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Abstract— A subspace-based method is proposed for estimating
the channel responses of single-input-multiple-output (SIMO)
Orthogonal Frequency Division Multiplexing (OFDM) system.
Our technique relies on minimum noise subspace (MNS) decom-
position to obtain noise subspace in a parallel structure from
a set of pairs (combinations) of system outputs that form a
properly connected sequence (PCS). The developed MNS-OFDM
estimator is more efficient in computation than subspace (SS)-
OFDM estimator, although the former is less robust to noise than
the later. To maximise the MNS-OFDM estimator performance, a
symmetric version of MNS is implemented. We present simulation
results demonstrating the channel identification performance of
the corresponding OFDM-based SIMO systems employ cyclic
prefixing approach.

Index Terms: OFDM, MNS, Blind Channel Identification,
Equalisation.

I. INTRODUCTION

OFDM is a multi-carrier digital modulation technique that
facilitates the transmission of high data rates with a lim-
ited bandwidth [33]. It is an effective technique for several
applications such Digital Audio Broadcasting (DAB) and
terrestrial Digital Video Broadcasting (DVB) [18], [32], [35].
In addition, OFDM forms the basis for the physical layer in
upcoming standards for broadband Wireless Local Area Net-
work (WLAN) [24], i.e. ESTI-BRAN HiperLAN/2 [22], IEEE
802.11a [24] and Multimedia Mobile Access Communication
Systems (MMAC) and for Fourth Generation (4G) broadband
wireless systems that will perform multimedia transmission
to mobiles and portable personal communications devices, i.e.
European MEMO project and for IEEE 802.16.

Due to increase in the normalised delay spread, multipath
fading becomes a major concern as systems with high data rate
are more liable to intersymbol interference (ISI). Classically,
ISI is eliminated by employing a cyclically extended time
domain guard interval (GI). Thus, each OFDM symbol is
preceded by a periodic extension of the symbol itself. This GI
is also known as cyclic prefix (CP) and the system CP-OFDM
[10], [11]. Recently, zero-padding OFDM (ZP-OFDM), which
pre-pends each OFDM symbol with zeros rather than repli-
cating the last few samples, has been proposed [41], [27],
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[28], [26]. ZP-OFDM not only has all the advantages of
the CP-OFDM, but also guarantees symbol recovery and en-
sures finite impulse response (FIR) equalisation. However, the
implementation of a ZP-OFDM system involves transmitter
modifications and complicates the equaliser [10], [43].

To maximise the performance advantage of OFDM system,
reliable identification of Single Input Multiple Output (SIMO)
channels is desired. Currently, the channel identification and
equalisation technique used requires a major fraction of the
channel capacity to send a training sequence over the channels
[25]. There are practical situations where it is not feasible to
utilize a training sequence such as in fast varying channels.
To save this fraction of channel capacity, blind identification is
an attractive approach. Using the blind channel identification
techniques, the OFDM-based SIMO receiver can identify the
channel characteristics and equalises the channel all based on
the received signal, and no training sequence is needed, which
hence saves the channel capacity.

Blind identification and equalisation of SIMO channels have
been a very active area of research during the past few years
(see [1], [5], [12], [21], [23], [25] and the references therein).
Among the various known algorithms, Second Order Statistics
(SOS)-based algorithms are the most attractive due to their
special properties [15], [16]. It was, for a while, believed
that the subspace (SS)-based method was the only key to the
surprising success among the existing SOS-based techniques.
The SS-based method applies the MUltiple SIgnal Classifi-
cation (MUSIC) concept to a relation between the channel
impulse responses and the noise subspace associated with a
covariance matrix of the system output. One of the important
advantages of SS-based method is its deterministic property.
That is, the channel parameters can be recovered perfectly in
the absence of noise, using only a finite set of data samples,
without any statistical assumptions over the input data. More
recently, the use of the SS-based method has been suggested
in [10], [11] to accomplish blind SIMO channel identification
in OFDM systems. Despite their high identification efficiency,
SS-based method are computationally very intensive, which
may be unrealistic or too costly to implement in real time,
especially for large sensor array systems. The main reason is
that they require non-parallelisable eigen-value-decomposition
(EVD) of a large dimensional matrix to extract (estimate) the
noise or signal subspace [2], [4].

In this paper, using a minimum noise subspace (MNS) de-
composition concept [4], we introduce several techniques for
blind identification and equalisation of OFDM-based SIMO
systems. Our techniques computes the noise subspace via a set
of noise vectors (basis of the noise subspace) that can be com-
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puted in parallel from a set of pairs (combinations) of system
output, without using reference or pilot symbols. Therefore,
an EVD for smaller covariance matrices is required to extract
noise subspace. Ideally, this approach, which relies on the
known structure of the received OFDM symbols, provides a
perfect channel estimate in the absence of noise. It is believed
to have inspired all the subsequent developments which have
taken place to accomplish unknown parameter identifications
in a wide range array signal processing applications. Further-
more, the developed techniques significantly reduce receiver
complexity in wireless broadband multi-antenna systems.

A brief introduction to OFDM-based SIMO system is given
in Section III. We review the block diagram of OFDM-
based SIMO system, which employs a CP to mitigate the
impairments of the multipath radio channel. Following the CP-
OFDM problem formulation, we then derive a mathematical
model corresponding to the ZP-OFDM system. In Section
IV, the basic assumptions are outlined. In Section V, we
present the original methods [10], [25], [37], [38], [39] that
marked the beginning of a brand new direction in subspace
decomposition and its application in OFDM-based SIMO
systems. To illustrate the usefulness of the MNS concept,
new estimators are derived in Section VI that tradeoff MSE
performance for extra saving in complexity. In Section VII,
we highlight the channel estimation based on a Symmetric
MNS (SMNS) concept and discuss several important results
concerning system identifiability. By employing SMNS-based
method, OFDM system guarantee symbol recovery and offers
MSE performance close to the system exploiting SS-based
method. In Section VIII, equalisation scheme is developed
based on one-IFFT operations. In Section IX, we present
computer simulations. In Section X, we discuss the properties
of the proposed techniques and finally, in Section XI, we
summarise and draw relevant conclusions. Part of the work
in this paper has been previously presented in [7], [8], [9].

II. NOTATION

Throughout this paper, the following notations are used.

