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Abstract—Taking into account the relay’s location, we analyze
the maximum likelihood (ML) decoding performance of dual-
hop relay network, in which two amplify-and-forward (AF)
relays employ the Alamouti code in a distributed fashion. In
particular, using the well-known moment generating function
(MGF) approach we derive the closed-form expressions of the
average symbol error probability (SEP) for M -ary phase-shift
keying (M -PSK) when the relays are located nearby either the
source or destination. The analytical result is obtained as a single
integral with finite limits and the integrand composed solely of
trigonometric functions. Assessing the asymptotic characteristic
of SEP formulas in the high signal-to-noise ratio regime, we show
that the distributed-Alamouti protocol achieves a full diversity
order. We also perform the Monte-Carlo simulations to validate
our analysis. In addition, based on the upper bound of SEP
we propose an optimal power allocation between the first-hop
(the source-to-relay link) and second-hop (the relay-to-destination
link) transmission. We further show that as the two relays are
located nearby the destination most of the total power should be
allocated to the broadcasting phase (the first-hop transmission).
When the two relays are placed close to the source, we propose an
optimal transmission scheme which is a non-realtime processing,
hence, can be applied for practical applications. It is shown
that the optimal power allocation scheme outperforms the equal
power scheme with a SEP performance improvement by 2-3 dB.

Index Terms—Distributed-Alamouti space–time code, amplify-
and-forward (AF) relay, symbol error probability (SEP).

I. INTRODUCTION

The Alamouti space-time code [1] has been considered as
the only orthogonal space-time block code [2] can achieve
full rate and full diversity over complex constellation with the
symbol-wise maximum likelihood (ML) decoding complexity.
Recently, there exists an extension of the Alamouti scheme
into cooperative/relay systems where the relays simultaneously
construct the Alamouti space-time code in a distributed fashion
before relaying the signals to the destination [3]–[7].

Distributed-Alamouti scheme dated back to the work in
[3], [4], where two single-antenna relays assisted the source-
destination communication by forming the Alamouti space–
time block code in the relay networks. The authors conjectured
the diversity order of distributed-Alamouti scheme around one
from their simulation [3], [4]. In [6], the average bit error rate
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(BER) of the distributed-Alamouti scheme was shown to be
proportional to log (SNR) /SNR

2.
In [5], the distributed-Alamouti system was created by using

only one single-antenna relay in Protocol III, i.e., the relay and
source generate a distributed-Alamouti space-time code and
each terminal transmits each row of Alamouti code. Recently,
exact closed-form expressions for pairwise error probability
of this scheme has been analyzed in [7] where it has been
shown that a full diversity order is achieved. More recently, the
construction of distributed space–time codes using amicable
orthogonal design has been generalized in relay networks [8].
It has been showed that the scheme can achieve a full diversity
order with the single-symbol ML decoding complexity.

Unlike most of previous works [3], [4], [6], [9], which fo-
cused on the average BER of the distributed-Alamouti space–
time code for binary phase-shift keying (BPSK) modulation,
in this paper, we analyze the average symbol error probability
(SEP) for M -ary phase-shift keying (M -PSK) by using the
moment generating function (MGF) method [10], [11]. Taking
into account the relay’s location, we derive the closed-form
expressions of average SEP for M -PSK modulation as the
relays are close to either the destination or source. Since the
asymptotic characteristic of the SEP in the high signal-to-noise
(SNR) regime reveals a high-SNR slope of the SEP curve
[10]–[12], we show that distributed-Alamouti scheme achieves
full diversity, i.e., the second-order of diversity. Our analysis
has been validated by comparing with the simulation results.
In addition, we further propose the optimal power allocation
between the first-hop and the second-hop transmission. It has
been shown that the optimal power scheme can increase the
SEP performance by 2-3 dB compared to the equal power
allocation.

The paper is organized as follows. In Section II, we briefly
review the cooperative system in which the two AF relays
deploy the Alamouti space–time code in a distributed scheme.
We then derive two closed-form expressions of the average
SEP and diversity orders when two relays are closely located
to either the source or destination in Section III. The optimal
power allocation is proposed in Section IV. We show that
our analysis agree exactly with the Monte-Carlo simulations
and the optimal power allocation outperforms the equal power
scheme in Section V. Finally, Section VI concludes our paper.

