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Abstract— In this paper, we analyze the performance of
a non-data aided near maximum likelihood (NDA-NML)
estimator for symbol timing recovery in wireless commu-
nications. The performance of the estimator is evaluated
for an additive noise only channel. Performance analysis
is extended to fading channels characterized by Rayleigh
fading, Weibull fading and log-normal fading, appropriate
to a variety of transmission scenarios. The probability
distribution of the maxima and probability distribution of
timing estimates are derived, presented and compared with
simulation results. The performance of the estimator is
presented in terms of the bit error rate (BER) and the error
variance of the estimates. The BER is computed when the
estimator is operating under additive white Gaussian noise
(AWGN) channel and fading channels. The variance of the
estimates is computed for the noise only case and compared
with the Cramer Rao bound (CRB) and modified Cramer
Rao bound (MCRB).

Index Terms— BER, CRB, Rayleigh fading, Weibull fading,
Log-normal fading, Near Maximum Likelihood Estimation,
MCRB, Symbol Timing Error, Timing Synchronization.

I. INTRODUCTION

Timing in a receiver must be synchronized to the
symbols of the incoming transmitted signal. In the analog
implementation of digital modems a free running clock at
the symbol rate is phase adjusted in a feedback manner
to find the optimum sampling point of the symbol. In
feedforward arrangement, timing wave is generated from
incoming signal. Mueller and Muller [1] presented a novel
technique for symbol timing recovery in the analog era.
With the advancement of the digital and microproces-
sor systems, came digital signal processors and FPGAs,
which allows us to implement complicated open loop
systems.

In this paper, we present a non-data aided symbol
timing estimation technique and evaluate its performance.
Symbol timing can be performed with synchronous sam-
pling where exploiting some sort of error signal, the signal
sampling clock is adjusted in a feedback manner, and non-
synchronous sampling where the sampling is not locked to

Manuscript received January 30, 2009; revised March 27, 2009;
accepted May 11, 2009. This work was presented in part at IEEE 11th

International Conference on Computer and Information Technology
(ICCIT 2008).

the incoming signal. Non-synchronous sampling is used
in this paper to estimate the symbol timing on a received
baseband signal. The optimum symbol strobing point is
estimated using the samples with minimum intersymbol
interference. Obtained samples from nonsynchronously
sampled signal may not include the sample which is at
the optimum sampling point and therefore interpolation
is used to reduce the error produced by nonsynchronous
sampling process. While performing interpolation and
upsampling with the available high processor speeds of
the latest digital signal processor, no significant limita-
tions are noted. In this paper, interpolations are assumed
available for convenience. A good review on interpolation
techniques for symbol timing estimation is given by Gard-
ner [2, 3] where some useful interpolation filter functions
and the use of them for timing recovery to improve
performance of nonsynchronously sampled systems are
discussed.

Many feedback and/or feedforward symbol timing
estimation techniques for synchronous and/or nonsyn-
chronous sampled systems for either continuous time or
burst mode transmissions are available in the literature [4].
Techniques for synchronizing receivers can be divided
into data aided and non-data aided. The former is the
case where synchronization relies on knowledge of the
information symbols. The latter is the case where train-
ing sequences are impractical or inconvenient, and the
decision process is not sufficiently reliable for decision
feedback [5].

The performance of the estimator is evaluated in terms
of BER performance and measuring the variance of the
estimator and comparing with CRB and MCRB. The
BER performance under the assumption of perfect timing
estimates is well documented for various modulation
formats [6]. In practice timing estimates exhibit small
random fluctuations (jitter) about their optimum values
that give rise to a BER degradation when compared
to perfect synchronization [7], which degrades further
when the signal undergoes fading in wireless communi-
cations [8]. A joint symbol timing estimation and data
detection on flat fading channel based on particle filtering
is demonstrated in [9].

We evaluate the performance of the symbol timing
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estimator operating under fading channels with different
characterizations, suitable for a variety of applications.
We consider the timing estimator similar to that of de-
scribed in [4] and analyze its performance by finding
the statistical distribution of the estimates, the distribu-
tion can then be used to characterize the average BER
theoretically. The analysis is further extended to fading
channels using Monte-Carlo simulations. A tighter CRB
and MCRB are also derived to study the performance
of the estimator for the noise only case. Although the
considered timing estimator is not optimal, we consider
it here because of its design simplicity, such that it can
be easily used in software defined radios at the baseband.