AT : Transpose of A

AH : Conjugate (or Hermitian) Transpose ofA

A† : Moore-Penrose pseudo-inverse of A

I : Identity matrix of appropriate dimension

0 : Zero matrix of appropriate dimension

E(.) : Statistical expectation operator

‖·‖ : Frobenius norm

III. OFDM-BASED SPATIAL DIVERSITY SYSTEMS

An apparent disadvantage of single-carrier based spatial
diversity systems is the fact that the computational complexity
of the receiver will in general be very high. The use of OFDM
[14], [29] alleviates this problem by turning the frequency-
selective SIMO channel into a set of parallel narrow-band
SIMO channels. This makes equalisation very simple. In fact,

only a constant matrix has to be inverted for each tone [30],
[31]. In this section, OFDM-based SIMO is introduced by
using CP and ZP techniques.

A. Standard CP-OFDM System

P/S

E
q
u
a
liz

e
r

N M

M

N

CP

N

S/P

S/P

M

Estimator

R
e

m
o

v
e

C
P

R
e

m
o

v
e

C
P

N

N

FHN

sk uk ūcp,k
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Fig. 1. CP-OFDM system: transmitter and receiver.

Figure 1 depicts the baseband discrete-time block equiv-
alent model of a standard CP-OFDM system. The trans-
mitted symbols are parsed into blocks of size N : sk =
[sk (0) , sk (1) , . . . , sk (N − 1)]T where k = 0, 1, 2 . . . ,K −
1. The elements of sk are considered to be independent
and identically distributed (i.i.d). We regard these elements
to be in the frequency domain. The symbol block sk
is then modulated and converted into time domain us-
ing the IFFT matrix FHN , where FN has entires fn,d =
1
N

exp
(
j2πnd
N

)
and d, n = 0, . . . , N − 1. The data vec-

tor uk = FHN sk = [uk (0) , uk (1) , . . . , uk (N − 1)]T is
then appneded with a CP of length L, resulting in a
size M = N + L signal vector: ūcp,k = Tcpuk =
[uk (N − L) , . . . , uk (N − 1) , uk (0) , . . . , uk (N − 1)]T . We
consider Tcp is a concatenation of the last L rows of an N×N
identity matrix IN

(
that we denote as Icp

)
and the identity

matrix itself IN , i.e., Tcp =
[
ITcp, I

T
N

]T
. CP makes the OFDM

appear periodic over the time span of interest. The channel
response is denoted by h(r) (l) where l = 0, 1, . . . , L(r), and
r = 1, 2, . . . , q. To avoid ISI, as indicated previously, the CP
length L is selected to be equal to or greater than the channel
order, i.e., L(r) ≤ L. We consider the upper bound of the
SIMO channel order L(r) as a CP length L. The received k-th
block at r-th output for n = 0, 1, . . . ,M − 1, is given by

x
(r)
cp,k (n) =

L∑
l=0

h(r) (l)ucp,k (n− l) + v
(r)
cp,k (n) (1)

where ucp,k (n− l) and the AWGN, v(r)
cp,k (n), is assumed to

be mutually uncorrelated and stationary. Using the following
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notations

xcp,k (n) =
[
x

(1)
cp,k (n) , x

(2)
cp,k (n) , . . . , x

(q)
cp,k (n)

]T
vcp,k (n) =

[
v
(1)
cp,k (n) , v

(2)
cp,k (n) , . . . , v

(q)
cp,k (n)

]T
h (l) =

[
h(1) (l) , h(2) (l) , . . . , h(q) (l)

]T
(2)

we can rewrite the input-output relation (1) in vector matrix
as

xcp,k (n) =

L∑
l=0

h (l)ucp,k (n− l) + vcp,k (n) . (3)

Let q to be number of sensors at the output, H0 be the qM×M
block-lower triangular Toeplitz matrix and H1 be the qM×M
block-upper triangular Toeplitz matrix, i.e.,

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) 0 . . . . . . 0
...

. . .
. . .

. . .
...

h(L) . . . h(0) . . . 0

0 h(L) . . . h(0)
...

...
. . .

. . .
. . .

...
0 . . . h(L) . . . h(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . h(L) . . . h(1)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . h(L)

0 . . . . . . . . . 0
...

. . . . . .
. . .

...
0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Based on the aforementioned assumptions and the fact that
h(l) = 0,∀l /∈ [0, L], (3) can be written in the block form as

xcp,k = H0ūcp,k +

ISI︷ ︸︸ ︷
H1ūcp,k−1 +vcp,k

= H0TcpFHN sk + H1TcpFHN sk−1︸ ︷︷ ︸
ISI

+vcp,k (6)

where

xcp,k =
[
xTcp,k (0) , xTcp,k (1) , . . . , xTcp,k (M − 1)

]T
vcp,k =

[
vTcp,k (0) , vTcp,k (1) , . . . , vTcp,k (M − 1)

]T
(7)

Due to the dispersive nature of the channel, ISI arises between
successive blocks and renders xcp,k in (6) dependent on
both ucp,k and ucp,k−1. To obtain an ISI-free data block,
we consider a truncated version of xcp,k. This is done by

discarding
[
xTcp,k (0) , xTcp,k (1) , . . . , xTcp,k (L− 1)

]T
with the

receive-matrix: Rcp = [0qN×qL, IqN ]. The resulting received
vector can be written as

ycp,k = Rcpxcp,k

= HcpFHN sk + ncp,k (8)

where

ycp,k =
[
yTcp,k (0) , yTcp,k (1) , . . . , yTcp,k (N − 1)

]T
ncp,k =

[
nTcp,k (0) ,nTcp,k (1) , . . . ,nTcp,k (N − 1)

]T
(9)

The block-Circulant channel matrix (one can verify by direct
substitution from (4) that Hcp = RcpH0Tcp) is defined as

Hcp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) . . . 0 h(L) . . . h(1)
h(1) 0 . . . h(L) . . . h(2)

...
. . .

. . .
. . .

. . .
...

h(L− 1) . . . h(0) 0 . . . h(L)
h(L) . . . h(1) 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 . . . 0 h(L) . . . h(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The linear convolutive channel with ISI in (6) is converted
to be a circular one without ISI in (8). Consider q = 1,
N × N circulant matrix Hcp can be diagonalised by pre-
and post multiplication with N -point FFT and IFFT matrices;
FNHcpFHN = D. Because the FFT (and thus its matrix FN ) is
invertible, we deduce that the circulant matrix Hcp is invertible
if and only if D is invertible and the channel transfer function
has no zero on the FFT grid.

CP-OFDM system enables one to deal easily with ISI
channels by simply taking into account the scalar channel
attenuations. However, it has an obvious drawback that the
symbol sk(l) transmitted on the l-th sub-carrier cannot be
recovered when it is hit by a channel zero (h(l) = 0). This
limitation leads to a loss in frequency domain (or multipath)
diversity and can be overcome by the ZP precoder which we
review next [41].

