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Abstract—The least-mean-squares (LMS) algorithm
which updates the filter coefficients by a stochastic gradient
descent approach is the most popular adaptive filtering one.
In this paper we propose a novel amplitude banded (AB)
technique with LMS on Godard (ABGodard) and Sato
(ABSato) algorithms for the equalization of communication
channels. The non-linear properties of the AB technique
with LMS algorithm are inherited into the ABGodard
and ABSato algorithms, resulting in an improvement of
equalization performance. These properties are validated
from a signal separation aspect based on decision boundary.
Mean square error (MSE) and bit error rate (BER) are
investigated on several communication channel models.
Observations on simulations show that the ABGodard and
ABSato algorithms provide better performance than the
standard Godard and Sato algorithms, respectively, and
that the ABSato algorithm is superior to the ABGodard
algorithm. As the division number used for the AB
technique is increased, the MSE and BER performances of
the ABSato algorithm are improved. A parallel structure
of the Sato and ABSato algorithms provides a further
improvement of the MSE and BER performances.

Index Terms—Least-Mean-Squares, Non-linear Adaptive
Algorithm, ABGodard Algorithm, ABSato Algorithm, Blind
Equalization

I. INTRODUCTION

The physical channel introduces a distortion to the
transmitted signal. To recover the original signal, the
principle of channel equalization plays an important role
in digital communication systems. To reduce or ideally
to eliminate completely the intersymbol interference (ISI)
induced by the channel, adaptive equalization [1] is
required. Although conventional equalization techniques
rely on training sequence based equalization, they suffer
from the trade-off between the sequence length and the
capacity of the link. To avoid this problem and when
the training sequence is not available, blind equalization
technique [2] can be used. Thus the blind channel equal-
ization is the great deal of attention for its importance in
digital communication systems. The Godard [3] and Sato
[4] adaptive algorithms are widely used blind algorithms
for equalization of a channel. They are commonly derived
based on measuring the output of the channel in case of
lacking explicit knowledge of the transmitted sequence.

Blind adaptive equalizers are often composed of two
distinct sections: (i) an adaptive filter adapted by linear
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adaptive algorithm (ii) followed by a non-linear estimator
to improve the filter outputs. The improved output of
the filter is taken to improve the estimator output in the
adaptation process at the next iteration.

In the adaptation process, a linear adaptive least-mean-
squares (LMS) algorithm is used for the Godard and Sato
equalizers. Due to the linear property of LMS algorithm
it can not always select the appropriate tap values for
adaptation. We use a non-linear adaptive algorithm which
can select the appropriate tap values and improve the
performance of the blind equalizer. Recently, Shimamura
et.al [5] derived a new non-linear adaptive algorithm,
called amplitude banded LMS (ABLMS) algorithm, for
training sequence based equalization. The adaptation of
the ABLMS algorithm considers the amplitude infor-
mation of the channel output to select the coefficients
of the equalizer as non-linear switching pattern. The
ABLMS algorithm exhibits better performance than the
conventional LMS algorithm. In this paper, we set out
to apply the amplitude banded (AB) technique [6] in
blind adaptive algorithm to obtain better performance.
Actually, we propose the AB version of the Godard
and Sato algorithms. In the proposed amplitude banded
Godard (ABGodard) and amplitude banded Sato (AB-
Sato) algorithms, the amplitude information is deployed
to select the coefficients to be updated. Based on the
amplitude level of the received sequence, the equalizer
coefficients are (for each iteration) selected from the
elements of the coefficient matrix, and then updated.
Since the AB technique itself provides the capability of
non-linear classification [7] and the increase of division
number of the AB technique enhances its non-linearity
[5], thus it is expected that the proposed ABGodard
and ABSato algorithms provide better performance than
the Godard and Sato algorithms, respectively. The AB
versions with blind equalizer are the first in this area and
have strong novelty with simulation results in mean square
error (MSE) and bit error rate (BER) performances.

This paper is organized as follows. In Section II, the
channel model considered in this paper is described and
the problem of blind channel equalization is formulated.
In Section III, the two proposed algorithms, ABGodard
and ABSato algorithms, are described and a performance
analysis is made from a signal separation aspect. Section
IV shows simulation results. In Section V, we consider
the filter structure for the blind equalizer and derive a
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parallel structure to provide a performance improvement.
Finally, this paper is concluded in Section VI.