The rest of the paper is organized as follows. In the
next section we present the system model. In section III,
the timing estimator is presented. Section IV presents the
statistical analysis of the timing estimator. Performance
of the estimator is presented in section V. The timing
estimator operating under fading channels for different
characterizations are then presented in section VI before
the paper is finally concluded in section VII.

II. SYSTEM MODEL

The system considered here is depicted in Figure 1.
In our model we consider both the additive noise only
channel as well as the fading channel. A conventional
baseband pulse amplitude modulation (PAM) signal can
be represented as

s(t) =
∞∑

m=−∞
cmg(t−mT ) (1)

where cm’s are the transmitted symbols, g(·) is the pulse
shape used to control the spectral characteristics of the
transmitted signal and T is the signaling interval ( 1

T is the
symbol rate). The cm’s are assumed to be independently
and identically distributed, and take on the values ±1 with
equal probability. The channel introduces a delay of τ , and
additive white Gaussian noise is considered at the receiver
with a double sided power spectral density of N0

2 W/Hz.
Then the signal becomes

y(t) = s(t− τ) + w(t)

=
∞∑

m=−∞
cmg(t−mT − τ) + w(t) (2)

where the noise process w(t) is stationary and Gaussian
with a mean of zero. The frequency response of the pulse
shaping filter in the transmitter is G(f). The received
signal is passed through a receiving filter. In general, the
optimum filter at the receiver is matched to the received
signal pulse g(t). Hence the frequency response of this
filter is G∗(f). Then the received signal is

z(t) =
∞∑

m=−∞
cmgo(t−mT − τ) + n(t) (3)

where go is the signal pulse response of the receiving
filter-that is Go(f) = G(f)G∗(f) = |G(f)|2-and n(t) is
a bandlimited Gaussian noise independent and identically

distributed with the same statistics as w(n). Now if z(t)
is sampled at times kTs, k = 0,±1,±2... where Ts is the
sampling interval, we have

z(kTs) =
∞∑

m=−∞
cmgo(kTs −mT − τ) + n(kTs). (4)

Figure 1. Block diagram of signal detection using square root raised
cosine filter.

When the symbols are transmitted over fading channel
h(t), the faded discrete signal at the baseband can be
written as,

zf (kTs) =
∞∑

m=−∞
h(kTs)cmg0(kTs−mT − τ)+n(kTs)

(5)
where h(kTs) denotes the multiplicative fading pro-
cess introduced by the fading channel sampled at times
kTs, k = 0,±1,±2.... As is shown in Figure 1, square
root raised cosine (SRC) filter is used as the pulse shaping
filter and also as the receiving filter, the overall response
is therefore similar to a raised cosine filter. The impulse
response of SRC filter is given by:

gsrc(t) =





π(1−α)+4α

π
√

T
t = 0

4α
π
√

T

( cos(
(1+α)πt

T )+
sin((1−α)πT )

4αt
T

1−( 4αt
T )2

)
t 6= 0,± T

4α
α

π
√

2T
((π − 2) cos( π

4α )+
(π + 2) sin( π

4α )) t = ± T
4α

(6)

where α is called the roll-off factor, which takes values
in the range 0 ≤ α ≤ 1 and T is the symbol period. The
theoretical bit error probability Pb for bipolar signaling is

Pb = Q

(√
2Eb

N0

)
(7)

where Q(x) is called the complementary error function
or co-error function and is defined as

Q(x) =
1√
2π

∫ ∞

x

exp
(
− u2

2

)
du. (8)

III. TIMING ESTIMATOR

Here a near maximum likelihood (NML) timing esti-
mation technique is presented that estimates the symbol
timing error. This NML timing estimation technique is
similar to the estimator described in [4]. We assume that
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the sampled received baseband waveform for the additive
noise only channel as given by (4) is:

z(kTs) =
L−1∑

i=0

cig0(kTs − iT − τ) + n(kTs). (9)

The noise process n(kTs) is a zero mean bandlimited
Gaussian process with a variance of σ2 and L is the
number of symbols used to estimate timing offset. In this
case we ignore the channel h(kTs) to derive the estimator.
The probability density function of n(kTs) is given by:

fn(n) =
1√

2πσ2
exp

[
− {n(kTs)}2

2σ2

]
. (10)

If we let R to be a vector of the sample set z(kTs) then
using (9) and (10)

fR(R|τ) =
1

(2πσ2)
L
2

exp

{
−

∑L−1
i=0 [E − F ]2

2σ2

}
(11)

where

E = zi(kTs) and

F =
L−1∑

i=0

cig0(kTs − iT − τ).