B. ZP-OFDM System
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Fig. 2. ZP-OFDM system: transmitter and receiver.

Figure 2 depicts the baseband discrete-time block equiv-
alent model of a standard ZP-OFDM system. The only
difference between ZP-OFDM and CP-OFDM is that the
CP is replaced by L trailing zeros that are padded at
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each precoded block uk to yield ūzp,k = Tzpuk =
[uk (0) , uk (1) , . . . , uk (N − 1) , 0, . . . , 0]T where Tzp =[
ITN , 0

T
L×N

]T
. We can write the received block symbol xzp,k

as [41]

xzp,k = H0ūzp,k +

ISI︷ ︸︸ ︷
H1ūzp,k−1 +vzp,k

= H0TzpFHN sk + H1TzpFHN sk−1︸ ︷︷ ︸
ISI

+vzp,k (11)

where

xzp,k =
[
xTzp,k (0) , xTzp,k (1) , . . . , xTzp,k (M − 1)

]T
vzp,k =

[
vTzp,k (0) , vTzp,k (1) , . . . , vTzp,k (M − 1)

]T
(12)

and the key advantage of ZP-OFDM lies in the all-zero L ×
N matrix 0 which eliminates the ISI, since H1TzpFHN = 0.
Forming the qM × N matrix Hzp from the first N columns
of matrix H0, (11) can be expressed as

xzp,k = HzpFHN sk + vzp,k (13)

where

xzp,k =
[
xTzp,k (0) , xTzp,k (1) , . . . , xTzp,k (M − 1)

]T
vzp,k =

[
vTzp,k (0) , vTzp,k (1) , . . . , vTzp,k (M − 1)

]T
(14)

and Hzp is, a block-Toeplitz matrix, defined as

Hzp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) 0 . . . 0
...

. . .
. . .

...

h(L)
. . .

. . .
...

0
. . .

. . . h(0)
...

. . .
. . .

...
0 . . . 0 h(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Corresponding to the first N columns of Hzp, the H0 sub-
matrix is block-Toeplitz and is always guaranteed to be invert-
ible, which assures symbol recovery (perfect detectability in
the absence of noise) regardless of the channel zero locations.
This is not the case with CP-OFDM, and precisely the distinct
advantage of ZP-OFDM. In fact, the channel-irrespective
symbol detectability property of ZP-OFDM is equivalent to
claiming that ZP-OFDM enjoys maximum diversity gain. In
other words, ZP-OFDM is capable of recovering the diversity
loss incurred by CP-OFDM.

This section provides a brief review of the OFDM-based
spatial diversity, which sets the scene for the rest of the
paper. For more elaborate introduction to OFDM, the reader
may refer to [10], [13], [14], [26], [28], [33], [41], wherein
numerous further references are found. In the next sections, we
study the estimation of Hcp and Hzp from the observations
ycp,k and xzp,k.

IV. ASSUMPTIONS

If the distance between each sensor at the receiver is large
enough with respect to the spatial variation of the channel, the
propagation channels between the transmitter and each sensor
at the receiver are different one from the other. In this case,
it is quite realistic to assume that the components of

h(z) =
L∑
l=0

h(l)z−l (16)

have no common zeros, i.e.,

h(z) �= 0 for each z( including z = ∞). (17)

The degree of h(z) is assumed to be known and H(z) models
the propagation between the emitting sources and the sensor is
assumed to be unknown. In this paper, we study the estimation
of H(z) from the outputs ycp,k and xzp,k, assuming that
the transfer function satisfies (17). It can be shown that in
the context of a realistic multipath model, (17) is practically
reasonable and hold almost surely. The signal parameters
of interest are spatial in nature and thus require the cross-
covariance information among the various sensors, i.e., the
spatial covariance matrix, which is given by

Rn = E
{

ycp,kyHcp,k
}
, Rm = E

{
xcp,kxHcp,k

}
. (18)

The source samples {sk(n)} is a sequence of i.i.d complex cir-
cular random variables with zero mean and bounded moments
up to the fourth-order E

{
|sk(n)|4

}
:

E
{
s2k(n)

}
= 0, E {sk(n)s∗k(n)} = σ2

s . (19)

The covariance matrix RN of the transmitted symbols sk is
expressed as

RN = E
{

sksHk
}
. (20)

and is assumed to be positive-definite. The additive noise
vk(n) is a stationary complex circular white-noise process with
zero-mean and second-order moments

E
{
vk(n)2

}
= 0, E {vk(n)v∗k(n)} = σ2. (21)

Moreover, vk(n) is independent from one sensor to another. In
the general case of spatial independence, the noise covariance
matrix has diagonal structure, as follows:

Qn = E
{

ncp,knHcp,k
}

= σ2In, (22)

Qm = E
{

vzp,kvHzp,k
}

= σ2Im. (23)

The system is designed such that M > N > L(r) ≥ L. No
channel state information (CSI) is assumed available at the
transmitter.

V. SS-BASED METHOD

The desire for a more efficient algorithm led to the devel-
opment of subspace(SS) methods for the blind estimation of
multi-channel FIR filters [25]. The basic idea behind these
methods consists of estimating the unknown parameters by
exploiting the orthogonality of subspaces of certain matrices
obtained by arranging in a prescribed order the second order
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statistics of the observation. This scheme shares many sim-
ilarities with well-known techniques for direction-of-arrival
(DOA) estimation in a narrow-band array processing context.
The existence of such SS-based methods for blind estimation
was brought to light by Gurelli and Nikias [19] and Moulines
et al [25] (see also Hua [21] and Abed-Meraim [1], [5],
[6], [20]). Blind channel estimation is particularly important
for OFDM applications where severe ISI can arise from
the time-varying multipath fading that commonly exists in
a mobile communication environment. The varying channel
characteristics must be identified and equalised in real time to
maintain the correct flow of information. The use of SS-based
methods to accomplish blind SIMO channel estimation for
OFDM has been proposed for frequency-flat fading channels
in [10], [11]. The extension of it to the general MIMO case
has been successfully introduced by Zeng et al [43]. More
recently, some SS-based methods have been proposed for
single-user OFDM systems [27], [34]. The method in [34]
can be applied to OFDM systems without CP and, therefore,
leads to higher data-rate.