II. CHANNEL MODEL AND BLIND EQUALIZER

Through this paper, the channel model assumed is given

by
L

u(k) =Y hiw(k — i) + v(k) (1)

i=0
where h,, hy, ..., hy are the channel coefficients, u(k) is
the transmitted sequence, and v(k) is a white Gaussian
noise uncorrelated with x(k). The channel output wu(k)
becomes the input for the equalizer. Figure 1 shows

Received signal Transversal y(k) Zero-memory I'(k)
filter »1 non-linear estimator >
u(k)
~(x)E
»| Lms Q
Algorithm E(k)
Fig. 1. Block diagram of the blind equalizer

a block diagram of the blind equalizer [8]. In Figure
1, y(k) is the transversal filter output to the equalizer
input u(k). y(k) plays a key role in the cost function of
blind adaptation. For the Sato algorithm, y(k) is applied
to estimate the transmitted sequence x(k) as & (k). For
most of the blind algorithms, the LMS algorithm can be
commonly utilized to update the coefficient vector with
the information of the estimation error e(k).

III. AB BLIND ALGORITHM

The two proposed algorithms, ABGodard and ABSato,
are described in this section.

A. ABGodard Algorithm

In implementing the ABGodard algorithm, the cost
function minimization is considered as the same as that of
the Godard algorithm. The cost function of the ABGodard
algorithm is

J(k) = E[(| y(k) |" =R,)?] )

where y(k) is the transversal filter output, p is a positive
integer and I?, is a positive real constant defined by

B[ (k) 7]
B = Ba() 7]

where I denotes expectation. The error signal can be
calculated as

e(k) = y(k) [y(k) P72 (Ry— [ y(k) 7). &)

For the adaptation of the ABGodard algorithm, a @ x M
coefficient matrix Zapng(k) is considered, the elements
of which are given by w; ;(k), i = 1,2,..,Q, j =
1,2,..., M. Zapg(k) is initialized at £ = 0 and all other

3
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elements are set to zeros considering the initialization
condition according to channel characteristics. First el-
ement of the matrix is set to unity for minimum phase
channel as for initialization. In the adaptation process
of the algorithm, the elements of Z,pg(k) are updated
as the pattern of switching of the elements to be up-
dated. Among the @ x M elements of Zapg(k), only
M elements, w, () s(k), s = 1,2,...,M are selected
for each iteration and a coefficient vector, Wabg(k) =
(wr(1)1<k)7 wT(Q)Q(k), ...,wr(m)m(k»T, where T(S) is an
integer and determined on the basis of the amplitude level
of each element u(k — s+ 1) of the input vector u(k), is
formed for s = 1,2, ..., M as follows:
o if Ju(k—s+1)] < Apas/Q, then r(s) = 1.
o if Apae/Q < Ju(k — s+ 1) < 24,,4:/Q, then
r(s) = 2.
o if 24,00/ Q < |u(k — s+ 1) < 3414/ Q, then
r(s) = 3.

o if (Q — 1)Amas/Q < |u(k—s+1)|,then r(s) = Q.
Here, A,,q. denotes the maximum amplitude of the
channel output and () corresponds to the number of
divisions used to partition the amplitude of the channel
output. A,,,; should be measured from the received
sequence before the equalizer is implemented. Accurate
estimation of A,,,; is desired, but slightly inaccurate
estimation may be also acceptable. This is because the
range of the amplitude corresponding to r(s) = @ is not
severely restricted, and occurs with the lowest probability
compared with the other range cases. As an example,
consider that the equalizer length is M=5 and the input
vector is given by

u(k)=1[035 —0.17 0.70 0.55 0.15]7.

If we consider the division number ()=4, then the 4 by 5
coefficient matrix is prepared as follows :

wn(k’) wlg(k) w13(k) w14(k;) w15(k)
Zang (k) = war (k)  waa(k) waz(k) waa(k) was(k)
a8 ws1 (k) wsa(k) wsz(k) wsa(k) wss(k)
w41(k) w42(k:) ’LU43(]€) w44(k:) ’LU45(]€)
The value of A,,, is assumed to be 0.8.
Since each element of wu(k) produces r(1)= 2,
r(2)=1, r(3)=4, r4)=3  r)=1,
the coefficient vector Wabg (k) becomes

Wabg (k)=[w21 (k), w1z (k)waz (k), waa (k), wis (k)] "

