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Abstract—A Cognitive Radio (CR) network should be
able to sense its environment to adapt its communication
so that it can utilize unused licensed spectrum without
interfering with incumbent users. Properly modeling the
expected interference from the entire CR network is there-
fore very important to effectively protect these incumbent
users. We model the accumulative interference generated
from a large-scale CR network and investigate how the CR
network density affects the sensing requirements of the CRs
to meet an interference constraint. More specifically, our
model considers the impact of discrete network topology,
the impact of imperfect sensing and the impact of collisions
when the CR uses a distributed channel access scheme.
We then apply our model to a CR network based on the
IEEE 802.11 standard. We show that the collisions occurring
frequently in these networks only have a small on the sensing
requirements to protect the incumbent network.

Index Terms—cognitive radio, opportunistic spectrum
access, interference modeling, IEEE 802.11

I. INTRODUCTION

Due to the accelerated deployment of broadband com-

munication systems and the current fixed frequency al-

location scheme, spectrum is becoming a major bottle-

neck. However, experiments show that up to 85% of the

spectrum remains unused at a given time and location,

indicating that a more flexible allocation strategy could

solve the spectrum scarcity problem [1]. This observation

has recently led to the new paradigm of opportunistic

spectrum access, where users can actively search for un-

used spectrum in licensed bands and communicate using

these white holes. This vision is supported by regulatory
bodies, such as the Federal Communications Commission

(FCC) [2] and the European Commission (EC) [3]. The

concept is also often referred to as Cognitive Radio
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(CR)1 [6].

To enable the concept of opportunistic spectrum shar-

ing, many problems remain to be solved. Most impor-

tantly, the CRs have to make sure they do not cause exces-

sive interference to the incumbent users. If no guarantees

about the interference can be given, it will be very hard

to convince incumbent users to tolerate CRs.

Giving guarantees on the level of interference to the

incumbents is however very challenging in the context of

wireless communications. This has already been noted in

[7], [8], where large margins were introduced in the sens-

ing threshold requirements to account for unpredictable

fading and shadowing. Even after considering these mar-

gins, a single CR meeting its personal sensing constraints

could still cause excessive interference when that CR

simultaneously transmits with another CR meeting its

sensing constraints. This is referred to as accumulative
interference.
In this paper we address the problem of accumula-

tive interference from multiple CRs that use distributed

channel access. Currently, it is not possible to avoid all

CR collisions in such a distributed environment. This is

largely motivated by the large amount of literature on

collisions for 802.11. Moreover, besides direct collisions

caused by the 802.11 contention mechanism, simultane-

ous transmissions occur when nodes cannot hear each

other and hence do not back off for each other.

The fact that simultaneous transmissions from CRs

increase the interference to an incumbent user was noted

in [7]. The authors model this by assuming CRs are

spread out continuously in a sea of CR nodes modeled

with a power density. Hence, the authors do not consider

the impact of discrete topologies, neglecting the spread

around the average interference resulting from a variation

in topology instantiation. We will determine how the inter-

ference varies as the topology becomes more discrete, i.e.,

centered around hot spots, as compared to a continuous

1The term Cognitive Radio (CR) was first coined in [4] and meant a
radio that uses model-based reasoning to autonomously change its trans-

mission parameters based on interaction with the complex environment
(radio scene, application and user requirements) in which it operates [5].

In the present paper we focus on a shorter-term and spectrum-centric

view of CR, i.e., a radio system that co-exists with incumbent wireless

systems by using the same spectrum resources without significantly
interfering with these incumbents [6].
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sea.

Also, in [7], the impact of imperfect sensing is not

considered, and it is assumed that all CRs inside a circular

zone around the incumbent base station do not transmit.

However, it is very unrealistic to assume that all nodes

inside this area will detect the incumbent transmission.

This will increase the interference from nodes that should

not transmit. Similarly, detection errors will cause CRs

outside the silenced area to falsely detect the incumbent

transmissions and defer their own transmissions. The

latter effect results in a decrease of interference from

nodes that were actually allowed to transmit. We will

show that by optimally tuning the detection algorithm,

both effects can balance out and the resulting interference

to the incumbent users is not increased significantly

with a realistic sensing performance. It is however very

important to verify this accurately.