Notation: Throughout the paper, we shall use the following
notation. Vector is written as bold lower case letter and matrix
is written as bold upper case letter. The superscripts ∗ and †
stand for the complex conjugate and transpose conjugate. IIIn
represents the n × n identity matrix. ‖AAA‖F denotes Frobe-
nius norm of the matrix AAA and |x| indicates the envelope
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of x. Ex {.} is the expectation operator over the random
variable x. A complex Gaussian distribution with mean µ
and variance σ2 is denoted by CN (µ, σ2). log is the natural
logarithm. Γ (a, x) is the incomplete gamma function defined
as Γ (a, x) =

∫∞

x
ta−1e−tdt and K0 (.) is the zeroth-order

modified Bessel function of the second kind.

II. SYSTEM MODEL

We investigate a dual-hop relay channel shown in Fig. 1,
where the channel remains constant for Tcoh coherence time
(an integer multiple of the dual-hop interval) and changes
independently to a new value for each coherence time. All
terminals are in half-duplex mode and, hence, transmission
occurs over two time slots, each with the interval of two
symbol periods. We denote the total average transmit power
per symbol time of the source and two relays as Ptotal. Our
transmission scheme is divided into two phases. In the first
phase (broadcasting phase), the source broadcasts the signals
to the two relays with the average transmit power Ps. In
the second phase (relaying phase), the two relays generate
a distributed-Alamouti code and forward to the destination
with the average transmit power Ptotal − Ps, while the source
remains silent. In the broadcasting phase, the source transmits

S

R

R

D

Destination

second hop

h f

Source

first hop

Relays

Fig. 1. Dual-hop AF relay channels.

two symbols sss = [ s1 s2 ], selected from M -PSK signal
constellation S, with average transmit power per symbol Ps.
During the broadcasting phase, the received signals yyyi =
[ yi (1) yi (2) ] at the ith relay is given by

yyyi = hisss+ nnnRi
(1)

where yi (j) is the jth symbol received at the ith relay, hi ∼
CN (0,Ωh) is the Rayleigh-fading channel coefficient for the
source-ith relay link with the channel mean power Ωh, and nnnRi

is complex additive white Gaussian noise (AWGN) of variance
N0, where i = 1, 2.

During the relaying phase, the two relays construct the
Alamouti space–time scheme from the two received signals
and then retransmit a scaled version to the destination, whereas
the source remains silent. To simplify the relaying operation,
the relaying gain is determined only to satisfy the average
power constraint with statistical channel state information
(CSI) on hi (not its instantaneous realizations) at the relay.

With this semi-blind relaying, the output signal of the two
relays are defined as

XXX =

[
x1 (1) x2 (1)
x1 (2) x2 (2)

]
= G

[
y1 (1) −y∗2 (2)
y1 (2) y∗2 (1)

]
(2)

where xi (j) is the jth symbol transmitted from the ith relay
and G is the scalar relaying gain defined in the following. The
received signal at the destination can be described as

r (j) =
2∑
i=1

fixi (j) + nD (j) (3)

where fi ∼ CN (0,Ωf) is the Rayleigh-fading channel co-
efficient for the ith relay-destination link with the channel
mean power Ωf and nD (j) is the AWGN of variance N0.
Note that all the random variable hi, fi, i = 1, 2, are
statistically independent and the variations in ΩA, A ∈ {h, f},
capture the effect of distance-related path-loss in each link.
In this section, we assume the source consumes a half of
total transmit power, i.e., two relays use the same amount of
power as the source. In other words, we have Ps = Ptotal

2 . The
amplifying gain G can be derived from this power constraint,
i.e., E

{
‖XXX‖2

F

}
= E

{
‖sss‖2

F

}
, as follows:

4G2 (ΩhPs +N0) = 2Ps (4)

yielding

G2 =
1

4

(
Ωh

2
+

1

SNR0

)−1

(5)

where1 SNR0 = Ptotal
N0

is the common SNR of each link without
fading [13]. The received signals at the destination in (3) now
can be equivalently described in the matrix form as

rrr =HHHs̃ss+ nnn (6)

where

rrr =

[
r (1)
r∗ (2)

