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Abstract- This paper proposes a novel control scheme for 
channel equalization for wireless communication system. 
The proposed scheme considers channel equalization as a 
classification problem. For efficient solution of the problem, 
this paper makes use of a neural network working on 
Algebraic Perceptron (AP) algorithm as a classifier. Also, 
this paper introduces a method of performance 
improvement by increasing margin of AP equalizers. 
Novelty of the proposed scheme is evidenced by its 
simulation results.  
 
Index Terms—Neural Networks, Algebraic Perceptron, 
Signal Recovery, Channel equalization 
 

I.  INTRODUCTION 

There is an ever-growing demand for high quality and 
high-speed wireless communication. One of the major 
limiting factors is inter symbol interference (ISI). 
Adaptive equalizers are used to reduce channel 
disturbances such as noise, ISI, CCI and adjacent channel 
interference (ACI), nonlinear distortions, fading, time-
varying characteristics of channels, etc.  
Researchers in [1-4] have developed some advances on 
equalizers. However, Neural network-based equalizers 
[5-8] have been proposed as alternative approaches to 
classical equalizers and provide significant performance 
improvement in a variety of communication channels. In 
spite of its good performances, NN models of channel 
equalizers have raised many controversial issues like: 
high value of complexities and lower margin. Though 
equalizers based on Support vector machines (SVM) [9, 
10] increases margin, they aim only at maximizing the 
margin. This motivates this paper to go for an equalizer 
with large margin and to keep the network size down as 
well.  
To avoid the above-mentioned difficulties in existing 
equalizers, this paper proposes an Algebraic Perceptron 
Neural network (APNN) with large margin. In recent 
literatures, researchers are dealing with equalization 
problem as an optimization problem and optimize them 
using soft and evolutionary algorithms [11-14]. Here in 
this paper, we solve equalization as a classification 
problem. The objectives of this paper can be outlined as:       
(1) To formulate problem of channel equalization as 
classification problem, (2) Placing Algebraic Perceptron 

(AP) network as a classifier, (3) Increasing margin of AP 
classifier. (Resulting equalizer termed here as APLM), 
(4) Comparing the results with existing large margin 
classifiers, i.e. with Support vector machines (SVM) and 
(5) The purpose of this paper is not to make APLM a 
substitute for the SVM, whose solution optimizes, but to 
consider its network size as well.  
Advantages of this paper are that the proposed equalizer 
(APLM) tries to maximize margin with respect to the 
critical vectors rather than the whole data set.  
Rest part of this paper is organized as: Section II 
formulates channel equalization as a classification 
problem. Section III gives a brief description on the AP 
basics. In section IV, we discuss Algebraic Perceptron 
Neural Network (APNN) as a classifier. Section V 
projects the improvements made using APNN. Section VI 
describes the simulation results and the paper is 
concluded in section VII. 

II. CHANNEL EQUALIZATION 

The digital communication system considered in this 
paper is illustrated in the Fig. 1. The linear time invariant 
channel has been modeled as an FIR filter and its transfer 
function is given by [20]: 

( ) ∑
=

−=
N

i

i
i zhzH

0

   (1) 

Where, ih , is the channel parameter and N is order of 
channel. The output of the channel is corrupted with 
Additive White Gaussian Noise (AWGN), nη . 

The transmitted digital signal, ( )nx , is an independent, 
equi-probable binary sequence. The task of the equalizer 
is to reconstruct the input symbol, ( )dnx − , with the 
information contained in the received signal at the 
receiver, ( ) ( ) ( )1,,1, +−− mnynyny , where m  
and d  are the order and delay of the equalizer.  
Input data, ( )nx , is in form of binary sequence. Due to 
noise introduced in the channel, at the receiver a +1 may 
appears as -1 and vice versa. Hence, it is required to have 
a clear boundary between these two classes. Channel 
equalizer does this job of classifying the data. Hence, the 
channel equalization problem can be treated as 
classification problem and can avoid the need of channel 
inversion.  
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Figure 1: Model of Digital Transmission System 

The channel input vector for mth order equalizer is given 
as: 

( ) ( ) ( ) ( )[ ]1,,1, +−−= mnxnxnxnX  (2) 

This can take mk 2=  different values giving rise to k  
possible values of channel output vector as: 

( ) ( ) ( ) ( )[ ]1,,1, +−−= mnynynynY   (3) 
That can be divided into two classes as: 