We use the Maximum Likelihood (ML) principles to
derive the symbol timing estimator assuming no a-priori
knowledge of the received symbol sequence ci. Let a
matrix of samples be given as

Z =




Z1

Z2

·
Zi

·
·

ZL




=




z1(1) z1(2) · · z1(N)
z2(1) z2(2) · · z2(N)
· · · · ·

zi(1) zi(2) · · zi(N)
· · · · ·
· · · · ·

zL(1) zL(2) · · zL(N)




(12)

where,

Zi =
L∑

i=1

zi(k′) (13)

and,

zi(k′) =
N∑

k′=1

cmg0(k′Ts − iT − τ) + n(k′Ts). (14)

Here, k′ = mod(k,N), L is the number of symbols used
to estimate the timing offset and N is the number of
samples per symbol. The estimator is then given by:

τ̂ = arg max{Γ1(k′, τ) =
L∑

i=1

|zi(k′, τ)|}. (15)

The validity of the technique demands the constraint on
number of samples to be integer multiple of symbols.
When the estimator operates under fading channel, it
becomes,

τ̂ = arg max{Γ2(k′, τ) =
L∑

i=1

|zf
i (k′, τ)|} (16)

where

zf
i (k′) =

N∑

k′=1

h(k′Ts)cmg0(k′Ts −mT − τ) + n(k′Ts).

(17)

IV. STATISTICAL ANALYSIS OF THE TIMING
ESTIMATOR

The time estimates relate to the maximum energy of
the signal. The instant of time at which signal energy
is maximum, is taken as the time estimate. Hence, the
distribution of the time estimate corresponds to the distri-
bution of the maximum of the signal. We find expressions
for the distribution of maxima and the probability mass
function of time estimates. The analytical expressions are
then compared with the simulated distribution. For both
the cases, nice matches are found.

A. Distribution of Maxima

Let N = 2N ′ + 1. Considering the signal components
Z−N , ..., Z0, ...ZN as random variables, the maximum of
the signal Q can be found

Q = Max(Z−N ′ , ..., Z0, Z1, ..., Z
′
N ). (18)

Then the cumulative distribution function of the maxima
can be written as

FQ(q) = P (Q ≤ q)
= P (Z−N ′ ... ≤ Z0 ≤ Z1...Z

′
N ≤ q)

= FZ−N′ ...Z′N
(q, q...q). (19)

If Z−N ′ , ..., Z0, ...Z
′
N are independent

FQ(q) = FZ−N′ (q)...FZ′
N

(q) (20)

where FZi
(q) is the cumulative distribution function of

Zi. To find the probability density function of the maxima
fQ(q), differentiating (20) with respect to q gives,

fQ(q) = FZ−N′ (q)
d
δq (FZ−N′+1

(q)...FZ′
N

(q))

+(FZ−N′+1
(q)...FZ−N′ (q))fZ−N′ (q)

=
∑N ′

i=−N ′ fZi
(q)

∏N ′

j=−N ′,j 6=i FZj (q) (21)

where fZi(q) is the probability density function of Zi.
Figure 2 shows the analytical and simulated probabil-
ity density function of maxima for signal-to-noise-ratio
(SNR) of 15 dB, roll-off factor of the SRC filter α = 0.6,
number of samples per symbol N = 100 with a contri-
bution of L = 300 symbols to the estimator. Figure 2
demonstrates that the simulated probability density func-
tion of maxima closely match the analytical probability
density function.

406 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 6, JULY 2009

© 2009 ACADEMY PUBLISHER



220 221 222 223 224 225 226 227 228 229
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maxima (q)

pd
f o

f m
ax

im
a 

(f
Q

(q
))

 

 