Finally, as stated in [9], the impact of realistic medium

access control strategies has to be considered. In this

paper, we will instantiate our model in the particular

case where the CR nodes employ the 802.11 distributed

channel access mechanism. Referring to the recent Open

Spectrum Access (OSA) equipments submitted for stan-

dard compliance testing to the FCC [10], it is clear why

the choice for 802.11 as the MAC protocol for CR nodes

is a very realistic one.

Within the IEEE 802.11 standard, the impact of (ac-

cumulative) interference has been recently studied [11],

[12]. These studies focus on optimal sensing thresholds

so as to optimize the throughput of the 802.11 network.

However, since these studies are only concerned with

intra-system interference, they significantly differ from

the CR case. In the case of opportunistic spectrum sharing

the interference to incumbents has to be controlled, while

optimizing the throughput of the CR networks is generally

considered to be of secondary importance.

In this paper we will hence study the impact of accu-

mulative interference on the incumbent user protection,

or alternatively study how such interference increases the

sensing requirements of the CR nodes.

In light of [13], where the authors make a distinc-

tion between spectrum opportunity and interference con-

straint2, this paper focuses on the interference constraint.

We assume that when a CR is not able to meet the inter-

ference constraint, it will shut down its interface. On the

other hand, if it is able to meet the interference constraint,

it is assumed that a successful CR communication can be

set up.

First, we will detail the considered system in Section II.

The model is presented in Section III. In Section III-B the

model considers a discrete random topology of CR hot

spots to investigate whether the exact topology instance

has an impact on the generated interference, indepen-

dently of the CR sensing performance. In Section III-C

we model a CR system with perfect sensing. Next, we

2A channel is an opportunity to a pair of secondary users if they can
communicate successfully without violating the interference constraint
imposed by the primary network [13]

Cognitive Radio (CR)

Incumbent Base Station (IBS)

Incumbent User Equipment (IUE)

Fig. 1. The considered topology. An incumbent system has to withstand
interference from several CR networks. These CRs are assumed to be

randomly distributed on a plane following a Poisson point process with

density δ.

will add the detection errors, and see how this impacts the

interference to the incumbent in Section III-D. Finally, we

will analyze the impact of the channel access scheduling

for the CR network, focusing on the realistic assumption

of an 802.11 distributed channel access scheme (see

Section IV). At the end of the paper, we present our

conclusions in Section V.

II. SYSTEM DESCRIPTION

When considering the possible interference to the in-

cumbent users, the assumptions on the system model have

to be established. We first introduce the topology assumed

both for the incumbent users and the CRs in Section II-A.

In Section II-B, the propagation and interference models

are introduced.

The system model typically assumed for CR is based

on the assumptions of the IEEE 802.22 standard, since

this is the first CR system that is being standardized. In

these networks, the incumbent users are TV broadcast

stations, covering a very large area. The CR power is

often assumed to be orders of magnitude smaller than the

incumbent transmission powers.

In this paper we want to relax this system view and

consider a broader range of scenarios. The goal is to

illustrate how much interference is to be expected in any
scenario where a CR network using distributed channel

access coexists with any incumbent network.

A. Topology

We consider an incumbent system that is surrounded

by several CRs in Fig. 1. CR hot spots, i.e., local groups

of CRs, are randomly distributed on a plane following a

Poisson point process with density δ. The hot spot size

varies from a single CR per hot spot, which could mimic

a single CR in a home, to 10 CRs per hot spot, which is

more typical in a coffee shop. This allows us to model

topologies where the CRs are more or less spread out and

topologies where CRs are clustered in hot spots.
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Maximum communication range (dcomm)
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Incumbent Base Station (IBS)

Interference range (din)

Incumbent User Equipment (IUE)

Fig. 2. The system topology for the incumbent users. Incumbent User
Equipments (IUEs) are spread around an Incumbent Base Station (IBS).

CRs within the interference range din from the border of the protection

region can potentially harm the communication of the incumbents inside
the protected area.

As stated in [8], the introduction of CRs will inevitably

reduce the communication range of the incumbent system.