( ) ( ){ }1=−=+ dnxnyY   (4) 

( ) ( ){ }1−=−=− dnxnyY   (5) 

III. ALGEBRAIC PERCEPTRON NEURAL NETWORK (APNN) 

The AP is a binary pattern classifier. It projects the data 
onto a high dimensional feature space and constructs an 
arbitrary separating hyperplane between the positively 
labeled and the negatively labeled training data. As with 
other neural networks classifiers, the AP can be used as 
controller in electric vehicles. When compared with other 
traditional neural networks classifiers, such as the Multi-
layer Perceptron, the Radial Basis Function Network or 
the Modified Probabilistic Neural Network, the AP can 
be trained much more quickly and easily.  
According to Cover’s theorem on the separability of 
patterns “ref” [15]:  

An input space made up of nonlinearly separable 
patterns maybe transformed into a new feature 
space where the patterns are linearly separable 
with high probability, provided that two conditions 
are satisfied. First, the transformation is 
nonlinear. Second, the dimensionality of the 
feature space is high enough.  

This theorem has been the foundation for the AP. For the 
AP, two mathematical operations are involved. The first 
operation is the nonlinear mapping of multi-dimensional 
input vectors onto a high dimensional hypersphere in the 
feature space where linear separation is possible. This 
operation is hidden from both the input and the output. 
The second operation is to find a separation on the hyper-
sphere using a geometrical separation technique. The 
separation is achieved by an arbitrary hyperplane 
constructed using a sparse data representation. 
Consider the problem of classifying data { }N

iii yx 1, = , 

where ix is the thi m-dimensional input pattern vectors 

and { }1±∈iy  is the corresponding desired response or 
the target output. 

A. Data Preprocessing 
Because the AP operates in a hyper-sphere, some data 

preprocessing is required to project the data on to the 
hyper-sphere. The general equation of a decision surface 
in the feature space that does the separation is defined by: 

( ) bwxbwf i +⋅=,     (6) 

Where, w  is weight vector and b  is bias. 
The equation separates the positive and the negative 

examples: 
1≥+⋅ bwxi   for 1=iy    (7) 

1<+⋅ bwxi   for 1−=iy    (8) 
However, because the AP performs separation in a hyper-
sphere with the center of the hyper-sphere as the origin, 
the bias term, b , somehow has to be incorporated into 
the operation. This can be done by adding an additional 
dimension to the input vectors, that is, nRx∈  is lifted to 

1+nR . The input vector becomes ( )λ,,1 nxxx =′ . So 

as to incorporate the bias, b , into the weight vector 
( )λ/,,1 bwwwx n= . Here, λ  is a scalar constant. 

B. Normalization 
The vectors are first mapped to a unit sphere. This 
procedure helps speed up the special geometrical 
operations on which the AP algorithm is based. First, the 
length of each vector in x′  is to be the same. 
Normalizing the vectors can do this:   

x
x

x ′
′

=′
1

    (9) 

This maps x′  to a unit-sphere, 11 ++ ⊂ nn RSR . 
 

C. Nonlinear Transformation 
The vectors on the unit-sphere are taken to the feature 
space, V , through the mapping { }VS →:φ . An inner 
product kernel, k , is used to translate two vectors in the 
lower dimensional space, E , into inner products in the 
high dimensional feature space, V , as defined by: 

( ) ( ) ( )( )yxyxk φφ ⋅=,

( ) ( ) ( ) ( )
V

P

E
yxyxyxk φφ ,,, ==⇒                (10) 

 

 
Fig. 2: Geometrical Representation of the AP algorithm. 
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( )⋅φ is the transformation of a vector onto the feature 

space, V . However, ( )⋅φ  is not calculated directly. The 
choice of kernel must be one defined in accordance with 
Mercer's theorem [16]. 

D. Training the Network 
For the case of separable patterns, when the normalized 
vectors, ( )'ixφ  for Ni ,1= , are multiplied by their 

respective desired output, 1±∈id , there exists a 
hemisphere that contains all the vectors. Training the 
network involves finding a hyperplane, through the origin 
of the sphere, which separates the hemisphere. A norm 
vector characterizes this hyperplane. 