]

HHH = G

[
h1f1 −h∗2f2
h2f

∗
2 h∗1f

∗
1

]

s̃ss =

[
s1
s∗2

]
It is easy to see that the channel matrix HHH is complex
orthogonal, i.e.,

HHH†HHH = G2
2∑
i=1

|hi|
2 |fi|

2
III2,

and

nnn = G

[
f1nR1

(1) −f2n∗
R2

(2)
f∗
1n

∗
R1

(2) f∗
2nR2

(1)

]
+

[
nD (1)
n∗
D (2)

]
which is the zero-mean AWGN of the variance

N0

(
G2

2∑
i=1

|fi|
2 + 1

)
. It is easy to see that the ML

1It is worth mentioning that we denoted the common SNR without fading
as Ps

N0
in [12] whereas we define Ptotal

N0
. This definition facilities the power

allocation scheme between two hops in the next section.
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decoding of the symbol vector sss turns out very simple as
two symbols in sss (s1 and s2) are independently decomposed
from one another. Therefore, the instantaneous receive SNR
per symbol is readily written as

γ =
Ps

N0

G2
2∑
i=1

|hi|
2 |fi|

2

G2
2∑
i=1

|fi|
2 + 1

(7)

To examine the statistical characteristic of γ given in (7) we
consider two special cases:

• If the relays are much closer to the destination than
the source, then we may have Ωh � Ωf and G2 ≈

1
2Ωh

with the high SNR0. Therefore, we can assume

that G2
2∑
i=1

|fi|
2 � 1. In this special case, substituting

Ps/N0 = SNR0/2 in (7) we can express γ as follows:

γ =
SNR0

2

2∑
i=1

|hi|
2 |fi|

2

2∑
i=1

|fi|
2

(8)

• On the other hand, if the relays are near the source,

then the following expression may hold G2
2∑
i=1

|fi|
2 � 1.

Therefore, the instantaneous receive SNR γ is as follows

γ =
SNR0

2
G2

2∑
i=1

|hi|
2 |fi|

2 (9)

III. CLOSED-FORM EXPRESSION OF THE AVERAGE SEP
AND DIVERSITY ORDER

In this section, on account of the statistical behavior of the
instantaneous receive SNR for two special cases shown in
previous section and applying the well-known MGF approach,
we can derive the closed form expressions of the average SEP
for M -PSK modulation and then deduce the diversity order of
distributed-Alamouti scheme in such cases. Our analysis can
be easily extended to the binary and other M -ary modulation
schemes (see [14] and references therein).

A. When the relays are close to the destination

From the expression of the instantaneous receive SNR in
(8), the MGF of γ can be given by

φγ (ν) � Eγ {exp (−νγ)} = Ehi,fi
{exp (−νγ)} (10)

Since Ai ∼ CN (0,ΩA), A ∈ {h, f} and i = 1, 2, it is obvious
that |Ai|

2 obeys an exponential distribution with the hazard
rate 1/ΩA. The probability density function (p.d.f.) of |Ai|

2

can be expressed as

p|Ai|
2 (x) =

1

ΩA

exp (−x/ΩA) (11)

Since hi and fi are statistically independent, the MGF of γ
in (10) can be written as

φγ (ν) = Efi
{Ehi

{exp (−νγ)}}

= Efi

⎧⎨
⎩

2∏
i=1

(
1 + νSNR0

2

|fi|
2

|f1|
2
+ |f2|

2

)−1
⎫⎬
⎭

= EZ

{(
1 + ξ

Z

Z + 1

)−1 (
1 + ξ

1

Z + 1

)−1
}

(a)
=

∫ ∞

0

[
(1 + (1 + ξ) z) (1 + ξ + z)

]−1
dz

=
2 log (1 + ξ)

ξ (2 + ξ)
(12)

where Z = |f1|
2

|f2|
2 , ξ = ΩhSNR0ν

2 , and (a) follows immediately
from Theorem 2 in Appendix. Using the well-known MGF
approach [10], [11] along with (12), we obtain the average
SEP of the distributed-Alamouti scheme with M -PSK in relay
channels as2

Pe =
1

π

∫ π− π
M

0

φγ

(
gMPSK

sin2 θ

)
dθ

=
1

π

∫ π− π
M

0

2 sin4 θ log
(
1 + ψ

sin2 θ

)
ψ
(
2 sin2 θ + ψ

) dθ (13)

where ψ = 1
2ΩhSNR0gMPSK and gMPSK = sin2 (π/M).