In order to connect our results with [10] and [43], the
framework of blind channel estimation in OFDM-based SIMO
system using CP is now presented. Before going further, we
make the following definitions: h (l) is the true (but unknown)
channel response to the SIMO system to be identified, and ĥ (l)
is the estimated channel response. For simplicity, we define
also n = qN , n̄ = n − N , and ϑ = q(L + 1). Denoting by
Rn the covariance matrix of ycp,k and using the signal model
(8), Rn can be expressed as

Rn = HcpFHNRNFNHH
cp + σ2In. (24)

Since the covariance matrix Rn is unitarily diagonalisable,
there exists an n × N matrix Scp and an n × n̄ matrix Gcp
such that [Scp Gcp] is unitary, and

Rn = ScpΛNSHcp + σ2GcpGH
cp (25)

where ΛN represents an N ×N diagonal matrix. By analogy
with the narrow-band array processing model, the range space
of Scp is referred to as the signal subspace and its orthogonal
complement Gcp is the noise subspace. Determining the basis
Scp with enough precision constitutes a solution to most detec-
tion and parametric estimation problems in array processing.

If the power of the noise over all the sensors is the same,
the noise covariance matrix reduces to an identity matrix (up
to a scalar). The set of eigenvalues (ordered by magnitude), or
simply eigenspectrum, are thus scaled up by the addition of
the noise floor σ2. This assumption of uniform noise provides
a convenient means to distinguish between the signal and
noise subspaces. If it is not verified, all classical detection
and estimation algorithms fail to perform satisfactorily.

We denote Πn = GcpGH
cp as the orthogonal projector

on the noise subspace, and Π
⊥
n = I − Πn. It is

easy to show that range
(
Scp
)

= range
(
Hcp
)
, and

range
(
Gcp
)

=
(
range

(
Hcp
))⊥

, i.e., the orthogonal
complement subspace to the column range space of Hcp.
The subspace estimation method is ultimately related to the
following lemma [5]:

Lemma: Assume that (17) holds and N ≥ L, then, the matrix
Hcp is of full rank. In addition, the solutions of the matrix
equation

GH
cpHcpFHN = 0. (26)

under the constraint deg(ĥ(z)) ≤ L are given by ĥ(z) = ηh(z)
where η ∈ R is a unique up to a scalar factor.

The knowledge of the column space of GH
cpHcpFHN charac-

terises Hcp up to a scale constant (because Qn is full rank).
The filter coefficients (which is characterised uniquely by the
knowledge of the range of Hcp) can be identified from the
knowledge of the range of the signal part of the whitened
covariance matrix, see [5] for more details. It is not difficult
to show that the orthogonality relation (26) between the signal
subspace and the noise subspace is equivalent to

ΠnHcpFHN = 0. (27)

This relation is the keystone of the SS-based method to
identify

h = [h(0)T , . . . ,hT (L)]T . (28)

As an immediate consequence, denote by Qcp the ϑ × ϑ
symmetric matrix defined by

ĥ → Tr
((

HcpFHN
)H

ΠnHcpFHN
)

= hHQcph. (29)

The null space of Qcp is reduced to a one-dimensional
subspace spanned by the vector h associated with h(z). Note
that the above Lemma ensures the consistency of the above
estimates in the case where the channel order is known or
correctly estimated. The behavior of the SS-based method in
the case where deg(ĥ(z)) is overestimated has been discussed
in [5]. As shown in [25], the SS-based method proceeds by
minimising the least squares criterion

ĥ = arg min
‖h‖=1

‖χ‖2
, χ = BcpHcpFHN (30)

under a suitable constraint, where the obvious choice for Bcp
is Bcp = GH

cp, or equivalently, Bcp = Πn. The computation
of the whole n̄ noise vectors via eigen-decomposition of Rn
is required to estimate the channel parameter. Similar to the
weighted subspace fitting (WSF) method [40] in the narrow-
band DOA identification context, this identification procedure
can be improved by using the weighted least-squares (WLS)
criterion. Using vector notation, (30) can be rewritten as

ĥ = arg min
‖h‖=1

‖vec (χ)‖2
. (31)

It has been proposed in [1], that the least squares approach can
be generalised by introducing in the above criterion a positive
weighting matrix Wcp. The channel parameter vector is then
identified by minimising the WLS criterion

hW = arg min
‖hW ‖=1

vec (χ)
H Wcpvec (χ) . (32)

The choice of Wcp and the statistical performance analysis
of this scheme is discussed in [4]. Note indeed if hW is a
solution of (32), then eiφhW for any real φ is also solution.
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In practice, a specific value of φ should be chosen using a
constraint such as eHhW ≥ 0, where e is an arbitrary nonzero
vector. The ordering of the channel number in hW , of course,
will depend on the choice of the vector e. However, most
meaningful performance criterion are insensitive to this choice.
The most convenient choice for e is e = h, which yielding
hHWh ≥ 0.

The above material allows one to analyze the behavior of the
SS-based method where CP is used. For ZP-OFDM system,
we need some additional notations, such as m = qM and
m̄ = m − N . Under assumption (17), the covariance matrix
of xzp,k can be written as

Rm = HzpFHNRNFNHH
zp + σ2Im. (33)

For M > N , the noise-free covariance matrix is rank-definite
and its EVD is given by

Rm = SzpΛNSHzp + σ2GzpGH
zp (34)

where range
(
Szp
)

= range
(
Hzp
)

is the signal subspace while

range
(
Gzp
)

=
(
range

(
Hzp
))⊥

is the noise subspace. Note
that the above Lemma can be easily adapted to ZP-OFDM
system. Therefore, the orthogonality relation (26) can be
translated into a formalism adequate for practical computation
using ZP as follows

GH
zpHzpFHN = 0. (35)

Similar to CP-OFDM system, (35) is the keystone of the SS-
based method to identify the transfer function Hzp. If we look
at the above weighting matrix approach more carefully, it is
not difficult to see that it works for ZP-OFDM system.

In practice, the weighting matrix can be seen as an approach
to compensate for the effect of matrix ill-conditioning due to
the close common zeros of the channel transfer functions. By
using the optimal weighting matrix, the estimation procedure
can become quite sensitive to the ill conditioning problem (see
Figures 4 and 5 in Section IX). In fact, if the channels have
close common zeros, the corresponding block-Circulant (or
block-Toeplitz) channel matrices will become nearly singular
and consequently result in failure of the SS-based method.

VI. MNS-BASED METHOD

t1

t2

t3

t4

t5

t6

m1

m2

m3

m4

m5

m6

m7

Fig. 3. Tree that connects q = 7 channel outputs as its notes.