'
ix : The extended training input data, Ni ,1=  

id : The class label of '
ix  

jz : The normal vector of hyperplane at jth iteration in 
the feature space 

iy : The feature vector, where ( ) iii dxy 'φ=  

( )jI  : Indicator function, which denotes the 

maximum violating element, ( )jIy , at iteration 

j; ( ) { }NjI ,,1∈ . 

A violating vector, iy , is a vector whose angle with jz  

is greater than 2/π , or equivalently an inner product 

0, <
Vij yz . 

Starting from an arbitrary initial vector, 0z , the position 

of jz  is evaluated iteratively by the AP algorithm. When 
separation has been achieved, that is, when the algorithm 
does not return a violating vector, the separation plane, 
which jz  is normal to, defines the boundary of the 
hemisphere. 
The AP algorithm is formulated as follows: 
1. Iteration 0=j , select any arbitrary initial normal 

vector jz . 

2. While i∃ such that ij yz , <0, do 

3. ( ) { }{ }Niyalloveryzumenty iijjI ,1,,,minarg ==  

4. ( ) ( ) 1,,21 +=−=+ jjyyzzz jIjIjjj  

Where ( ) ( )jIjIj yyz ,  is the projection of jz  onto the 

maximum violating vector ( )jIy , as shown in Fig 2. 

The update 1+jz is also a vector on the hypersphere.  
The above steps can be expressed recursively as follows: 

( ) ( )kI

j

k
VkIkj yyzzz ∑

=
−−=

1
10 ,2  (11) 

To avoid evaluating vectors in the feature space, the 
Eq.(11) can be restated in terms of inner products via 
kernel functions. 

( ) ( )∑
=

−−=
j

k
ikIVkIkViVij yyyzyzyz

1
10 ,,2,,  (12) 

or, 

( ) ( )∑
∈

−=
SVq

ikIkIqViVij yyyzyz ,,, ,0 α  (13) 

Where,  

( ) ( )∑
=

=
j

k
kIqkqkIq

1
,,, δαα  (14) 

( )kIkkq yz ,2 1, −−=α   (15) 

( )kIq,δ  is the Kronecker Delta function. 
The inner product in the feature space can be expressed 
as: 

( ) ( ) ( )( )ikIikIVikI xxkddyy ,, =  (16) 

The final 
Vij yz , , from Eq.(12) is expressed as a linear 

combination of the most violating vectors gathered at all 
iterations as shown in Eq.(13). These most violating 
vectors are the critical vectors for constructing the 
separating hyperplane. The general structure of the AP 
can be seen from this equation. The vector normal to the 
separating hyperplane is constructed by the sum of 
weighted critical vectors. The values ( )kIq,α  are the 
coefficients for these critical vectors. Non-critical vectors 
have zero coefficients. The AP has an intrinsic property 
of finding vectors that lie closest to the decision boundary 
as critical vectors.  

E. Soft Margin 
There is no mechanism in the AP that takes care of the 
cases of non-separable patterns. In these cases, the 
algorithm continues to try to deal with the misclassified 
examples. In using the Gaussian Kernel, the 
dimensionality of the feature space becomes infinitely 
large. It is always possible to classify finite training data. 
As a general principle from learning theory, for two 
classifiers having the same training error, the classifier 
with smaller kernel parameter is more likely to perform 
better on unseen data [17]. Over fitting the data may give 
higher generalization error. In the setting of the problem 
(17), non-separable patterns, or the overlapping of data, 
are likely to be the results of noise. Separating the non-
separable means that the classifier even tries to make 
"sense" of the effect of noise. For this reason, measures 
have to be taken in the AP to handle non-separability. 
Two approaches are available. In the first approach, the 
frequencies of violating samples are tracked. Frequent 
violating samples are eventually removed from training 
data [18]. In the formulation of the AP algorithm, the 
coefficients of the violating vectors are adjusted at each 
iteration. Non-separable samples are ones that frequently 
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violate. This approach is based on observation and it does 
not properly penalize the measure of the violation on 
separability. However, it works well on the specific 
application like that of (1), when noise is high [18]. In the 
second approach, the coefficients of the critical vectors 
are bounded by a constant, C. This is done in the same 
way that the Lagrange multiplier in the SVM is bounded 
by the regularization parameter, C. The coefficients of 
non-separable samples grow in size at each iteration. 
Once the coefficient of a critical vector goes over the 
bound, C, the sample is removed from the training data. 
A similar method has also been proposed for dealing with 
the requirement of a soft margin classifier in [19]. 