B. When the relays are close to the source

In this section, we consider the case when the two relays
are close to the source. Following the same steps as in
Section III-A and from (9), the MGF of γ can be described
as

φγ (ν) = Ehi,fi

{
2∏
i=1

exp
(
−G2

SNR0ν
2 |hi|

2 |fi|
2
)}

(14)

=

[∫ ∞

0

exp
(
−G2

SNR0ν
2 t

)
pT (t) dt

]2

(15)

=

[∫ ∞

0

2

Ω
exp

(
−G2

SNR0ν
2 t

)
K0

(
2

√
t

Ω

)
dt

]2

(16)

=

[
λ exp (λ) Γ (0, λ)

]2

(17)

where T = |hi|
2 |fi|

2, Ω = ΩhΩf, λ =
(

1
2G

2SNR0νΩ
)−1

,
(16) follows immediately from Theorem 3 in Appendix, and
(17) can be obtained from the change of variable v =
1
2G

2SNR0νt along with [15, eq. (8.353.4)]. Therefore, fol-
lowing the same approach as in the previous subsection, the
SEP is given by

Pe =
1

π

∫ π− π
M

0

[
τ sin2 θ exp

(
τ sin2 θ

)
Γ
(
0, τ sin2 θ

)]2

dθ

(18)

where τ =
(

1
2G

2
SNR0ΩgMPSK

)−1
.

2The result can be applied to other binary and M -ary signals in a
straightforward way (see, e.g., [10]).
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C. High-SNR Characteristic: Diversity Order

We now assess the effect of cooperative diversity on the
SEP behavior in a high-SNR regime. The diversity impact of
AF cooperation on a high-SNR slope of the SEP curve can be
quantified by the following theorem.

Theorem 1 (Achievable Diversity Order): The AF cooper-
ation of distributed-Alamouti scheme provides maximum di-
versity order as relays move close to both ends, i.e.,

D � lim
SNR→∞

− logPe

log (SNR)
= 2. (19)

Proof: See Appendix C

IV. OPTIMAL POWER ALLOCATION

In this section, taking into account the relay’s location, we
propose an optimal power allocation between the broadcasting
and relaying phase based on the minimization of the upper
bound on SEP. We do not assume the equally distributed power
allocation between the broadcasting and relaying phase as in
the previous section. In other words, the total average transmit
power of the two relays per symbol time is Prelay = Ptotal −
Ps �= Ps. Our goal is to find the optimal solution to allocate the
power to the source-to-destination and relay-to-destination link
under the total transmit power constraint Ptotal. It is also noted
that we should replace SNR0 in ξ of eq. (12) and θ of eq. (17)
by Ps/N0. Without the loss of generality, we assume a unit
total transmit power, i.e., Ptotal = 1, and hence, N0 = 1/SNR0.
As a result, the SEP expressions given in (13) and (18) as the
two relays are closely located to the destination and source
are upper bounded, respectively, as follows:

Pe ≤
2 log

(
1 + ξ̃

)
ξ̃
(
2 + ξ̃

) (20)

where ξ̃ = 1
SNR0

ΩhPsgMPSK, and

Pe ≤
[
λ̃ exp

(
λ̃
)

Γ
(
0, λ̃

)]2

(21)

where λ̃ =

(
1
2

(1−Ps)PsSNR0gMPSKΩhΩf

(ΩhPs+SNR
−1
0 )

)−1

.