The authors use the concept of a protected area, the area in

which the incumbent system desires to operate unharmed

(see Fig. 2). The protected area is defined through its

radius, the protected range dp. If not otherwise stated,

the protected range is chosen to be 95% of the maximal

communication distance dcomm of the incumbent system

before the introduction of CRs. We assume that all

incumbent receivers are within this protection range.

B. Propagation and Interference Models

The received signal power R is a decreasing function

of the distance d between the Incumbent Base Station

(IBS) and the Incumbent User Equipment (IUE). Let S

denote the transmit power of the sender and α1 the path

loss exponent (typically ranging between 2 and 4). The

received signal power can then be expressed as:

R = S − 10α1 log10(d) − β1 [dB], (1)

where β1 represents system losses and effectively hides all

non-distance-related components, such as the frequency

dependency introduced by the antenna. Similarly, the

interference power, I , at the IUE from one CR at a

distance dcr from the IUE is given by:

I = Scr − 10α2 log10(dcr) − β2 [dB]. (2)

Without loss of generalization, we will assume α1 =
α2 = α and β1 = β2 = β.

Packets can be decoded if the received Signal-to-

Interference-and-Noise-Ratio (SINR) exceeds a certain

threshold SINRt. For a given scenario, the lowest possi-

ble SINR at an IUE in the protected area is at the edge

of this area, since it will have the lowest possible received

power R from the IBS. Hence, if we can protect a link

in this worst-case situation, we are protecting any link

within the protected area:

SINR|dp
≥ SINRt =

R|dp

σ2
0 + It

, (3)

where σ2
0 is the noise power and It the interference

threshold. Throughout this paper we will assume thermal

noise:

σ2
0 = kTW, (4)

where k is the Boltzmann constant, T the environment

temperature and W the used bandwidth.

Let us now introduce the interference range din (see

Fig. 2), which is defined as the maximum distance for

which a single CR transmission will harm the incumbent

system (I|din
= It):

din =
(

Scr

10
β
10 It

) 1
α2

. (5)

A rigorous study of CR networks also needs to specify

an outage probability as well as an interference thresh-

old [14]. In the remainder of this paper, we assume an

outage probability of 0.01%.

III. PROPOSED INTERFERENCE MODEL IN A

COGNITIVE RADIO SETTING

In this section we model the effect of direct and

accumulative interference for the system presented in

Section II, to effectively protect the incumbent system.

After defining the problem in Section III-A, we compute

the impact of interference in case the CRs do not sense

the incumbent and all transmit at the same time (see

Section III-B). Next, we introduce perfect sensing in

Section III-C. Finally, we consider the impact of imperfect

sensing in Section III-D.

A. Direct and accumulative interference

As mentioned in Section II-B, the IBS will not be able

to communicate with a receiver inside the protected region

if:

• at least one CR inside the interference area is active

(direct interference) or

• the accumulated power from all the CRs outside the

interference area exceeds the interference threshold

(accumulative interference).

The total probability of interference pin can be derived

from the probability of direct interference pin,d and the

probability of indirect (or accumulative) interference pin,a

as follows:

pin = pin,d + (1 − pin,d)pin,a. (6)

B. Maximum power without sensing

We look here at the case where all CRs transmit at the

same time without sensing the IBS. This is the simplest,

though unrealistic, case and we introduce it mainly to

explain our interference computation method. Since we

are dealing with a Poisson point process with parameter δ,
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the probability that k transmitters are present in a certain

region A, can be written as:

pA(k) =
1
k!

(δ|A|)k
e−δ|A|, (7)

where |A| denotes the area of A. The probability pin,d

that a link gets interfered by a single CR transmission

(direct interference) is the probability that at least one

node inside the interference range is transmitting. Hence,

we can express this as:

pin,d = 1 − e−δπd2
in . (8)

The probability pin,a that a link gets interfered by

accumulative interference from outside the interference

range is the probability that the accumulated power from

all the CRs exceeds the interference threshold. To simplify

analysis, we will consider the normalized interference

power, In:

In =
I

It

=
dα

in

rα
. (9)

The system will hence be interfered with accumulatively

if In ≥ 1. Each transmission inside the interference
range is assumed to have a normalized interference power

equal to 1 (i.e., with one single transmission inside the

interference range the system is interfered).