Simulated pdf of maxima
Analytical pdf of maxima

E
b
/N

0
  = 15 dB

Figure 2. Probability Density Function of Maxima

B. Probability Distribution of the Timing Estimator

In order to determine the probability of bit error in the
receiver, the distribution of the timing estimate errors must
be taken into account. When using feedback techniques,
the probability density function (pdf) of the timing error
may be modelled using a Tichanov pdf [6]. Alternatively
if the signal to noise ratio (SNR) is greater than the
inverse of twice the variance of the timing offset, a
Gaussian pdf may be used [10]. However, in our case
the timing estimates relate to the maximum energy of
the signal. The instant of time at maximum signal energy
is the estimate. Considering this, we find an expression
for the probability mass function of timing estimates.
The analytical expression is then compared with the
simulated distribution. Let N = 2N ′ + 1, and con-
sider the two vectors, τ = [τ−N ′ , .., τ0, .., τk′ .., τN ′ ] and
Γ1(k′, τ) = [Γ1(−N ′), .., Γ1(0), .., Γ1(k′), .., Γ1(N ′)]
with q = max(Γ1(k′, τ)). Then, when the particular time
instance τk′ is chosen as the timing estimate τ̂ , that is
τ̂ = τk′ , the probability can be written as

P (τ̂ = τk′) = P (q = Γ1(k′, τ))

= P (q > Γ1(−N ′), .., q = Γ1(k′).., q > Γ1(N ′))

= fΓ1(k′)(q)
N ′∏

j=−N ′,j 6=k′
FΓ1(j)(q) (22)

where, fΓ1(k′)(q) and FΓ1(j)(q) are the probability density
function and cumulative distribution function of Γ1(k′)
respectively. The expression for the probability mass
function (pmf) for the timing estimates is given by,

fτ̂ (τ) =
{

P (τ̂ = τ); τ ∈ [τ−N ′ , .., τk′ .., τN ′ ]
0; τ 6∈ [τ−N ′ , .., τk′ .., τN ′ ].(23)

Figure 3 shows the analytical probability mass function
and the simulated probability density function for the
timing estimates when SNR is 10 dB, roll-off factor
α = 0.6, samples per symbol N = 100, and L = 300
symbols used for timing estimates. It is seen that the

analytical results closely match with the simulated pdf.
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timing estimates.

V. PERFORMANCE OF THE ESTIMATOR

The statistics of the estimates are the key elements
in determining the performances of the symbol timing
recovery method. If the estimates are biased, the resulting
sampling location selected by the symbol timing estimator
will be biased from the true optimum and performance
will suffer. Similarly, if the estimates have a high variance,
the variance of the selected sampling location will also be
high. Clearly it is desirable to keep the variance of the
estimates as low as possible. The performance bounds for
the symbol timing estimator are the CRB and MCRB. We
evaluate the performance of the estimator finding bit error
probability with matched filter detection and measuring
variance of the estimator. Bit error probability is com-
pared to the theoretical bit error probability for AWGN
and variance is compared with the lower bounds CRB
and MCRB. Figure 4 shows the bit error performance
for the NDA-NML estimator in an AWGN channel when
roll-off factor α = 0.6 in both transmitter and receiver,
N = 20 samples per symbol, and L = 100 symbols
used for timing estimates; with the further assumption that
there is negligible inter-symbol interference. NDA-NML
estimator exhibits good bit error performance compared
with theoretical BER of AWGN.

A. Cramer Rao Bound (CRB)

We consider the additive noise only case to derive
the CRB here, assuming that the received continuous
waveform as given in (3) has complex envelope given
by

z(t) = s(t) + n(t) (24)

which is observed over an interval T . s(t) is the infor-
mation bearing signal and n(t) represents complex-valued
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additive white Gaussian noise with two-sided power spec-
tral density. Some of the parameters are unknown, such
as the carrier phase θ, the symbol epoch τ , the carrier
frequency error ν, etc.

In order to estimate of a single element of {θ, τ, ν},
denoted by λ, which is assumed to be deterministic (non-
random), all the other parameters, including the data, are
collected in a random vector u having a known probability
density function p(u) which does not depend on λ. If
λ̂(z) is any unbiased estimator of λ, a lower bound to the
variance of the error λ̂(z)−λ is given by the Cramer-Rao
formula [11]

CRB(λ) =
1

Ez

{[
∂ ln p(z|λ)

∂λ

]2} (25)

where Ez denotes statistical expectation with respect to
the subscripted variable, and p(z|λ) is the probability
density function of z for a given λ.