We now consider an optimal power allocation between the
first hop and second hop transmission depending on relays’
positions by utilizing a similar approach as in [16]. Under the
specific common SNR without fading (SNR0 = Ptotal/N0) and
mean channel fading parameters (Ωh,Ωf), the cost functions,
i.e., two upper bounded expressions of SEP, depends only on
the average transmit power Ps. It turns out that we need to
minimize the two upper bounds on SEP given in (20) and
(21) subject to Ps (0 ≤ Ps ≤ 1). It can be easily see that
the second derivative of the right-hand side in (20) and (21)
is positive with respective to Ps, hence, the two upper bounds
are strictly convex. The convexity implies that the minimum
value is a global minimization. Fortunately, the cost functions
do not depend on the instantaneous fading parameters, e.g.,
instantaneous SNR, we can a posteriori solve the optimization
problem with respect to Ps and store the resolvable values
(optimal values Ps) into the look-up table for the future usages.

This non-realtime operation leads our optimal power allocation
algorithm realistic for practical applications. This algorithm
can be easily implemented with any symbolic mathematical
software packages such as MAPLE or MATHEMATICA. In
this paper, we apply the MATHEMATICA built-in function
“FindMinimum” to obtain the optimal values of Ps. The results
are given in terms of the percentage of total average transmit
power Ptotal.

For the case as the two relays are close to the destination,
it is easy that the right-hand side of (20) is monotonically
decreased subject to Ps. It means that we should allocate all
power for the first-hop transmission (Ps = 100%)3. Intuitively,
we can observe similar results through examining the formulas
in (20). The right-hand side of (20) contains only the fading
parameter of the source-relay link (Ωh), hence, it turns out that
the signals are transmitted through a fading channel of source-
relay link and a “non-fading” channel of relay-destination link.
Thereby, fading compensation should be mostly assigned for
the first-hop transmission to overcome the deleterious fading
effect. However, since our transmission scheme occurs in two
hops a certain amount power should be remained for the
second-hop transmission. As shown in the next section, we
can set a high-fixed value to Ps, e.g. Ps = 98%, over the
whole range of SNR.

When the relays are located nearby the source, applying
the “FindMinimum” function on (21), we can find the optimal
value of Ps shown in Table I for two cases ε = 0.2 and ε = 0.3,
where ε is the ratio between the distance of the source to the
two relays and the distance of the two relays to the destination.

TABLE I
OPTIMAL POWER ALLOCATION FOR THE DISTRIBUTED-ALAMOUTI

SYSTEM AS THE TWO RELAYS ARE CLOSE TO THE SOURCE

SNR0 [dB] Ps
ε = 0.2 ε = 0.3

0 0.136435 0.253017
5 0.082243 0.165566

10 0.048101 0.101617
15 0.027654 0.060051
20 0.015746 0.034727
25 0.008917 0.019839
30 0.005034 0.011255

V. NUMERICAL RESULTS

In this section, we validate our analysis by comparing
with the Monte-Carlo simulations. In the following numerical
examples, we consider the AF relay protocol employing the
Alamouti code as in Section II. We also assume collinear
geometry for locations of three communicating terminals. The
path-loss of each link follows an exponential decay model: if
the distance between the source and destination is equal to d,
then Ω0 ∝ d−α where the exponent α = 4 corresponding to a
typical non line-of-sight propagation. Then, Ωh = ε−αΩ0 and
Ωf = (1 − ε)

−α
Ω0. We also assume the unit channel mean

3The result has been double-checked by applying the MATHEMATICA
“FindMinimum” function on (20). We also obtain the optimal value of Ps as
1.
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power of the source-to-destination link, i.e., Ω0 = 1 for all
numerical examples.

A. Equal Power Allocation

Fig. 2 and Fig. 3 show the SEP of QPSK versus SNR0 when
the two relays approach the destination (ε = 0.7 and ε = 0.8)
and the source (ε = 0.2 and ε = 0.3), respectively. As can
clearly be seen from both figures, analytical and simulated
SEP curves match exactly. Observe that the SEP slops for
ε = 0.7 and ε = 0.8 are identical in the high SNR regime,
as speculated in Theorem 1. The same observation can be
obtained for ε = 0.2 and ε = 0.3. For comparison, two
numerical examples demonstrate that the SEP performance is
decreased when the two relays are located nearby both ends,
e.g., the SEP for ε = 0.3 is slightly less than that for ε = 0.2
and a 3dB-gain can be obtained with ε = 0.7 compared to the
case with ε = 0.8.