This  vector is updated by the  Godard
algorithm, and then the updated coefficients
w21(k+].),’w12(]€+1),’(U43(k+1),w34(k+1),w15(]€+1)
are inserted into the coefficient matrix Zapg(k + 1). For
the next iteration, a coefficient vector is again prepared
based on the elements of the input and then updated by
the Godard algorithm. In such a way all the elements
of Zabg (k) are updated for all input data. For selection
of the filter coefficients in such a way at each iteration,
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the filter provides better output, which helps to estimate
more accurate desired signal than that at the previous
iteration. At the k'" iteration, the adaptive equations for
the ABGodard algorithm are given by

y(k) = u(k) " Wabg (k) Q)
e(k) =y(k) | y(k) [P~ (Rp— | y(k) |P) (6)
Wabg(k + 1) = Wabg (k) + pe(k)u(k) @)

where p is the step size and Wang(k + 1) is the coeffi-
cient vector.

B. ABSato Algorithm

In implementing the ABSato algorithm, the cost func-
tion minimization is considered as the same as that of the
Sato algorithm. That is, the ABSato algorithm consists of
minimizing a non-convex cost function

J(k) = E[(@(k) - y(k))?] ®

where y(k) is the transversal filter output and Z(k) is an
estimate of the transmitted sequence. & (k) is given by

&(k) = ysgnly(k)] )

where the function sgn() is the signum function which
returns the sign of the argument. sgn[y(k)] is 1 if y(k) is
positive, 0 if y(k) is zero and -1 if y(k) is negative. The
constant y sets the gain of the equalizer, which is defined
by
_ E[?(k)]
T Bl
and the adaptive equations for the ABSato algorithm are
given by

(10)

y(k) = u(k) " Wabs (k) (11)
e(k) = (k) —y(k) = ysgn(y(k)) — y(k) (12)
Wabs(k + 1) = Waps(k) + pe(k)u(k)  (13)

where e(k) is the estimation error and waps(k) is the
coefficient vector.

C. Performance Analysis

Due to the non-linear properties of the AB adaptation
(coefficients are selected according to the amplitude level
of the equalizer input), the ABSato algorithm provides
better performance for convergence and BER. In case of
BER, the non-linearity can be explained as follows.

Let us consider the channel whose transfer function is
given by

Channell : Hy(z) = 1.0+ 0.5z7" (14)

and the transmitted signal consists of a pseudo-random
sequence with values of 1 or -1. For this channel model,
a linear transversal equalizer with two taps requires the
last two channel output samples w(k) and u(k — 1) as
the equalizer inputs. All possible samples of these are
summarized in Table I as the channel inputs and outputs

[9].
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TABLE I
CHANNEL INPUTS AND OUTPUTS
zk) | x(k—1) | x(k—2) | u(k) | ulk—1)
-1 -1 -1 -1.5 -1.5
-1 -1 1 -1.5 -0.5
-1 1 -1 -0.5 0.5
-1 1 1 -0.5 1.5
1 -1 -1 0.5 -1.5
1 -1 1 0.5 -0.5
1 1 -1 1.5 0.5
1 1 1 1.5 1.5

u(k-1)
=)

—1b

2k

. . . .
=3 -2 -1 0 1 2 3
u(k)

Fig. 2. Channel outputs and decision boundary

If u(k)/u(k —1) plot is used, then the equalizer task is
to separate the transmitted sequence by decision boundary
as shown in Figure 2. In Figure 2, o and + correspond
to 1 and -1 transmitted, whose coordinates are obtained
from Table I. Ideal separation is obtained by the dash
dotted line, which can be realized by non-linear classifiers
such as neural networks [9]. A linear equalizer provides
only a straight line as shown by the solid line. This case
is imperfect particularly in a highly noisy environment,
because each transmitted sequence is usually distributed
by making a circle in noisy environments on signal plot
representation as shown in Figure 2.