F. Classification 
Classification is performed according to Eq.(17). The 

decision criterion is the sign of the inner product between 
the test vector and jz  in the feature space. Positive signs 
indicate that the test vectors are labeled +1, and the 
inverse for the other classification. The structure of the 
AP is shown in Figure 3. 

( )
Viji xzsignd φ,ˆ =    (17) 

IV. ALGEBRAIC PERCEPTRON CLASSIFIER (APC) 
The AP has a definite advantage for problems where data 
density is high and ambiguity is low [19]. However, this 
is not the nature of the equalization problem where data 
clusters are distinct and noise is ever present. As a 
demonstration, the AP is used to solve the problem (17) 
discussed in section 2. The difference here is that the 
signals are binary taking values from { }1± . Consecutive 
m-number of received symbols is the input to the AP for 
training and classification. Selecting the input dimension 
to be two, i.e. m = 2, the nature of the problem can be 
visualized more easily. Figure 4 shows the data 
distribution and decision boundaries constructed by AP in 
separate test runs. For the same set of data distribution, 
the decision boundaries are different in each test run. This 
demonstrates that the performance of AP can be unstable. 
The performance depends on where the decision 
boundary is located relative to the data distribution.  
One of the ways to stabilize the performance of AP, 
according to the law of large numbers, is to make the size 
of the training sample, N, infinitely large. By observing 
the data distribution, it is intuitive that a better decision 
boundary should be constructed right in the middle of the 
gap between the data clusters of different classifications. 
In other words, in order to yield better results, the gap 
between the decision boundary and the data clusters from 
different classifications should be the same. The same 
argument should also apply to the case when the input 
dimension is more than two. 

V. PERFORMANCE IMPROVEMENT BY INCREASING THE 
MARGIN 

Mathematically, the reasoning behind the above 
mentioned intuition could be found in Vapnik's work on 
Statistical Learning Theory [20]. The principle of   
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Structural Risk Minimization reveals that minimizing the 
training error is only half way to minimizing 
generalization error. Generalization error is defined as the 
error rate of the learning machine after it was trained, 
when it is tested with examples from the same statistical 
distribution but not seen before. Minimizing 
generalization error is especially important to the 
application of channel equalization, because the training 
data can only be a small sample of the whole 
representation. Through better generalization it is 
possible to acquire reasonable results from a reduced set 
of training data. 
The problem to be solved is this: given separation, find a 
better solution that gives a bigger margin. The method 
proposed is a simple adaptive method to increase the 
separation margin of the AP. This is an extension to the 
AP algorithm. 

A. Measuring and Maximizing the Margin 
The Euclidian distance can be used to determine the 
similarity between two vectors. Let ix denote a m -by-1 
vector of real elements.  

[ ]Timiii xxxx ,, 21=   (18) 
The Euclidean distance between a pair of m -by-1 vector 

ix  and jx is defined by: 

( ) ( )
2/1

1

2, ⎥
⎦

⎤
⎢
⎣

⎡
−=−= ∑

=

m

k
jkikjiji xxxxxxd (19) 

Here, ikx  and jkx are the kth element of the input vector 

ix  and jx respectively. 
The similarity between the two vectors is defined as the 
reciprocal of the Euclidean distance ( )ji xxd , . That is, 
the closer the two vectors are to each other, the smaller 
the Euclidean distance ( )ji xxd , will be. Another 
measure of similarity is the dot product or the inner 
product. Given two vectors of the same dimension, ix  
and jx , the inner product is defined by 

∑
=

===
m

k
jkikj

T
ijiji xxxxxxxx

1
cos, θ   (20) 

Here, θ is the angle between the two vectors. The 
relationship between Euclidean distance and inner 
product is shown in Figure 5. It can be seen that the 
computation of inner products is equivalent to carrying 
out geometrical constructions in terms of angles, length 
and distances. Now for the operation of AP, the vectors 
are normalized to have unit length, that is, 

1== ji xx    (21) 

Eq.(19) can be used to write 
( ) ( ) ( ) j

T
iji

T
jiji xxxxxxxxd 22,2 −=−−= (22) 