To find this total accumulated power, we need to

integrate over the area outside the interference range,

similar to the technique proposed in [11], to compute

the interference in 802.11 systems. We consider a thin

ring Ri with inner radius, ri = din + (i − 1)∆r and

outer radius ri + ∆r. The number of nodes in this ring

is Poisson distributed. However, since each transmission

only accounts for
dα

in

rα
i

(the normalized received power

at the IUE from a transmission inside Ri), we are now

dealing with a scaled Poisson process [15].

Based on the above, the mean and the variance of

the accumulative interference can be expressed as an

integration over the means and variances of these scaled

Poisson processes:

µa =
∫ ∞

din

δ2πr
dα

in

rα
dr =

2πδd2
in

α − 2
, (10)

σ2
a =

∫ ∞

din

δ2πr

(
dα

in

rα

)2

dr =
δπd2

in

α − 1
. (11)

Now, we only need to choose the appropriate distri-

bution for the accumulative interference. As the Gamma

distribution is widely used to model continuous variables

that are always positive and have skewed probability

density functions, the summation of an infinite number of

scaled Poisson processes (which is such a positive skewed

distribution) is well approximated by such a Gamma

distribution [16]. Other possibilities include a Gaussian

distribution with Edgeworth expansions [17] or a log-

normal distribution [18].

The Gamma distribution is formed with the sum of

exponential variables and has two parameters: a scale

parameter θ and a shape parameter k. Using (10) and

(11), we can find the parameters that completely define
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Fig. 3. A comparison between analytical and simulation results. This
comparison shows that the Gamma distribution is a sufficient analytical

approximation for the summation of scaled Poisson point processes. The

approximation error is small for a broad range of tested ranges of the

parameters δ and din.

the desired Gamma distribution [16]:

ka =
µ2

a

σ2
a

, (12)

θa =
σ2

a

µa

(13)

The probability that a link is interfered through accumu-

lative interference, pin,a is then equal to

pin,a = 1 − FΓ(1; ka, θa), (14)

where FΓ(x; k, θ) denotes the cumulative distribution
function of the Gamma distribution with shape parameter

k and scale parameter θ.

In Fig. 3, the absolute error between simulation out-

come and the analytical prediction is shown. During

simulation we distribute terminals according to a spatial

Poisson process and calculate the power that simultaneous

transmissions from all terminals generate. We see that the

maximum of this absolute error is smaller than 2.5%.
By using (8) and (14), we can find the total probability

of interference through (6). In Fig. 4, we plot the cu-

mulative distribution of the normalized interference. It is

shown that with a probability pin = 14.7%, the incumbent
system is harmed for the parameters considered. This high

interference probability is a consequence of the fact that

the CR network does not sense for the incumbent and

because all CR terminals are transmitting simultaneously.

In the next subsection, we show how to relax those

assumptions.

C. Maximum power with perfect sensing

In the case of perfect sensing, we assume that a CR

perfectly detects the incumbent signal if the Signal-to-

Noise Ratio (SNR) of the received incumbent signal is

larger than a chosen threshold, SNRd. The probability of

detection, pd is hence:

pd(SNR) =
{

1 if SNR ≥ SNRd

0 if SNR < SNRd.
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Fig. 4. The cumulative distribution function of the normalized

interference power (including direct interference). The probability of
interference is high because the nodes don’t sense in this scenario.

Let us define ds as the maximum distance at which a

CR detects the incumbent. If an incumbent is detected, the

CR will switch off its interface or move to another channel

where it will not interfere with the sensed incumbent.

In [7] the authors give an approximation of the total

interference power when CRs are sensing given a silence

distance ds from the IBS. This approximation however

only holds if dp � din. We present here the exact

formula, with mean and variance. Again, we will consider

the direct interference first, which is a Poisson process

with density δ. The probability of direct interference then

writes:

pin,d = 1 − e−δ(|Ai\As|), (15)

where As is the silence area around the IBS (defined

through ds) and Ai the interference area around the IUE

(defined through din).