15
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Fig. 3. Convergence of the tap coefficients of the ABSato equalizer
for the case M = 1 and SNR=40 dB.
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u(k-1)
°
T

0
u(k)

Fig. 4. Decision boundary obtained by the ABSato Equalizer

Figure 3 shows the convergence of the ABSato equal-
izer coefficients with setting the filter order M = 1,
division number =2, step size pu =0.026 and SNR=40
dB on Channel 1. Due to the blind mode status, the first
coefficient C1; is initialized with unity. Figure 3 provides
Cll=0.9854, C12=-0.3164 and 021=1.0531, C22=-0.9500
in convergence. These result in signal separation curves
given by

u(k—1) = —@u(k) = 3.11u(k) (15)
12
for | u(n)| >1.0 and | u(n — 1)| >1.0 and
u(k—1) = —@u(k) = 1.10u(k) (16)
22

for 0 < | u(n) | < 10and 0 < | u(n —1)] < 1.0,
respectively. The above two curves are obtained from the
coefficient matrix according to the amplitude banding of
the input signal. The resulting curves are plotted in Figure
4. The curves in Figure 4, being the decision boundary,
contain discontinuities in the straight line, shape of which
is similar with that of the dotted line in Figure 2. This
suggests that the ABSato equalizer has the potential of
non-linear classification. Due to this non-linear properties,
the ABSato algorithm provides better performance than
the Sato algorithm.

This type of analysis for the ABSato algorithm is also
applicable for the ABGodard algorithm.

IV. PERFORMANCE EVALUATION

To investigate the performances of the ABGodard and
ABSato algorithms, simulation experiments were con-
ducted. First of all the channel models whose transfer
functions are given by (14) and

Channel2 : Hy(z) = 0.5 4 1.027* (17)

were considered. Channels 1 and 2 are minimum phase
and maximum phase, respectively.

Figures 5 and 6 show the MSE convergence plots
on Channels 1 and 2, respectively, where the Godard,
Sato, ABGodard and ABSato algorithms are compared
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~&- Godard Algorithm
—+— Sato Algorithm

03 — ABGodard Algorithm ||
-0~ ABSato Algorithm

I h I I
500 1000 1500 2000 2500 3000
Number of Iterations

Fig. 5. MSE performance of Godard, Sato, ABGodard and ABSato on
Channel 1 with SNR=40 dB

T

~=— Godard Algorithm

—+ Sato Algorithm

0% —— ABGodard Algorithm
] —5- ABSato Algorithm

. . | . .
500 1000 1500 2000 2500 3000
Number of Iterations

Fig. 6. MSE performance of Godard, Sato, ABGodard and ABSato on
Channel 2 with SNR=40 dB

under the conditions of SNR=40 dB, step size ©=0.025,
number of division ()=4 and filter order M =4. Each MSE
convergence plot is an evaluation of 100 individual runs.
Figures 5 and 6 indicate that commonly the AB versions
provide better performance, while the ABSato algorithm
results in a smaller MSE level in convergence on both
channels. According to this result, we decided to select the
ABSato algorithm in order to investigate the performance
furthermore on other channels whose transfer functions
are given by

Channel3 : Hy(z) = 1.0+2.227'40.4272(18)

Channeld : Hy(z) = 0.06 —0.0727' +0.1272
— 05273-092"*+1.0:7°
+ 032 5402:740.05278%

+ 0.1z7° (19)

and
Channel5 : Hs(2) = ho(k) + hi(k)z! 4 ho(k)z 2,
(20)
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respectively. Channels 3 and 4 are non-minimum phase.
Channel 5 is a time-variant multipath channel, where
the time-variant coefficients, ho(k), hi(k) and ho(k) are
generated by passing a Gaussian white noise through a
second order Butterworth filter which is designed with a
sampling rate of 2400 samples/s. The channel fade rate
can be quoted as the 3 dB bandwidth for the Markov
process. Commonly, the input sequence is assumed to
be a pseudo-random sequence with values of +1 or -1.
Channel 5 corresponds to a high frequency (HF) channel
model H3(z) used in [10].

10°

T
-0~ Sato

9~ ABSato Q=2

@ ABSato Q=4

10 F ‘~,

BER

10°F

107 L L L L L L L L
8 9 10 11

6 7
SNR (dB)

Fig. 7. BER performance of Sato and ABSato on Channel 1

Figure 7 illustrates a BER performance comparison of
the Sato and ABSato algorithms on Channel 1, where the
step size u=0.031 and filter order M =6 were used. In
Figure 7, the performances of the ABSato algorithm with
the division numbers Q = 2 and QQ = 4

10° .