To compute CRB(λ) we need p(z|λ) which, in prin-
ciple, can be obtained from the integral

p(z|λ) =
∫ ∞

−∞
p(z|u, λ)p(u)du (26)

where p(z|u, λ), the conditional probability density func-
tion of r given u and λ is easily available, at least for
additive Gaussian channels. Unfortunately, in most cases
of practical interest, the computation of (25) is impossible
because either the integration in (26) cannot be carried out
analytically or the expectation in (25) poses insuperable
obstacles. Using the general form of CRB given by [12],
the CRB for timing estimates for AWGN channel can be
written as:

CRB
( τ

T

)
=

[
− 2Eb

N0
g
′′
0 (0)LT 2

]
(27)

where L represents the number of symbols used to make
the estimate of the timing offset, T is the symbol period,
g
′′
(0) is the second derivative of the pulse shaping filter

with respect to time t evaluated at t = 0. For a raised
cosine channel when the signal energy normalized to
unity, g

′′
0 (0) is given by [13]

g
′′
0 (0) = −

(π2

3
+ α2(π2 − 8)

)
(28)

where α is the roll-off factor of the raised cosine filter.

B. Modified Cramer Rao Bound (MCRB)

The MCRB by [14] to the variance of λ̂(z)− λ is the
following

MCRB(λ) =
1

Ez,u

{[
∂ ln p(z|u,λ)

∂λ

]2} . (29)

This bound is found by [14] observing that

Ez,u

{
[λ̂(z)− λ]2

}
= Eu

{
Ez|u[(λ̂(z)− λ)2]

}

≥ Eu

{
1

Ez|u
[(

∂ ln p(z|u,λ)
∂λ

)2]
}

≥ 1

Eu

{
Ez|u

[(
∂ ln p(z|u,λ)

∂λ

)2]}

=
1

Ez,u

{[
∂ ln p(z|u,λ)

∂λ

]2} (30)

where the first inequality derives from application of the
CRB to the estimator λ̂(r) for a fixed u, while the second
is true in view of Jensen’s inequality and the convexity
of the function 1

x for x > 0.
In spite of having same structure of CRB and MCRB,

MCRB is much easier to use. For Gaussian Channel, the
probability density for (29) is a well-known exponential
function whose argument is a quadratic form in the dif-
ference between z and the signal s. Thus the logarithm of
p(z|u, λ) equals this quadratic form and the expectation
in (29) is readily derived.

The MCRB of symbol epoch (τ ) by [5] is given by

MCRB(τ) =
1

8π2Lξ

T 2

Es/N0
(31)

where L is the number of symbol intervals on which
receiver bases its timing estimate on the observation on
the received signal, T is the symbol interval, Es is the
energy of one symbol waveform and ξ is an adimensional
coefficient depending on the shape of g0(t):

ξ =

∫∞
−∞ T 2f2|G(f)|2df∫∞
−∞ |G(f)|2df . (32)

MCRB for a normalized τ is given by [15] where τ is
between 0 and 1. The MRCB is

MCRB(τ) ≥ 1
2LΓ(Es/N0)

(33)

where

Γ =
T 2

Es

∫ T

0

g2
d(t)dt (34)
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where gd(t) denote the time derivative of g0(t), Es is the
symbol energy. For a raised cosine pulse Γ = 4π2

3 .
Figure 5 shows variance of the NDA-NML estimator

with respect to CRB and MCRB when roll-off factor α =
0.6 and N = 40 samples per symbol. It is demonstrated
in [14] that MCRB is generally lower than (at most equal)
to the true CRB. The simulation result exhibits that the
CRB is always greater than MCRB and the variance of
the estimator is greater than CRB and MCRB as well.
The variance of the estimator decreases as the number of
symbols contributed for the timing estimation increases.
With the increasing number of symbols used for estima-
tion, the performance of the estimator improves in terms
of variance. If the number of symbols contributed for the
estimation is significantly small, then the performance of
the estimator will be degraded. It is easy to implement
the NDA-NML estimator and the complexity is low as
well.
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Figure 5. NDA-NML estimator error variance performance.

VI. TIMING ESTIMATOR OPERATING UNDER FADING
CHANNELS

One of the many impairments inherently present in any
wireless communication system, that must be recognized
and mostly mitigated for a system to function well,
is fading. In this paper, we consider Rayleigh fading,
Weibull fading and log-normal fading channels and assess
the performance of the timing estimator computing BER
under each fading condition assuming flat fading. Last of
all, the three fading scenarios are compared.