Eq.(22) shows that minimizing the Euclidean distance 
corresponds to maximizing the inner product. In other 

words, the inner product can be used as a measure for 
margin. 
The margin is the key factor in the generalization analysis 
for such classifiers. 
The margin of f on a labeled example ( )yx, is the 

quantity ( )xyf , that is, the amount by which the 
function f  is to the correct side of the threshold. It can 
be thought of as an indication of the confidence with 
which f  classifies the point x . 
Figure 5 depicts that the separating hyperplane formed by 

jz is a possible solution for the AP. For clarity, not all 
training data are shown in the figure. Only violating 
vectors from previous iterations, ( )pIy  and ( )qIy , are 
shown. The classifier can correctly classify the given 
training samples. However, the vector ( )qIy  is "closer" to 

the separating hyper plane than ( )pIy . If an update, 

1+jz , can be found that increases the margin, the 
generalization ability of the classifier will be improved, 
as is discussed in section IV. The margin here is defined 
as the "closeness" between the critical vectors and the 
separating hyper plane. 
Now the separating hyper plane is represented by the 
normal vector jz  and the angles between jz and all the 

training vectors Niyi ,,2,1, =  are less than 2/π . 

Since the cosine function between 0 and 2/π  is a 
monotonic decreasing function and knowing that the 
vectors are of unit length, the "closeness" can be 
indicated by the cosine of the angle (or the inner product) 
between the normal vector and the critical vectors. 
The further away a vector, iy , is from the normal vector, 

jz , the smaller the value of the inner product. 
Maximizing the margin is equivalent to maximizing the 
angles between the normal vector and the critical vectors, 
provided that it still classifies correctly. Geometrically, 
the position of the normal vector 1+jz is best at the 
center of, or having the same Euclidean distance to, all 
the critical vectors. 

B. Adjusting the Decision Boundary 
The steps are to shift the position of the separating plane 
so that the margin is increased and yet the separation 
condition still satisfies. Because the normal vector is a 
linear combination of the critical vectors, the position of 

jz  can therefore be adjusted away from or towards the 
direction of a particular critical vector by changing the 
coefficients of that critical vector, ( )kIq,α in Eq.(13). This 
is demonstrated in Figure 6. 

The idea is to locate and increase the value of the 
coefficient of the critical vectors of each class that are too 
"close" to the separating hyperplane. When the normal 
vector is equal in "distance" to all the critical vectors, the 
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margin with respect to the critical vectors is maximized. 
Please note that the margin here does not mean the same 
thing as the margin in the SVM, where it is with respect 
to the entire data. 

After the initial adjustment, the normal vector, jz , is 
no longer of unit length. The inner product between the 
normal vector and the critical vector involves the angle 
and the length of the normal vector. However, this does 
not affect the approach of using the inner product to 
locate the critical vector whose coefficient is to be 
updated. 

C. Adding New Critical Vectors 
It may occur that during the process when the margin is 
being maximized, other vectors from training samples, 

iy , could lie closer to the decision boundary than any of 
the critical vectors of the same label. In such a case, this 
particular vector should be included as a critical vector. 
Updating the coefficient of the vector using the same 
update method does this inclusion. The optimization of 
the margin should continue. 
The following simple algorithm was devised: 
• Step #1 
Calculate the normalized variance of the inner 

products. 
Stop if 
 

( )( ) ( )( ) Nkforyznormyz
vkIjvkIj ,1,,/,var =<η  

  or 
  oldnew inminm argarg >  
  else go to Step 2 
• Step #2 
Find the critical vector, ( )lIy , the inner product of 

which to the normal vector is smallest, i.e., 

( )( )kIj yz ,min  

Do 

( ) ( ){ }εαα += lIqlIq ,,  

• Step #3 
Go to Step 1 

Here, 
inmarg : ( )( ) ( )( ){ }−+ + kIjkIj yzyz ,min,min  

N       : Number of critical vectors 
( )lI  : Index of the critical vector whose distance to the 

decision boundary needs to be increased 
ε  : Step size can be fixed or variable. A good 

choice for variable ε may be; 

( )( ) ( ){ }kIjkIj yzyzmean ,, − variable 

epsilon allows the solution to be found more 
quickly 

η  : A user defined error tolerance parameter 
 

 