The accumulative term can now be found in a similar

way as described in Section III-B. We will however need

to account for the area that has been silenced. This turns

down to integrating between rmin and rmax, where the

integration rings intersect with the silenced area. For

values of r larger than rmax no nodes are silenced. When

r is smaller than rmin, all nodes are silenced. One can

then write:

rmin = max(|ds − dp|, din), (16)

rmax = max(ds + dp, din). (17)

We can then compute µa and σ2
a as

µa =
∫ rmax

rmin

2δθ(r)r
dα

in

rα
dr +

∫ ∞

rmax

2δπr
dα

in

rα
dr

= 2δdα
in

∫ rmax

rmin

θ(r)r1−αdr +
2πδdα

in

(α − 2)rα−2
max

,(18)

σ2
a =

∫ rmax

rmin

2δθ(r)r
d2α

in

r2α
dr +

∫ ∞

rmax

2δπr
d2α

in

r2α
dr

= 2δd2α
in

∫ rmax

rmin

θ(r)r1−2αdr +
πδd2α

in

(α − 1)rα−2
max

,(19)

where

θ(r) = arccos(
d2

p + d2
s − r2

2dsdp

). (20)

Analytical expressions can be obtained by approximating
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Fig. 5. The accumulative interference power as a function of the
silenced distance, ds. The approximation presented in [7] is not valid for

the general case. We present the exact formula, as well as an analytically

tractable approximation. We can see that the approximation from [7]

gives a too optimistic sensing bound.

θ as:

θ(r) ≈
π(r − |ds − dp|)

ds + dp − |ds − dp|
. (21)

In Fig. 5, we plot the approximation and upper bound

derived in [7]. We see that the approximation of [7]

is not sufficient, because the assumption dp � din no

longer holds. Our proposed approximation however is

quite accurate. We can also see that the approximation

of [7] is too optimistic regarding the sensing bound.

Using (12) and (13) we can find the parameters for the

new Gamma distribution and compute pin as we did in

Section III-B. In Fig. 6, we can see the obvious result

that increasing ds (i.e., decreasing the sensing threshold)

reduces interference to the incumbent system. Depending

on the node density the level of accumulative interference

varies a lot (more nodes generate more interference), and

hence also the optimal sensing range. It is hence important

to establish sensing bounds as function of the expected

CR density. We also note that for small densities the curve

drops less steeply than for large densities. This is because

the homogeneous power density presented in [7] becomes

more appropriate for larger densities, since variations in

topology are now averaged out by the large number of

users (small σ2).

D. Maximum power with imperfect sensing

We will now introduce the effect of a realistic sensing

implementation, which has a non-perfect outcome. In

Table I, the probability of detection pd is expressed as a

function of the number of samples N , the received power

R, the noise power σ2
0 and the probability of false alarm

pfa. Many MAC protocols for CR networks will try to

avoid self-interference from the CRs, so that the SINR is

merely determined by the noise σ2
0 from the environment

(see Fig. 7) [19].

To find pin, we again compute a Poisson component

(for direct interference) and a Gamma component (for

accumulative interference). Because nodes are silenced
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TABLE I

THE PROBABILITY OF DETECTION FOR DIFFERENT TECHNIQUES [20]

pd

Energy Detection Q

(
Q−1(pfa)− R

σ2
0
√

N

1+ R

σ2
0

)
Matched Filter Q

(
Q−1(pfa) −

√
2N R

σ2
0

)

differently at different distances from the IBS (depending

on the received SNR), we are now dealing with a hetero-

geneous Poisson process [21]. For the direct interference,

we can model this heterogeneous Poisson process as a

homogeneous Poisson process where the value for λ|A|
is equal to:

λ|A| =
∫ din

0

∫ 2π

0

δ(1 − pd(r, θ))2πrdr. (22)

Using (7) we can then find pin,d.