A. Timing Estimator Operating Under Rayleigh Fading
Conditions

The statistical characteristics of a fading channel can
be modelled using various probability density functions.
In mobile radio channels, the Rayleigh distribution is
commonly used to describe the statistical time varying
nature of the received envelope of a flat fading signal , or
the envelope of an individual multipath component. It is

well known that the envelope of the sum of two quadrature
Gaussian noise signals obeys a Rayleigh distribution [16–
18]. The Rayleigh distribution has a probability density
function given by

f(r) =

{
r

σ2
h

exp
(− r2

2σ2
h

)
, 0 ≤ r ≤ ∞

0, r < 0
(35)

where σh is the root mean square (rms) value of the
received signal before envelope detection. In our system
model the sampled received signal experiencing Rayleigh
fading can be expressed by (5) where the fading process
h(kTs) is Rayleigh distributed. For fading amplitude we
use h in place of h(kTs) which can be expressed as:

h =
(√

h2
I + h2

Q

)
(36)

where hI and hQ are uncorrelated and independent of
each other and follow correlated Gaussian distribution.
The correlations among the samples are achieved
passing the Gaussian distributed samples through a
spectral shaping filter. In our case we use a digital
one dimensional filter to correlate the samples. The
coefficients of the filter are given by:

A =
[
1 − exp

(
− γ

Fs

)]
, and B = γ (37)

where γ defines the amount of correlation in h(kTs) and
Fs is sampling frequency. The filter is a “Direct form
II Transposed” implementation of the standard difference
equation:

A(1)y(n) = B(1)x(n)−A(2)y(n− 1) (38)

where X is the input to the filter and Y is the filtered
output. The channel energy is maintained to be unity so
that the received SNR doesn’t change.

Figure 6 shows the bit error performance for timing
estimator operating under a Rayleigh fading channel when
roll-off factor α = 0.6, N = 15 samples per symbol,
and L = 100 symbols used for timing estimates. The
amount of correlation has a significant effect on BER
performance. Figure 6 exhibits that the BER performance
for the timing estimator improves as the γ increases under
fading conditions.

B. Timing Estimator Operating Under Weibull Fading
Conditions

The Weibull distribution is useful for modeling mul-
tipath fading signal amplitude. Weibull fading channel
model exhibits an excellent fit both for indoor [19–21]
and outdoor environments [22]. It provides flexibility
in describing the fading severity of the channel and
subsumes special cases such as the well-known Rayleigh
fading. The appropriateness of the Weibull distribution to
model fading channels was also reported in [23], where
a path-loss model for the Digital Enhanced Cordless
Telecommunications system at 1.89 GHz, was studied.
A physical justification for modeling wireless fading
channels with Weibull fading distribution has been given
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Figure 6. Bit error performance of NDA-NML estimator under Rayleigh
fading.

in [24]. Based on fading channel data obtained from a
recent measurement program at 900 MHz, Tzeremes and
Christodoulou also reported that the Weibull distribution
can be used to model outdoor multipath fading well
in some cases [25]. In the past few years, a renewed
interest has been expressed in studying the characteristics
of Weibull fading channel and performances of different
wireless techniques operating on such channel. This is
evident from the numerous publictions covering different
aspects of this fading model [26–29].

The probability density function of the Weibull distri-
bution is

fX(x) = babxb−1e−( x
a )b

(39)

where b > 0 is the shape parameter which defines the
severity of fading and a > 0 is the scale parameter of the
distribution. Smaller value of shape parameter indicates
more severity of fading. In the special case when b = 1,
the Weibull distribution becomes an exponential distribu-
tion; when b = 2, the Weibull distribution specializes to
a Rayleigh distribution.

For simulation purpose, for generating Weibull dis-
tributed random variates, at first a random variate U drawn
from the uniform distribution in the interval (0, 1) is
generated. Then the random variate hW = a(− ln(U))1/b

is generated which has a Weibull distribution with pa-
rameters b and a. hW is used as the fading amplitude for
Weibull fading. While generating U , zero values are ex-
cluded to avoid natural log of zero. Sampled received sig-
nal experiencing Weibull fading can be expressed by (5)
where the fading process h(kTs) is the Weibull distributed
fading amplitude hW . BER when the timing estimator
operates under Weibull fading channel is demonstrated in
Figure 7 for various Weibull shape parameters for roll-off
factor α = 0.6, N = 15 samples per symbol and L = 100
symbols used for the timing estimates. With increasing
value of shape parameter, the BER performance improves.
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Figure 7. Bit error performance of NDA-NML estimator under Weibull
fading.

