fig. 12b. The increase ratio of each
algorithm is calculated as follows:

increase ratio =
distribution time with node departure

distribution time without node departure
(6)

Fig. 12 shows that RPF produces the smallest increase
ratio among the four algorithms, benefiting from the
redundancy of packets in distribution networks. In three
SPST-based distributions, all of the unfinished file seg-
ments due to node departures need to be re-assigned
and re-distributed in the next cycle. In contrast, in RPF-
based distribution, some of these unfinished segments
could have propagated through alternative routes to some
remaining nodes through its controlled flooding. They
don’t need to be resent in the next cycle.

Rand-SPST has the second smallest increase ratio. As
seen from Eq. (6), the increase ratio is a function of two
parameters: the increase of distribution time due to node
departure and the baseline distribution time without node
departure. The increase of distribution time consists of
two components: (1) R-time – the time to redistribute
the segments that are assigned to and delivered by these
departure nodes as the root nodes of SPSTs, and (2) I-time
– the time to redistribute the segments to be forwarded
by these departure nodes as the internal nodes of SPSTs.
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Figure 13. File distribution time of Rand-SPST, Balanced-SPST,
Ordered-SPST, and RPF, when varying peer churning rates: (a) file size
= 100 Mbits, and (b) file size = 1000 Mbits.

The segments in (1) have not been forwarded to any other
nodes in the network, and thus should be requested from
an original server. The redistribution process of (1) can
be considered as a distribution of a “new” file, so the
comparison of R-time should follow similar trends as
shown in Fig. 9 and Fig. 10. R-time taken by Ordered-
SPST is the smallest, followed by Balanced-SPST and
then Rand-SPST. On the other hand, the segments in (2)
are available in other nodes of the network. For each
of these partially forwarded segments, we independently
construct a supplying set and apply Dijkstras algorithm to
build forwarding paths. Therefore, I-time is comparable
for the three SPST algorithms. Since the increase of
distribution time is dominated by I-time, the total increase
of distribution time is almost the same for the three SPST
algorithms. Because Rand-SPST has a larger baseline
distribution time without node departure, thus it gives a
smaller increase ratio, compared to Balanced-SPST and
Ordered-SPST.

Fig. 13 compares the file distribution times of the
four algorithms for different node departure rates. Despite
larger increase ratios, Balanced-SPST and Ordered-SPST
still have the lowest distribution times among the algo-
rithms, taking about 50% to 66% of the time used by
Rand-SPST and 10% to 33% of the time used by RPF.

F. Findings

The distribution times achieved by two balanced SPST
algorithms, Balanced-SPST and Ordered-SPST, provide
theoretical baselines on the minimum time needed by
practical overlay systems to distribute a file. Such op-
timized distribution times are obtained based on three
design choices. First, each node is assigned a unique
file segment for distribution, so there is no packet redun-
dancy in a distribution network. Second, each node fully
contributes its uploading bandwidth using a “push-based”
model and does not leave the network before completing
its forwarding tasks. And third, a file is optimally divided
into unequal-sized segments by solving a constrained opti-
mization problem. Practical overlay systems often deviate
from the above design choices, due to the considerations
in implementation complexity, scalability, and resilience
to network dynamics. For example, BitTorrent systems
allow packet redundancy in a network with multiple nodes
possessing the same file segment. Many CDNs and P2P
systems simply divide a file into equal-sized segments for
distribution. The experiments help us gain insights on the
impact of each of the three design choices.

• Reverse path forwarding uses controlled flooding
to build file forwarding paths. Each node simply
forwards packets to its neighbors in a loop-free
fashion. This algorithm is easy to implement and
more scalable compared to SPST-based distributions.
However, a packet could be sent unnecessarily to
other nodes that have already received the packet. In
the experiments, we find that the system distribution
time increases up to 75 times compared to the two
optimized SPST algorithms. In practice, we want to
strike a balance in the file distribution performance
and system scalability.

• The optimal way to divide a file into unequal-sized
segments can be found by efficiently solving a linear
programming problem. Compared to the usual way
of dividing a file into equal-sized segments, this op-
timization results in a performance gain of 3-4 times,
without incurring much computational overhead.

• When considering the scenarios, where nodes dy-
namically leave a distribution system, RPF is shown
to be the most resilient one, measured by the increase
ratio of distribution time. However, the overall distri-
bution time needed by RPF is still much larger than
the three SPST algorithms.

VIII. CONCLUSIONS

Our theoretical analysis and experiment evaluation
in this paper complement related work: we study the
performance of more practical mesh-based topology in
P2P and CDN networks. In such networks, nodes are
partially connected and organized in a mesh topology.
By removing piece redundancy among nodes, leveraging
the largest contribution of each node’s uploading band-
width, and optimizing file segmentations, we obtain a
lower bound on the system distribution time of a mesh-
based overlay network. We find that the design of an
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overlay network presents interesting trade-offs among
efficiency, resilience, and scalability. SPST-based distri-
bution algorithms result in efficient system distribution
times, whereas SPF algorithm is scalable and resilient to
dynamic node departures. In the future, we will develop
a more efficient algorithm than RPF to scale in large
systems and will implement the optimal file segmentation
algorithm in practical P2P and CDN systems and evaluate
them on Internet testbeds such as PlanetLab.
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