D. The Improvement 
The improvement to the generalization ability as a result 
of increasing the margin can be visualized by selecting 
the input dimension to be 2. This is shown in Figure 7. 
The figure is to be compared to previous results acquired 
using AP before the improvement, as shown in Figure 4. 
The decision boundary from the increased margin AP is 
compared with one constructed by an Optimal Bayesian 
Equalizer. The optimal equalizer is constructed given 
some prior knowledge about noise. It provides a good 
benchmark for the test equalizers. 
It can be shown from Figure 7 that the decision boundary 
given by the increased margin AP follows quite closely 
the decision boundary provided by the optimal equalizer 
for this particular data distribution. Without actually 
performing Monte Carlo analysis to determine the error 
rate, the prediction is that the two will perform quite 
similarly. 
One of the advantages of a large margin classifier is that 
it can be trained with fewer data to give the same result. 
To demonstrate this point using the APLM, Figure 8 
shows the separation by the APLM with a mere 100 
training samples. The decision boundary is similar to 
what is given by Figure 7. 
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VI. SIMULATION RESULTS 

The methods discussed in previous sections are put to the 
test by running simulations. The channel used in the 
simulation is a discrete time linear phase channel 
modeled as FIR filter and the transfer function is given 
by: 

( ) 21 35.087.035.0 −− ++= zzzH  (23) 
The input data for the training and testing are chosen 
from the{ }1± with equal probability. They are 
independent and identically distributed. The additive 
distortion introduced by the channel is modeled as white 
Gaussian noise with zero mean. For the training of the AP 
equalizer a binary sequence of 300 is randomly generated 

 
Figure 9: Decision boundary for SVM and APLM 

 
Figure 10: BER for optimal, AP and APLM equalizer 

 
Figure 11: Log(BER) for optimal, AP and APLM 

and fed to the digital channel. At the output of the 
channel white Gaussian noise with zero mean is added to 
introduce further distortion. This distorted sequence 
forms the input pattern for the AP equalizer. The 
proposed equalizer is trained to this pattern. The input 
dimension is chosen to be 4. The delay is set at 1. 
Gaussian kernels with small sigma values, 1.0=σ , 
were used. The purpose of this paper is to show the 
improvement in performance of having the margin 
increased in the AP, while other variables, such as the 
kernel type, are kept constant. 
After the training phase is complete, the AP equalizer is 
tested with a new sequence of data generated from 
{ }1± with equal probability. This data sequence is, then, 
passed through the channel to introduce the ISI. White 
Gaussian noise is added to the output of the channel to 
introduce the additive distortion in the signal. This 
distorted binary sequence is applied to the input of the 
proposed AP equalizer. 

B. Comparing with the Support Vector Machine 
There is a fundamental difference between this approach 
and the approaches by other large margin classifiers, such 
as the Support Vector Machine (SVM). The difference is 
that the SVM aims only at maximizing the margin, 
whereas the APLM tries to keep the network size down 
as well. In the SVM, the margin is maximized with 
respect to the complete training data. The network size is 
dependent on the parameter settings and the structure of 
the training data. Unless the data structure is known 
before hand or that the network is retrained with different 
parameter settings, it is often difficult to know whether 
the network size can be further reduced to give a more 
efficient run time implementation. The APLM on the 
other hand increases the margin with respect to only the 
critical vectors. In the cases, which are encountered in 
channel equalization, the decision boundary formed by 
increasing margin of the critical vectors approximates the 
decision boundary produced by the SVM. However in the 
former, the number of critical vectors can be monitored 
and be kept low. This is especially useful if the run time 
efficiency is an important consideration. However, the 
reduction in network size comes with a slight 
performance penalty. The argument for persisting with it 
even with the loss of performance is as follows. In 
practice, the equalizer is trained with a noisy data set. To 
be really precise, in determining the maximal margin 
boundary the effect of noise is generalized. Therefore, it 
is reasoned that by relaxing the precision by a small 
extent it should generate similar results. 

C. Results and analysis 
In order to study the performance of proposed equalizers 
AP and APLM, we have compared the results with SVM 
and optimal Bayesian equalizer. This performance study 
was based on four parameters: (1) Decision boundary, (2) 
Error performance in terms of Bit Error Rate (BER) and 