Unfortunately, a widely acknowledged problem with the
aforementioned techniques is its extensive computational com-
plexity due to the EVD of a ’large’ dimensional matrix
and rather slow convergence with respect to the number of
block symbols. In fast changing environments, such as in
cellular communications, their applications may be limited.
This problem is alleviated by the MNS decomposition ap-
proach proposed by Abed-Meraim et al [4]. Based on this
contribution, it is easy to show that, only q − 1 properly
chosen noise eigenvectors are just as efficient as using the
whole noise subspace range

(
Gcp
)

for (26) (or range
(
Gzp
)

for (35)) to yield a consistent estimate of Hcp for the CP-
OFDM system (or Hzp for ZP-OFDM system). Furthermore,
each of the q−1 noise eigenvectors can be found by using EVD
of a ’small’ dimensional covariance matrix corresponding to
the (distinct) pairs of channel outputs given by a properly
connected sequence (PCS) defined as follows [2]:

Definition 1: Denote the q system outputs by a set of
membersm1, . . . ,mq . A combination of two (q ≥ 2) members
(ti = mi1 ,mi2) is called a pair. A sequence of q−1 pairs is said
to be properly connected if each pair in the sequence consists of
one member shared by its preceding pairs and another member
not shared by its preceding pairs.

Example 1: Consider a system with one input and seven
outputs. The following sequence of pairs has minimum redun-
dancy (six pairs) and spans all system outputs m1, . . . ,m7.

t1 = (m1,m2) , t2 = (m1,m3) , t3 = (m3,m4)

t4 = (m3,m5) , t5 = (m5,m6) , t6 = (m5,m7)

Figure 3 demonstrates an example of PCS with q = 7. In
the Tree pattern, the notes m2, m4, m6, and m7 are ending
nodes while the nodes m1, m3, and m5 are branching nodes.

Remarks:

• MNS-based method can be applied to applications relat-
ing to source localisation and array calibration [4].

• In practice a PCS is easy to construct, however, it is not
a necessary condition to give the MNS.

• A PCS exploits the diversity of the system outputs with
minimum redundancy. This follows, since a sequence has
less than q − 1 pairs or a pair in the sequence has less
than two members, then the sequence does not give the
required number of independent noise vectors.

• A set of q − 1 pairs span all the system outputs are not
necessarily sufficient to give the required MNS.

A. CP-OFDM Estimator

For the development that follows, it is convenient to
define the i-th pair 2N × N block-Circulant matrix as,
H̄cp,(i), whose first block-row is given by

[
h̄(i) (0) , 0, . . . ,

0, h̄(i) (L) , . . . , h̄(i) (1)
]

and first block-column is given by[
h̄T(i) (0) , . . . , h̄T(i) (L) , . . . , 0T

]T
where

h̄ (l) =
[
h(mi1

) (l) , h(mi2
) (l)
]T
, 1 ≤ mi1/mi2 ≤ q. (36)
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Then, for each i-th (1 ≤ i ≤ q − 1) pair of channel outputs,
we consider a vector ȳ(i)

cp,k of 2N × 1 successive samples:

ȳ(i)
cp,k = H̄cp,(i)F

H
N sk + n̄(i)

cp,k (37)

where

ȳ(i)
cp,k =

[
ȳ(i)T
cp,k (0) , ȳ(i)T

cp,k (1) , . . . , ȳ(i)T
cp,k (N − 1)

]T
n̄(i)

cp,k =
[
n̄(i)T

cp,k (0) , n̄(i)T
cp,k (1) , . . . , n̄(i)T

cp,k (N − 1)
]T

(38)

and

ȳ(i)
cp,k(n) =

[
y
(mi1

)

cp,k (n) , y
(mi2

)

cp,k (n)
]T

n̄(i)
cp,k(n) =

[
n

(mi1
)

cp,k (n) , n
(mi2

)

cp,k (n)
]T
. (39)

The corresponding covariance matrix is expressed as

R̄(i)
n = H̄cp,(i)F

H
NRsFN H̄H

cp,(i) + σ2I2N (40)

It is clear that each R̄(i)
n is a sub-matrix of the system output

covariance matrix Rn and has a least eigenvector

v̄cp,(i) =
[
v̄Tcp,(i)(0), v̄Tcp,(i)(1), . . . , v̄Tcp,(i)(N − 1)

]T
(41)

where each sub-vector is defined according to Definition 1 as
2-elements vector (0 ≤ n ≤ N − 1)

v̄cp,(i)(n) =
[
v̄
(mi1

)

cp,k (n) , v̄
(mi2

)

cp,k (n)
]T
. (42)

A set of independent n× 1 noise vectors

Vcp,(i) =
[
vTcp,(i)(0), vTcp,(i)(1), . . . , vTcp,(i)(N − 1)

]T
(43)

is then computed from a set of least eigenvectors{
v̄cp,(i)

}
1≤i≤q−1

in the following way [4]: For j = 1, . . . , q,

vi (j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if the j-th output of the system
does not belong to the i-th pair

ṽi

(
j
′

)
if the j-th output of the system

is the j
′

-th member of the i-th pair

(44)

It is well known [17], [42], that Gcp can be uniquely spanned
by a basis of q − 1 vectors Vn =

[
Vcp,(1), . . . ,V,cp,(q−1)

]
.

Therefore,

VHn HcpFHN = 0 (45)

where

v̄Hcp,(i)H̄cp,(i)F
H
N = 0. (46)

It has been shown in [25], that h is uniquely identifiable by
solving the linear system of equations (45) or (46). Based on
[10], [25], we have

VHn HcpFHN = hHEcpFHN (47)

where Ecp =
∑q−1
i=1

{
Ecp,(i)

}
and Ecp,(i) = [E(1)

cp,(i),E
(2)
cp,(i)]

is a ϑ × N block-matrix, with a ϑ × (N − L)

block-Hankel matrix E(1)
cp,(i) with first block-column[

vTcp,(i)(0), . . . , vTcp,(i)(L)
]T

and last block-row

[
vcp,(i)(L), . . . , vcp,(i)(N − 1)

]
, and ϑ × L block-Hankel

matrix E(2)
cp,(i) with first block-column

[
vTcp,(i)(N − L), . . . ,

vTcp,(i)(N − 1), vTcp,(i)(0)
]T

and last block-row[
vcp,(i)(0), . . . , vcp,(i)(L− 1)

]
. Obviously, matrix H̄cp,(i)

differs from the filtering matrix Ecp,(i) by interchange of
rows. Hence, the column spaces of H̄cp,(i) and Ecp,(i)
canonically equivalent. Therefore

∥∥VHn HcpFHN
∥∥2 has to be

solved in the least-squares sense leading to the following
quadratic optimisation criterion:

ĥ = arg min
‖h‖=1

(
hHQcph

)
(48)

where

Qcp = Ecp

IN︷ ︸︸ ︷
FHNFN EHcp. (49)

This quadratic optimisation criterion allows unique estimation
of h up to a scale factor and is thus obtained as the eigenvector
associated with the minimum eigenvalue of Qcp. In practice,

V̂n is used instead of Vn, and Q̂cp is used instead of Qcp.