The accumulative component can be found through

integrating mean and variances of the different Poisson

processes

µa =
∫ ∞

din

δ
dα

in

rα

∫ 2π

0

(1 − pd(r, θ))rdθdr, (23)

σ2
a =

∫ ∞

din

δ
d2α

in

r2α

∫ 2π

0

(1 − pd(r, θ))rdθdr. (24)

We only work out the equations for the matched filter

detection, since doing the exercise for energy detection is

ACTIVE / SILENTSCAN

X ms BI-X ms

BI ms

Fig. 7. A typical MAC protocol for CR networks. The CRs scan in a

synchronized way so that intra-interference is avoided [19].

very similar. The noise power is given in (4). To compute

the SNR, we recall the propagation model to compute

the received power

R(r, θ) =
Sibs10

β
10

d(r, θ)α
. (25)

Further, d(r, θ)2 is determined as follows:

d(r, θ)2 = r2 + d2
p + 2rdp cos θ. (26)

We define dmin and dmax for which pd(d) becomes
respectively (1 − ε) or (pfa + ε), and hence determine
the area where the detection process has impact on the

behavior of the CR

dmin =
(

2NSibs

σ2
0(Q−1(pfa) − Q−1(1 − ε))2

) 1
α

, (27)

dmax =
(

2NSibs

σ2
0(Q−1(pfa) − Q−1(pfa + ε))2

) 1
α

.(28)

The range for the integrals to compute the variance and

the mean of the Gamma distribution can be found as

follows. We determine rmin and rmax for which the lowest

and highest detection probability pd is either (1 − ε) or
(pfa + ε).

rmin = max(dmin − dp, din), (29)

rmax = max(dmax + dp, din). (30)

We assume that for r < rmin all the cognitive radios

detect the signal perfectly (pd = 1) and that for r > rmax

none of the cognitive radios can detect the signal (pd =
pfa). The integrals then simplify to:

µa =
∫ rmax

rmin

δ
dα

in

rα−1

∫ 2π

0

(1 − pd(r, θ))dθdr

+
∫ ∞

rmax

2πr(1 − pfa)δ
dα

in

rα
dr, (31)

σ2
a =

∫ rmax

rmin

δ
d2α

in

r2α−1

∫ 2π

0

(1 − pd(r, θ))dθdr

+
∫ ∞

rmax

2πr(1 − pfa)δ
d2α

in

r2α
dr. (32)

or

µa =
∫ rmax

rmin

δ
dα

in

rα−1

∫ 2π

0

(1 − pd(r, θ))dθdr

+
2π(1 − pfa)δdα

in

(α − 2) rα−2
max

, (33)

σ2
a =

∫ rmax

rmin

δ
d2α

in

r2α−1

∫ 2π

0

(1 − pd(r, θ))dθdr

+
π(1 − pfa)δd2α

in

(α − 1)r2α−2
max

. (34)

The integrals presented here are now numerically solv-

able. Using these results, we can determine the appropri-

ate Gamma distribution. Using this Gamma distribution,

we can find pin,a and pin.
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Fig. 8. The probability of interference as a function of the number of

samples taken in the scan period. Taking more samples results in a better

detection. Taking more samples results in missed spatial opportunity

(similar to increasing ds) and a lower throughput (see Fig. 7).

We plot the resulting probability of interference as a

function of the detection overhead in Fig. 8. Clearly, when

the sampling length N increases, pin decreases. We also

note that even for high densities the sensing overhead to

achieve a near-zero probability of interference remains

acceptable (150kSamples at 40MSamples/s is only 4ms
sampling overhead).

As shown in Fig. 8, this curve has been calculated for a

pfa of 0.1%. The question now remains if, from a capacity

point of view, this preset of pfa was optimal, since the

detection process has an inherent trade-off between the

number of samples needed versus the probability of false

alarm [22]. If we consider the MAC protocol shown in

Fig. 7, we can compute the total capacity loss, CLt as:

CLt = 1 − (1 − CLd)(1 − CLfa), (35)

where CLd is the overhead of the detection process and

CLfa is the capacity loss due to false alarms. The detec-

tion process causes a throughput decrease, as all nodes

need to silence the channel simultaneously. Hence, CLd is

defined as the ratio between the scan time and the beacon

interval (see Fig. 7). False alarms cause a throughput

decrease, because the network closes down the channel

unnecessarily. Thus, these losses can be calculated as:

CLd =
N

fsBI
, (36)