B. Optimal Power Allocation

We show the SEP of QPSK as the function of transmit
power at the source in Fig. 4 when the relays are close to
the destination (ε = 0.7 and 0.8) with SNR0 = 20 and 30
dB. As can be seen from the figure, Ps = 1 yields the best
performance for all cases (strongly agree with above analysis).

For a practical application, we assign 98% total transmit
power for the first-hop transmission. As displayed in Fig. 5,
optimal power allocation can improve by 2.5 dB compared
with equal power allocation

When the relays are nearby the source,the transmit power
of the first-hop transmission Ps is selected from the look-
up Table I to improve the SEP performance. At the low
SNR regime, approximately 14% and 25% of the total power
should be allocated in the broadcasting phase for ε = 0.2 and
ε = 0.3, respectively. However, we observe from the Table I
that in the high SNR regime the broadcast phase requires a
small percentage of power. This is actually reasonable since
the relay-to-destination link is much worse than source-to-
relay link, hence, most of power should be allocated in the
second-hop transmission to compensate for the loss of fading.
In addition, under the same condition (SNR0) the relaying
protocol with ε = 0.3 needs more power in the broadcasting
phase than that with ε = 0.2. To clearly illustrate the effect of
power allocation on system performance, we show in Fig. 6
the SEP of QPSK modulation versus SNR when the relays
are close to the source. We observe from Fig. 5 and Fig. 6
that the optimal scheme achieves the improvement of SEP
performance by 2-3 dB over the conventional one.

VI. CONCLUSIONS

In this paper, using the well-known MGF approach, we have
derived the closed-form expressions for SEP of distributed-
Alamouti scheme taking into consideration the relay’s loca-
tion. We further show that the distributed-Alamouti scheme
achieves a full diversity by assessing the high SNR behavior
of SEP performance. Our analysis has been validated by
the simulation results. We also proposed an optimal power

Fig. 2. Symbol error probability of QPSK versus SNR in AF relay channels
employing Alamouti scheme when ε = 0.7 and ε = 0.8 (the two relay are
close to the destination).

Fig. 3. Symbol error probability of QPSK versus SNR in AF relay channels
employing Alamouti scheme when ε = 0.2 and ε = 0.3 (the two relays are
close to the source).

allocation between the first-hop and second-hop transmission.
It has been shown that when the relays are closely located to
the destination, most power should be assigned for the first-
hop transmission. On the other hands, as the relays are nearby
the source, more transmit power should be allocated for the
second-hop transmission. The proposed scheme increases the
SEP performance by 2-3 dB over the equal power allocation.

APPENDIX

A. Auxiliary Results

The following lemmas will be useful in the paper
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Fig. 4. Symbol error probability of QPSK versus Ps in AF relay channels
employing Alamouti scheme at SNR0 = 20dB and SNR0 = 30dB. The two
relays are located nearby the destination (ε = 0.7 and ε = 0.8).

Fig. 5. Symbol error probability of QPSK versus SNR in AF relay channels
employing Alamouti scheme with equal and optimal power allocation (Ps =
0.98). The two relays are located nearby the destination (ε = 0.7 and ε =
0.8).

Lemma 1: Let a > 0 be a finite constant and

f (x) =
2 log (1 + ax)

ax (2 + ax)
, x > 0 (22)

We have

fx↑ � lim
x→∞

− log f (x)

log x
= 2 (23)

Fig. 6. Symbol error probability of QPSK versus SNR in AF relay channels
employing Alamouti scheme with equal and optimal power allocation. The
two relays are located nearby the source (ε = 0.2 and ε = 0.3).

Proof: It follows immediately from (22) and (23) that

fx↑ = lim
x→∞

− log log (1 + ax)

log x︸ ︷︷ ︸
(b)
=0

+ lim
x→∞

log (ax)

log x︸ ︷︷ ︸
(c)
=1

+ lim
x→∞

log
(
1 + ax

2

)
log x︸ ︷︷ ︸

(d)
= 1

= 2 (24)

where (b), (c), and (d) follow immediately by applying
l’Hôspital rule.