B. ZP-OFDM Estimator

Consider the i-th pair 2M × N block-Toeplitz matrix as,
H̄zp,(i),whose first block-row is given by

[
h̄(i) (0) , 0, . . . , 0

]
and first block-column is given by

[
h̄T(i) (0) , . . . , h̄T(i) (L)

, 0T , . . . , 0T
]T

. Then, for each i-th pair of channel outputs,

we consider a vector x̄(i)
zp,k of 2M × 1 successive samples:

x̄(i)
zp,k = H̄zp,(i)F

H
N sk + n̄(i)

zp,k (50)

where

x̄(i)
zp,k =

[
x̄(i)T
zp,k (0) , x̄(i)T

zp,k (1) , . . . , x̄(i)T
zp,k (M − 1)

]T
n̄(i)
zp,k =

[
n̄(i)T
zp,k (0) , n̄(i)T

zp,k (1) , . . . , n̄(i)T
zp,k (M − 1)

]T
(51)

and

x̄(i)
zp,k(m) =

[
x

(mi1
)

zp,k (m) , x
(mi2

)

zp,k (m)
]T

n̄(i)
zp,k(m) =

[
n

(mi1
)

zp,k (m) , n
(mi2

)

zp,k (m)
]T
. (52)

The corresponding covariance matrix is expressed as

R̄(i)
m = H̄zp,(i)F

H
NRsFN H̄H

zp,(i) + σ2I2M (53)

and its least dominant eigenvector

v̄zp,(i) =
[
v̄Tzp,(i)(0), v̄Tzp,(i)(1), . . . , v̄Tzp,(i)(M − 1)

]T
(54)

where each sub-vector is defined according to Definition 1 as
2-elements vector (0 ≤ m ≤M − 1), i.e.,

v̄zp,(i)(m) =
[
v̄
(mi1

)

zp,k (m) , v̄
(mi2

)

zp,k (m)
]T
. (55)

A set of independent noise vectors

Vzp,(i) =
[
vTzp,(i)(0), vTzp,(i)(1), . . . , vTzp,(i)(M − 1)

]T
(56)
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is then computed from a set of least eigenvectors{
v̄zp,(i)

}
1≤i≤q−1

based on (44), we form a m× q− 1 matrix

Vm =
[
Vzp,(1), . . . ,Vzp,(q−1)

]
. Similar to (45) and (46) in

CP-OFDM estimator, we have

VHmHzpFHN = hHEzpFHN . (57)

where Ezp =
∑q−1
i=1

{
Ezp,(i)

}
, and Ezp,(i) is a

ϑ × N block-Hankel matrix, with first block-column[
vTzp,(i)(0), vTzp,(i)(1), . . . , vTzp,(i)(L)

]T
and last block-row[

vzp,(i)(L) , vzp,(i)(L+ 1), . . . , vzp,(i)(M − 1)
]
. Therefore∥∥VHn HzpFHN

∥∥2 has to be solved in the least-squares sense
leading to the following quadratic optimisation criterion:

ĥ = arg min
‖h‖=1

(
hHQzph

)
(58)

where

Qzp = Ezp

IN︷ ︸︸ ︷
FHNFN EHzp. (59)

This quadratic optimisation criterion allows unique estimation
of h up to a scale factor and is thus obtained as the eigenvector
associated with the minimum eigenvalue of Qzp. In practice,

V̂m is used instead of Vm, and Q̂zp is used instead of Qzp.

VII. SMNS-BASED METHOD

It is obvious that MNS-based method does not require
EVD and instead computes the noise subspace via a set of
noise vectors that can be computed in parallel from a set of
pairs of system outputs, and, the original approach [10], [25],
is computationally expensive due to the employment of the
EVD. Indeed, depending on the chosen PCS, certain system
outputs are used more than others. However, this might lead to
poor estimation performances particularly if the ’worst system
channels’ are used most. This leads to the problem of finding
the ’best’ choice of PCS. In the symmetric MNS (SMNS), we
avoid that problem by using q noise vectors instead of q − 1
as in MNS-based method. The definition is given as follows:

Definition 2: Denote the q system outputs {t1, t2, . . . , tq} by
a set of members m1, . . . ,mq . A combination of two (q ≥ 2)
members (ti = mi1 ,mi2) is called a pair. A sequence of q pairs
is sufficient to give superior channel identification, if each pair
of {t1, t2, . . . , tq−1} in the sequence consists of one member
shared by its preceding pairs and another member not shared
by its preceding pairs, while the last pair {tq} correspond to the
additional redundancy to guarantee certain symmetry between
the system outputs.

Example 2: Consider a system with one input and seven
outputs. The following sequence of pairs has minimum redun-
dancy (seven pairs) and spans all system outputs m1, . . . ,m7.

t1 = (m1,m2) , t2 = (m1,m3) , t3 = (m3,m4)

t4 = (m3,m5) , t5 = (m5,m6) , t6 = (m5,m7)

t7 = (m1,m7) .

VIII. LINEAR EQUALISATION

The problem of extracting communication signals using
subspace-decomposition approach in OFDM-based SIMO is of
increasing importance. The proposed SS-, MNS- and SMNS-
based methods that are described in the previous sections
are applicable to solve this problem. In this section, we
develop an equalisation scheme based on the estimated channel
parameters.

Given the estimated multi-channel matrix Hcp, Ĥcp, ob-
tained through ĥ in the previous section by the proposed

estimators, the received signal matrix Ycp =
{

ycp,k
}K−1

k=0
can be written as

Ycp = ĤcpFHNSK + Ncp (60)

where SK = {sk}
K−1
k=0 and Ncp =

{
ncp,k

}K−1

k=0
. From

estimation theory, the maximum likelihood (ML) estimate of
SK is given by :

ŜK = GZFYcp (61)

where

GZF =
(

ĤcpFHN
)†

(62)

and † denotes Pseudo-inverse. The ZF equaliser satisfies the
condition

GZFĤcpFHN = IN (63)

and the source symbol can be recovered provided Ĥ has full
rank. The ZF equaliser is expected to suffer performance
degradation due to noise enhancement and when there are
close common zeros. To overcome this problem, we now
consider the MMSE equaliser, which aims to minimise

E
{
‖ŝk − sk‖

2
}

(64)

where ŝk − sk is the error in the k-th block of data. Now by
allowing G to represent the equaliser matrix:

ŝk = Gycp,k = GĤcpFHN sk + Gncp,k (65)

and thus

ŝk − sk = Gycp,k − sk

= GĤcpFHN sk + Gnk − sk

=
(

GĤcpFHN − I
)

sk + Gncp,k − sk. (66)