-0~ Sato
49~ ABSato

2 L L L L L

2 3 4 5 6 7 8
SNR (dB)

10

Fig. 8. BER performance of Sato and ABSato on Channel 2

Figure 8 also illustrates BERs of the Sato and ABSato
algorithms on Channel 2, where the step size u=0.021
and filter order M =4 were used and the division number
@ = 2 was set. Figure 8 again indicates that the ABSato
algorithm is better.
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T
—+ Sato on channel 4
-5~ ABSato on channel 4

Sato on channel 3
—B- ABSato on channel 3

MSE (dB)

—20 L L L L
0 500 1000 2000 2500 3000

500
Number of Iterations

MSE performance on Channels 3 and 4 with SNR=20 dB

-0~ Sato
4~ ABSato

10° L L L L L L L L L

6 7 8 9 10 12 13 14 15 16

11
SNR (dB)

Fig. 10. BER performance of Sato and ABSato on Channel 3

Figure 9 shows the MSE convergence plots of the
Sato and ABSato algorithms on Channels 3 and 4 with
SNR=20 dB. Figures 10 and 11 illustrate BERs of the
Sato and ABSato algorithms on Channels 3 and 4, re-
spectively. Setting ) = 2 was commonly used. The step
size and filter order were, however, changed in Figures 9,
10 and 11 as ¢ = 0.025 and M = 4 in Figure 9, x = 0.01
and M = 8 in Figure 10 and ¢ = 0.012 and M = 11
in Figure 11. From Figures 9, 10 and 11, it is observed
that Channel 4 is more severe for channel equalization
than Channel 3, but the ABSato algorithm provides better
performance regardless to the channel characteristics.

Finally, Figures 12 and 13 show the MSE and BER
performances of the Sato and ABSato algorithms on
Channel 5 with the fade rate fd=2 Hz. Figure 12 was the
case of SNR=30 dB. While the division number @) = 2
was common, the step size and filter order were changed
in Figures 12 and 13 as p = 0.01 and M = 16 in Figure
12 and px = 0.001 and M = 5 in Figure 13. Figures 12
and 13 indicate that even on time-variant channels, the
ABSato algorithm provides an improvement.

Through all the above simulation results in this sec-
tion, we see that the proposed ABSato algorithm pro-
vides better MSE and BER performances than the Sato
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10°

T-0- sao
-9~ ABSato
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SNR (dB)

BER performance of Sato and ABSato on Channel 4

—+— Sato
—H- ABSato

L L L L L
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Fig. 12. MSE performance on Channel 5 with SNR=30 dB

algorithm for minimum phase, maximum phase, non-
minimum phase and time-variant channels. This implies
that the proposed ABSato algorithm is superior to the
standard Sato algorithm for equalization of various types
of channels. By looking at Figures 5, 6, 9 and 12 carefully,
however, it is noticed that the convergence of the ABSato
algorithm is slightly slower. This may be because the

=0~ Sato
-9~ ABSato

1008

. . , . ,
8 9 10 11 12 13 14
SNR (dB)

Fig. 13.  BER performance of Sato and ABSato on Channel 5
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number of coefficients to be updated for the ABSato
algorithm is increased.

V. FILTER STRUCTURE

To improve the performance of the ABSato algorithm,
another filter structure is considered in this section.

A. Parallel Structure

ABSato Equalizer
(PR R ———
y(ak) Zero memory x(ak)

LTE(l) non-linear
estimator

Sato ‘

I
I
1 () e(k)
I
! LTEM Zero memory J
a(

non-linear
estimator

Sato Equalizer

Fig. 14. Parallel Sato-ABSato equalizer

Figure 14 depicts a parallel structure of the Sato and
ABSato equalizers. In the parallel structure, two linear
transversal equalizers; LTE(I) and LTE(I), are updated
by the ABSato and Sato algorithms with e(ak) and
e(k), respectively. The comparator provides f(k)=e(ak)
if (e(ak))? < (e(k))? otherwise f(k)=e(k). The parallel
equalizer provides the output y(ak) when f(k)=e(ak) and
y(k) when f(k) = e(k).

B. Performance Evaluation

The performances of the parallel Sato-ABSato equal-
izer were investigated on Channel 1. Figure 15 shows the
MSE convergence plots of the Sato, ABSato and parallel
Sato-ABSato equalizers with SNR=40 dB, M =8 and step
size 1=0.025. The division number ()=4 was set for the
ABSato algorithm. Figure 15 clarifies that the parallel
structure of the Sato and ABSato algorithms provides
better performance than non-parallel structure algorithms.