( )BER10log , (3) Network size and (4) stability issues.   
Decision boundaries were studied in figures 4, 7, 8 and 9. 
Error probability configured in figures 10 and 11. 
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Similarly, Network size is evidenced from table 1. 
Stability is demonstrated through an example at the end 
of this section.  
Study of figures 9 reveals that, there is no large difference 
between decision boundaries framed by SVM and 
proposed APLM. Also from figure 7, though it seems a 
difference in decision boundary between Bayesian 
optimal equalizer and proposed APLM, a keen study 
shows there is no difference in pattern classification of 
output signal.  
Figure 10 and 11 shows that for SNR of less than 12 dB, 
the APLM does not possess any advantage. This is 
because at this high noise level, data clusters are loosely 
bounded. The “gaps” between the data clusters become 
narrow. The room for increasing the margin becomes 
restricted. However, as the noise level decreases, the 
improvement in performance allows the APLM to get 
close to the performance of the Optimal Equalizer and 
SVM. While, on the other hand, the AP struggles to stay 
error free. 
The APLM equalizer cannot achieve the same results that 
the Optimal Equalizer did at high noise level. This is 
because by observing the input data alone, the APLM 
could not distinguish between the effects due to noise and 
effects due to the channel response, whereas for the 
Optimal Equalizer the noise distribution is known a-
priori. For the APLM, the size of the network is the 
number of critical vectors required to perform a particular 
classification. It translates directly to the calculation 
complexity to classify one input. Table 1 shows that size 
of the APLM when it is required to equalize the channel 
defined by Eq.(23) when the SNR is 20dB. As a 
reference, the table also lists the number of centers 
required by an optimal Bayesian equalizer.  
The number of centers for the optimal equalizer is the 
number of possible states.  
What Table 1 demonstrates is that the size of the APLM 
network does not grow exponentially with the increase of 
input dimension.  
The optimal Bayesian equalizer, on the other hand, does. 
This has to do with the way the critical vectors are chosen 
in the APLM. One of the ways to reduce the size of the 
network is to choose centers that are close to the decision 
boundary. This is exactly what was done in choosing 
critical vectors for the APLM. In order to maintain the 
accuracy of the equalizer, when the input dimension is 
increased, the number of training samples also needs to 
be increased.  
This is because the dimensionality of the input space 
rapidly grows and leads to a point where the training data 
is sparse and does not provide a good representation of 
the mapping.  
This is to be noted that, a mere 300 training data were 
adequate to train the network. This is a distinct advantage 
for using the APLM as an equalizer.  

D. Example: Nonlinearity  
The problem of stability exists because the AP only 
constructs an arbitrary decision boundary between the 
binary patterns.  

 

TABLE I: 

SIZE OF NETWORKS VS. DIFFERENT INPUT DIMENSIONS 

Input 
dimension 

2 3 4 5 6 10 

APLM 7 18 30 50 60 70 
Bayesian 16 32 64 128 256 4096 
SVM 16 28 54 98 176 2664 

 
For classifying problems with low data density, like the 
case for channel equalization, where the space between 
data clusters can be relatively large, the performance 
becomes unstable. The fix to the problem is to reduce the 
arbitrariness in constructing the decision boundary. 
According to the principle of structural risk minimization, 
it is better that the margin between the decision boundary 
and the two classifications is maximized. A method that 
increases the margin of the solution produced by the AP 
was proposed. The problem of stability in using the AP as 
a nonlinear channel equalizer has been addressed via this 
example. In simulations it was shown to give superior 
and more stable results.  
Using APLM on channels with nonlinear distortions 
should not affect the improvement in performance over 
the AP. This is demonstrated in the following example.  
Nonlinearity in the channel is simulated: 

( ) ( ) ( ) ( ) ( )nnoisenxnxnxny +−+= 32 1.02.0  (24) 
For visualization purposes, the effect of the nonlinearity 
on the data distribution is demonstrated in Figure 12, as 
compared to Figure 7. 

VII. CONCLUSION 
This paper proposed two novel equalizer structures, AP 
and APLM. Advantages of this paper can be outlined as: 
(1) The purpose of this paper is not to make APLM a 
substitute for the SVM, whose solution optimizes, but to 
consider its network size as well, (2) The APLM tries to 
maximize margin with respect to the critical vectors 
rather than the whole data set, (3) This is to be noted that, 
a mere 300 training data were adequate to train the 
network of proposed APLM, (4) Significant reduction in 
network size as compared to Optimal Bayesian equalizer 

644 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER



and SVM equalizers, (5) Significant improvement in 
performance as compared to SVM based equalizers, (6) 
This paper also addressed stability concerns for large 
margin classifiers through an example and in simulations 
proposed APLM was shown to give superior and more 
stable results. 
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