The MSE can be written as a function of the equalising matrix
G as follows

J (G) = E

{∥∥∥(GĤcpFHN − I
)

sk + Gncp,k
∥∥∥2} . (67)

The MMSE solution is obtained by setting to zero the gradient
of J (G) with respect to G and then solving for G (see [36]).
We thus obtain

GMMSE = RsyR−1
n (68)
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where, using the fact that additive noise is independent of the
transmitted data,

Rsy = E
{

skyHcp,k
}

= E

{
sk
[
ĤcpFHN sk + ncp,k

]H}
= RN

(
ĤcpFHN

)H
. (69)

The linear MMSE estimate of SK is thus:

ŜK = GMMSEYcp. (70)

Using similar framework of pre-FFT ZF and MMSE equalisers
for CP-OFDM receivers, ZF and MMSE equalisers can also
be derived for ZP-OFDM receiver. For a given block of data
Xzp =

{
xzp,k

}K−1

k=0
and the estimated multi-channel matrix

Ĥzp, we have

Xcp = ĤzpFHNSK + Vzp (71)

where Vzp =
{

vzp,k
}K−1

k=0
. Based on the aforementioned

assumptions and (61)-(70), the linear ZF estimate of SK is
thus:

ŜK =
(

ĤzpFHN
)†

Xzp (72)

whereas the linear MMSE estimate is expressed as

ŜK = RN
(

ĤzpFHN
)H

R−1
m Xzp (73)

As can be seen, both ZF and MMSE equalisation for CP
and ZP are performed through one-IFFT at the corresponding
receiver.

IX. NUMERICAL EXAMPLES

Configuration 1 Configuration 1

0 1 2 0 1 2

0.5-0.5i

0.5-0.5i 0.6-0.6i

0.7-0.7i 0.5-0.5i

0.8-0.8i

0.11-0.11i0.6-0.6i

0.7-0.7i 0.5-0.5i

0.8-0.8i

0.11-0.11i

l

h(1)(l)

h(2)(l)

TABLE I

CHANNEL SET 1: IMPULSE RESPONSE.

20 1 3

 -0.049+0.359i

4

  0.482-0.569i  -0.556+0.587i  1.0000 -0.171+0.061i

0.443-0.0364i  1.0000  0.921-0.194i 0.189-0.208i  -0.087-0.054i

-0.211-0.322i   -0.199+0.918i   1.0000  -0.284-0.524i 0.136-0.190i

0.417+0.03i 1.0000 0.873 + 0.145i   0.285+ 0.309i   -0.049+0.161i

l

h(1)(l)

h(2)(l)

h(3)(l)

h(4)(l)

TABLE II

CHANNEL SET 2: IMPULSE RESPONSE.

In this section, we provide simulation results demonstrating
the performance of the proposed estimators and the corre-
sponding multi-channel equalisers. In all simulation examples,
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Fig. 4. Performance comparison of CP-OFDM and ZP-OFDM
systems using the SS-based method: SNR vs MSE (Table I, Con-
figuration 1).
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Fig. 5. Performance comparison of CP-OFDM and ZP-OFDM
systems using the SS-based method: SNR vs MSE (Table I, Con-
figuration 2).

the estimator performance was measured in terms of the MSE
[3], [21]

MSE =

√√√√ 1

Nr

Nr∑
κ=1

∥∥∥ĥκ − h
∥∥∥2 (74)

where ĥκ denotes the κ-th run estimate of h, and the first
element of ĥκ is normalized to be one (the same as h) 1. Nr
denotes the number of runs and was chosen to be 500. The
signal symbols were drawn from QPSK constellations. The
SNR of the q channels, for CP-OFDM system is defined as

SNRCP = 10log10

⎛
⎜⎜⎝
E

{∥∥∥ycp,k

∥∥∥2}
E
{∥∥ncp,k

∥∥2}
⎞
⎟⎟⎠ (75)

1Note that the expression in the right hand side of (74) is known as MSE
in [3], [21]. While in (74), it is known as the normalized root MSE in [10].
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Fig. 6. Performance comparison of CP-OFDM estimators using the
MNS-, SMNS-, and SS-based methods: SNR vs MSE.
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Fig. 7. Performance comparison of ZP-OFDM estimators using the
MNS-, SMNS-, and SS-based methods: SNR vs MSE.

and for ZP-OFDM system, it is defined as

SNRZP = 10log10

⎛
⎝E
{∥∥xzp,k

∥∥2}
E
{∥∥vzp,k

∥∥2}
⎞
⎠ . (76)

In [21], (75) and (76) has been shown to be given by

SNR = 20log10

(
‖h‖σs
√
qσ

)
. (77)

Simulation Example 1: We first investigated the influence
of weighting and compare the CP-OFDM and ZP-OFDM
receivers through the implementation of the SS-based method
in terms of their estimation capabilities. We fixed the number
of OFDM symbols to K = 500, and varied the SNR from 5
to 30 dB. We simulated the output of a SIMO with q = 2
FIR channels of maximum order L = 2. The generated
symbols are transmitted through 20 sub-carriers and so the
size of the FFT/IFFT was N = 20. Two extreme situations of
channel coefficients were considered, as shown in Table I. In
Configuration 1, the zeros of the channel are closed together,
whereas in Configuration 2, the zeros of the channel are well
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Fig. 8. Performance comparison of CP-OFDM estimators using the
MNS-, SMNS-, and SS-based methods: Number of OFDM symbols
vs MSE.
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Fig. 9. Performance comparison of CP-OFDM estimators using the
MNS-, SMNS-, and SS-based methods: Number of OFDM symbols
vs MSE.

separated. In Figures 4 (corresponding to the Configuration 1)
and 5 (corresponding to the Configuration 2), we observed that
the performance of both estimators improves with increasing
SNR and in comparison to the CP-OFDM estimator, the ZP-
OFDM estimator performs better. It is worthwhile to note
that the gain afforded by optimal weighting is not significant
when the SNR is large, even when the channel zeros come
close together: Optimal weighting does not compensate for
the performance loss entailed by the poor condition number of
the channel matrix. For lower SNR, some improvements can
be observed, especially when the zeros are closely located.
The impact of close channel zeros can be quantified in terms
of SNR. In fact, badly spaced zeros cause the degradation
of the Circulant and Toeplitz matrices condition number, and
thus, require higher values of SNR in order to maintain the
estimation accuracy.
Simulation Example 2: In this simulation study, we simulated
a CP-OFDM system with q = 4, N = 64 sub-carriers and a
CP of length L = 4 (i.e., M=N+L=68). The simulated channel
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Fig. 10. Performance comparison of CP-OFDM and ZP-OFDM
systems, using ZF and MMSE-based equalizers: SNR vs BER.