Figure 16 shows the BER performances of the Sato,
ABSato and parallel Sato-ABSato algorithms with the
filter order M=8 and step size ©=0.025. The division
number =4 was set for the ABSato algorithm. Figure
16 suggests that even for BER, the parallel combination
of the Sato and ABSato algorithms improves the perfor-
mance. From Figures 15 and 16, we can confirm that the
parallel structure enhances the performance of the ABSato
algorithm with the support of the Sato algorithm.

Additionally we checked the performance of the paral-
lel equalizer with the Godard and ABGodard algorithms,
which is constructed in the same way as in Figure 14. The
performance of the parallel Godard-ABGodard equalizer
was, however, worse than that of the parallel Sato-ABSato
equalizer. This result may be expected from those in
Figures 5 and 6.
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Fig. 15. MSE performance of Sato, ABSato and Parallel Sato-ABSato
on Channel 1 with SNR=40 dB
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Fig. 16. BER performance of Sato, ABSato and Parallel Sato-ABSato
on Channel 1

C. Performance Analysis

The reason why the parallel Sato-ABSato equalizer
behaves better than the non-parallel Sato and ABSato
equalizers is considered here.

Table II shows the subtotal values of the Sato equalizer
error e(k), ABSato equalizer error e(ak) and parallel
Sato-ABSato equalizer error f(k) (which are denoted by
E), Ear) and E(,qr), respectively) against an iteration
range of 200. Table III shows the selection number of
the equalizer errors e(k) and e(ak) in implementing the
parallel Sato-ABSato equalizer, which are denoted by N
and N, respectively. Table II and III are investigations
on Channel 1 being the same condition as in Figure
14, but one trial (no averaging). We have checked every
datum at each iteration. However, to avoid difficulty
of presenting a large number of data serially, we have
considered an iteration-range based approach as shown in
Tables II and III. Comparing with Figure 15, Tables 1I
and IIT support to understand the function of the parallel
Sato-ABSato equalizer. For iterations from 1 to 800,
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the subtotal error values of the Sato equalizer are less
than those of the ABSato equalizer in Table II. This
means that the parallel Sato-ABSato equalizer selects
mostly the Sato equalizer error e(k). The total selection
number is 559 out of 800 as observed in Table II. On
the other hand, for iterations from 801 to 1600, the
parallel Sato-ABSato equalizer selects more the ABSato
equalizer error e(ak). The total selection number is 453.
The parallel Sato-ABSato equalizer always selects the
minimum equalizer error values. This property leads to
acceleration of the convergence speed. Thus the parallel
Sato-ABSato equalizer provide better performance than
the non-parallel Sato and ABSato equalizers.

VI. CONCLUSION

In this paper, the ABGodard and ABSato algorithms
have been proposed for blind channel equalization. Sim-
ulation results have demonstrated that the ABGodard
and ABSato algorithms perform better than the Godard
and Sato algorithms, respectively. The ABSato algorithm
behaves more accurately than the ABGodard algorithm,
and the increased division number leads to an improved
performance of the ABSato algorithm. The use of a
parallel structure enhances the performance of the ABSato
algorithm further. Future work will aim at developing a
transform-domain implementation technique of the pro-
posed blind equalizer.
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TABLE I
SUBTOTAL ERROR VALUES AGAINST ITERATIONS IN MSE PERFORMANCE
TterationRange | 1~ 200 | 201 ~ 400 | 401 ~ 600 | 601 ~ 800 | 801 ~ 1000 | 1001 ~ 1200 | 1201 ~ 1400 | 1401 ~ 1600
o 773 039 022 023 0.19 0.18 0.27 0.19
Eur 12.74 2.02 0.67 023 0.19 0.17 0.19 0.15
Epak 754 021 0.06 0.05 0.04 0.03 0.04 0.04
TABLE III
SELECTION NUMBER OF ERROR VALUES OF SATO AND ABSATO ALGORITHMS AGAINST ITERATIONS IN MSE PERFORMANCE
TterationRange | 1~ 200 | 201 ~ 400 | 401 ~ 600 | 601 ~ 800 | 801 ~ 1000 | 1001 ~ 1200 | 1201 ~ 1400 | 1401 ~ 1600
Vi 162 159 127 111 99 90 33 75
Nok 38 Y| 73 89 101 110 17 25
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