Lemma 2: Let

g (ζ) =
[
ζ exp (ζ) Γ (0, ζ)

]2
, ζ > 0 (25)

Let ζ = αβx+1
x2 and α, β > 0 be finite constants. We have

gx↑ � lim
x→∞

− log g (x)

log x
= 2 (26)

Proof: Substituting ζ = αβx+1
x2 into (25), it follows

immediately from (26) that

gx↑ = −2

[
lim
x→∞

log
(
βx+1
x2

)
log x

+ lim
x→∞

βx+ 1

x2 log x

+ lim
x→∞

log Γ
(
0, αβx+1

x2

)
log x

]
= −2

[
−2 + lim

x→∞

log (1 + βx)

log x︸ ︷︷ ︸
(e)
=1

+ lim
x→∞

βx+ 1

x2 log x︸ ︷︷ ︸
(f)
= 0

+ lim
x→∞

log Γ
(
0, αβx+1

x2

)
log x︸ ︷︷ ︸

(g)
= 0

]
= 2 (27)
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where (e), (f) follow immediately by l’Hôspital rule and (g)
follows from the Laguerre4 polynomial series representation
of incomplete gamma function [15] together with l’Hôspital
rule .

B. A Ratio and Product Distribution

Theorem 2 (Ratio Distribution): Let

X ∼ Υ (1/Ω)

Y ∼ Υ (1/Ω)

be statistically independent and identically distributed (i.i.d.)
exponential r.v.’s. Suppose the ratio Z of the form

Z =
X

Y
(28)

Then, we obtain the p.d.f. of random variable Z as

pZ (z) = (z + 1)
−2 (29)

Proof: Note that

pZ (z) =

∫ ∞

0

ypXY (yz, y) dy

=

∫ ∞

0

y

Ω2
exp

(
−y

z + 1

Ω

)
dy

= (z + 1)
−2 (30)

Theorem 3 (Product Distribution): Let

X ∼ Υ (1/Ωx)

Y ∼ Υ (1/Ωy)

be statistically independent and not necessarily identically
distributed (i.n.i.d.) exponential r.v.’s. Suppose the product T
of the form

T = XY (31)

Then, we have

pT (t) =
2

ΩxΩy
K0

(
2

√
t

ΩxΩy

)
(32)

where K0 (.) is the zeroth-order modified Bessel function of
the second kind.

Proof: Note that

FT (t) = Pr{XY ≤ t}

= EX

{
FT |X (t)

}
= EX

{
1 − exp

[
−

t

xΩy

]}

= 1 −
1

Ωx

∫ ∞

0

exp

[
−

t

xΩy
−

x

Ωx

]
dx (33)

4The incomplete gamma function can be described as Γ (0, x) =

e−x
∞∑

n=0

Ln(x)
n+1

where Ln (x) =
n∑

m=0
(−1)m (n!xm) / (m! (n − m)!m!)

is the Laguerre polynomial of order n.

The p.d.f. of T follows immediately from differentiating (33)
with respect to t.

pT (t) =
1

ΩxΩy

∫ ∞

0

1

x
exp

[
−

t

xΩy
−

x

Ωx

]
dx

=
2

ΩxΩy
K0

(
2

√
t

ΩxΩy

)
(34)

where the last equality follows from the change of variable
u = x

Ωx
along with [15, eq. (8.432.6)] as desired.

C. Proof of Theorem 1

Since the asymptotic behavior of the MGF φγ (ν) at large
SNR reveals a high-SNR slope of the SEP curve, we have
[11], [12]

D = lim
SNR→∞

− logφγ (gMPSK)

log (SNR)
. (35)

Hence, it follow immediately from (12) and Lemma 1 with
a = ΩhgMPSK that D = 2 if the two relays are close to the
destination. Also, from (17) and Lemma 2 with α = 2

ΩhΩfgMPSK

and β = Ωh, we can obtain D = 2 as the two relays are
located nearby the source.
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