coefficients are given by Table II. Figure 6 illustrates the
performance of the CP-OFDM estimators implementing MNS-
, SMNS- and SS-methods. We fixed the number of OFDM
symbols to K = 500, and varied SNR from 5 to 50. We can
see that the performance of CP-OFDM estimators improves
with high SNR. In comparison with the MNS estimator, the
SMNS estimator method performs better. Among the three
estimators, the SS estimator is much more robust to noise
and gives superior performance. A similar scenario has been
repeated for the ZP-OFDM system, with the same setting data.
Figure 7 shows the MSE as a function of SNR for MNS,
SMNS and SS estimators. It can be seen that the SS estimator
performs better than the MNS and the SMNS estimators.
Simulation Example 3: In this simulation study, we compared
the performance of the CP-OFDM and the ZP-OFDM system
as a function of the number of OFDM symbols at a SNR of
25 dB using similar simulation scenario of Example 2. The
examples of Figures 8 and 9 compare the performance of the
CP-OFDM and ZP-OFDM as a function of the number of
OFDM symbols vs MSE. In both systems, we can see that
the performance of all the estimators improve with increasing
number of OFDM symbols. Additionally, the SS estimator
is able to identify channels with much smaller number of
OFDM symbols. SMNS estimator has better performance in
comparison with MNS.
Simulation Example 4: Figure 10 shows the overall BER
performance of the proposed MNS-based method for the
CP-OFDM and ZP-OFDM systems corresponding to SNR
range of 2-20 dB. In order to check the equaliser gain, we
simulated ZF and MMSE schemes which have been discussed
in Section VIII. It can be seen that ZF receivers suffer from
performance penalty in all cases as compared to MMSE
receivers. Moreover, ZP-OFDM receivers perform better than
CP-OFDM receivers.

X. PROPERTIES OF THE PROPOSED TECHNIQUES

In all the aforementioned SOS-based methods for OFDM-
based SIMO systems, the focus has been on channel identifica-
tion and equalisation. In this section we give some comments

on the above proposed techniques. For uniformity, we subse-
quently drop the subscripts m/n and express the covariance
matrices as R(i) (corresponding to SS-based method) and
R̄(i)

(corresponding to MNS/SMNS-based method). Moreover,
we drop the subscripts cp/zp and express the block-Circulant
matrix H̄cp,(i) and block-Toeplitz matrix H̄zp,(i) as H̄(i) . For
the sake of simplicity, we consider

ρ =

{
2N CP-OFDM
2M ZP-OFDM

(78)

ν =

{
qN CP-OFDM
qM ZP-OFDM.

(79)

• The proposed channel estimators can be made to exploit
the signal subspace regardless of the noise subspace and
therefore the minimisation problem can be recast as a
maximisation problem [5], [1], [25]. The solution of
maximisation problem is considered more favorable to
the minimisation problem, as there are fundamental lim-
itations on the relative accuracy with which the smallest
eigenvalues of the matrix can be computed, and they are
more difficult to compute than the large ones. However, it
is shown in [25] that the noise SS-based method exhibits
better performance than the signal SS-based method.

• The main advantage of the MNS-based methods is that
the large matrix EVD is avoided and the noise vectors are
computed in parallel as the least eigenvectors of a smaller
size covariance matrices R̄(i)

, i = 1, . . . , q − 1, which
requires only O(ρ2) flops (in contrast with the O(ν3)
flops required for the computation of R). Comparatively,
the SMNS- and MNS-based methods have almost the
same order of computational cost for SIMO systems 2.

• The proposed ZP-OFDM estimator requires the EVD of
a data correlation matrix of size m × m to extract the
orthogonal subspace. In contrast, the proposed CP-OFDM
estimator requires the EVD of data correlation matrix
of size n × n. Since m > n, the proposed ZP-OFDM
estimator is computationally more complex than the CP-
OFDM estimator.

• The CP-OFDM estimator is sensitive to channel zeros
that are closed to the sub-carriers, whereas, the ZP-
OFDM estimator guarantees symbol recovery and offers
a superior BER performance.

• The proposed CP-OFDM based SIMO system rely on
the usual insertion of CP as in standard OFDM systems.
Therefore, it does not require transmitter modification
and is applicable to all standardised OFDM systems. In
contrast, the ZP-OFDM based SIMO system presented
requires transmitter modification to introduce ZP redun-
dancy by a filter-bank precoder. Note that ZP is used in
the DVB standard in the form of guard bits.

• By using the optimal weighting matrix W̄(i)
, the iden-

tification procedure becomes quite insensitive to the ill-
conditioning problem. In fact, if a pair of channels have

2SMNS-based method becomes computationally more expensive if q >>
(q − p) (where p is the number of sensors at the transmitter).
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close common zeros, the corresponding block-channel
matrix H̄(i) becomes nearly singular and consequently

W̄(i)
becomes large. Therefore, the inverse of the weight-

ing matrix,
(

W̄(i)
)−1

, will qualitatively provide ’more
weighting’ (i.e., larger weighting coefficients) to the noise
eigenvectors associated with a well conditioned H̄(i)

than to those corresponding to ill conditioned block-
channel matrix. However, weighting MNS (WMNS)-
based method often incurs high complexity and involves
large decoding delay, and does not trade well for the
accuracy improvement [5]. For this reason, WMNS-based
method has not been considered and investigated for
OFDM-based SIMO systems in this paper.

XI. CONCLUSION

This paper presents original reformulation of the SS-based
estimation procedure for the blind identification of OFDM-
based SIMO FIR channels. It fully exploits the relations be-
tween the noise subspace of a certain covariance matrix formed
from the observed signals. This reformulation provides some
additional insights into the existing subspace algorithms. More
importantly, it allows one to analyse the second order statistics
of the output signals for the case of CP-OFDM and ZP-
OFDM receivers. This technique, although reliable and robust
in some scenarios, require a computationally expensive and
non-parallelisable EVD to extract the noise subspace. In fast
changing environments, such as in cellular communications,
their application may be limited and impossible (too costly)
to implement. These problems are alleviated by a MNS-
based method which exploits a minimum number of noise
eigenvectors for multi-channel identification. This technique
of MNS, and especially the concept of PCS, turns out to be a
powerful tool that can be applied to other OFDM-based SIMO
systems. The proposed MN-based method is much more com-
putationally efficient than the standard SS-based method at the
price of a slight loss of estimation accuracy. However, better
estimates of FIR channels can be obtained by a symmetric
version of MNS with the same order of computational cost.
Furthermore, equalisation methods are discussed based on the
estimated channels via one-IFFT operation. Simulations have
shown that the proposed method are effective and robust.
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