C. Timing Estimator Operating Under Log-normal Fad-
ing Conditions

The log-normal distribution has traditionally been used
to describe the noticeable change in mean signal level
(slow fading) experienced by a mobile receiver moving
over long distances within a multipath environment. Rapid
signal fluctuations about the local mean may also be
observed over much shorter distances, typically in the
order of tens of wavelengths [30]. Log-normal small-
scale fading has been reported for some radio channels,
particularly in indoor environments [31–33]. Recently,
extensive effort has been directed at characterization of
the propagation channels that involve the human body. Re-
search into on-body channels [32], where communications
is across the surface of human body and off-body [33],
where a bodyworn radio device is communicating with
remote terminal, have both reported small-scale fading
which has followed the log-normal distribution. A statis-
tical characterization of the narrowband dynamic human
on-body area channel was presented in [34] demonstrating
that log-normal distribution provides a good fitting model,
particularly when the subject’s body is moving.

The log-normal probability density function p(r) for an
envelope R may be expressed as

pR(r) =
1

rσL

√
2π

exp
(−[log(r)− µL]2

2σ2
L

)
(40)

for r > 0, where µL and σL are the log-mean and log-
standard deviation and both of which are found from
log[p(r)].

For our simulation purpose, at first a random variate S
is generated which is drawn from the normal distribution
with 0 mean and 1 standard deviation and then the
variate hL = exp(µ + σS) is generated which has a log-
normal distribution with parameters log-mean µL and log-
standard deviation σL. Sampled received signal experienc-
ing log-normal fading can be expressed by (5) where the
fading process h(kTs) is the log-normal distributed fading
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amplitude hL. Figure 8 exhibits the BER performance for
the timing estimator operating under log-normal fading
when roll-off factor α = 0.6, N = 15 samples per
symbol, and L = 100 symbols used for timing estimates.
This performance is for the on-body wireless transmission
scenarios where there is log-normal fading. Performance
decreases significantly with the increasing of standard
deviation. Small change of mean of the log-normal distri-
bution does not have significant effect on the performance.
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Figure 8. Bit error performance of NDA-NML estimator under log-
normal fading.

Figure 9 shows the BER performance for three kinds of
fading stated before. In every case, roll-off factor α = 0.6,
N = 25 samples per symbol, and L = 300 symbols for
timing estimation are considered. In Figure 9, standard
Rayleigh fading with fading amplitudes that are based on
complex fading coefficients with mean 0 and variance 1
is considered. For the Weibull fading channel, the scale
parameter a = 1 and shape parameter b = 1.5 are used.
For the log-normal fading channel, log-mean µL = 0
and log-standard deviation σL = 0.75 are used. The
parameters for each of three different types of fading are
appropriate to typical small-scale fading scenarios. From
the Figure 9, it is demonstrated that BER performance
for the Rayleigh fading channel is better than that of the
Weibull fading and the log-normal fading channel and the
performance of the Weibull fading channel is better than
that of the log-normal fading channel. The performance
will vary depending on the value of fading parameters.

The estimator performs better for Rayleigh fading than
Weibull fading, because of the more fading severity of
the Weibull fading. For the Weibull fading, 1.5 is used
for shape parameter which is compared with a shape
parameter of 2 corresponding to Rayleigh fading, which
indicates more severity of the Weibull fading scenario.
The estimator performs better for Rayleigh fading than
that of log-normal fading because of the higher variance
used in Figure 9 of the log-normal fading. The estimator
is shown to be robust to a change of fading conditions in

comparison of the Rayleigh fading, Weibull fading and
log-normal fading, in Figure 9. It is clear in Figure 9
that the estimator performs similarly considering these
fading conditions. Characterizations of these three types
of fading are reasonably different with respect to the
application of the NDA-NML estimator.
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Figure 9. Bit error performance of NDA-NML estimator under various
fading.

VII. CONCLUSION

Statistical performance of a NDA-NML timing estima-
tor was presented. Several interesting aspects of the timing
estimator were revealed examining the statistical distri-
bution of the estimator. The expression for maxima and
expression for the probability mass function of the timing
estimates were derived and compared with the simulated
density function. The performance of the estimator was
assessed considering the BER, and the error variance was
compared to the CRB and MCRB for AWGN channel.
Finally, performance of the estimator was studied when
operating under different fading scenarios with different
characterizations by calculating the BER and the estimator
was shown to be robust to change of fading conditions.
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