CLfa = pfa, (37)

where N is the number of samples needed, fs is the

sampling frequency and BI is the length of the beacon

interval. In Fig. 9, we see that the optimal choice for pfa

is 0.9%, which results in a total capacity loss of around

3.2%, which is very small. Of course, as mentioned in the

introduction, we don’t consider additional margins due to

fading or shadowing as done in [8]. The actual resulting

overhead will hence be larger. The idea here is to show

that with a smart selection of pfa the total capacity loss

can be reduced with 50% (as compared to the worst point
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Fig. 9. A fundamental trade-off exists between capacity loss due to

false alarms and the capacity loss due to the sensing is present in the

typical MAC protocols for CRs. When using adaptive selection of pfa,
further gains can be made.
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Fig. 10. When using a practical sensing implementation, CRs inside

the theoretical silenced area can have a pd that is less than 1. This is not
necessarily causing a severe increase of the interference, because this is

compensated by nodes outside the silenced area having a pd larger than

0. The definition of pd for imperfect scenarios includes false alarms

through the equations presented in Table I

in Fig. 9).

In Fig. 10, we compare the probability of detection for

a perfect sensing implementation and a practical sensing

implementation, both for bounds leading to a pin < 0.1%.
We note that the optimal selection for a practical sensing

technique allows the probability of detection to decrease

even before the silencing area. However, the effect of

these missed detections inside the silenced area is com-

pensated with false alarms outside the silenced area.

E. Not all the CRs transmit at the same time

In reality not all CRs transmit at the same time.

Hence, taking the maximum power they could generate

as the design input is too conservative. Non-simultaneous

transmissions can be approximated by another thinning

of the Poisson process. If we assume that nodes are

unsynchronized, the probability at a given time that a node
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transmits is merely its duty cycle:

dc =
Tactive

Tactive + Tinactive

. (38)

Such channel access is achieved when the CRs im-

plement a (slotted) Aloha distributed channel access.

Introducing this thinning, under the assumption that all

the cognitive radios have the same duty cycle, can easily

be done by multiplying δ with dc in all the previous

equations. As a result, the probability of direct and

accumulative interference decreases.

IV. INSTANTIATION: 802.11

The 802.11 standard is the predominant wireless tech-

nology that is being used for data transfer, because of

its ease of deployment and relatively high data rates.

Many new techniques are being proposed to improve

the base 802.11 standard, and standardization on 802.11

and its subgroups is hence very active even today. More

importantly, in the context of CR, test devices presented to

the FCC by key players were based on this 802.11 channel

access [10]. It is hence important to consider the impact of

802.11 channel access on the possibility of interference.

When implementing 802.11 Distributed Coordination

Function (DCF) it cannot be assumed that all the CRs

are transmitting in an unsynchronized fashion. For 802.11,

synchronization of stations is caused by the carrier sense

where all the nodes pause their transmission attempts

if they sense the medium busy. This carrier sensing

is mostly implemented through energy detection with a

certain threshold. To capture this effect, we can say that

following a transmission all the nodes in the neighborhood

are silenced.

We will use the model from Bianchi and assume that

the cells or hot spots are not interfering with each other

[23]. For simplicity reasons, we fix the number of CRs per

hot spots to n and only look at a perfect sensing scenario.

Bianchi transforms the 802.11 with Binary Exponen-

tial Backoff to a p-persistent MAC, with an attempt

probability pa that depends on the conditional collision

probability, pc. As a result, the attempt probability pa is

given after solving this system of non-linear equations:

pa =
2(1− 2pc)(1 − pc)

(1 − 2pc)(W + 1) + pcW (1 − (2pc)m)
,(39)

pc = (1 − pa)n. (40)

In reality, the conditional collision probability will be

higher, due to hidden collisions and interference between

hot spots. However, since those effects were not consid-

ered in the original model proposed by Bianchi [23], we

also neglect them here.

As we need to differentiate collisions and successful

transmissions in a cell, we split the duty cycle for an

802.11 cell with bidirectional transmissions in two parts.

The duty cycle for successful transmissions, dcs and the

duty cycle for collisions, dcc are respectively:

dcs =
ptr(1 − pc)T �

succ

Tv

, (41)

dcc =
ptrpcT

�
coll

Tv

. (42)

When a transmission in the network takes place (ptr) the

network will transmit during T �
succ if the transmission was

successful (1−pc) or during T �
coll if the transmission was

not successful (pc). In (41) and (42), the times T �
succ and

T �
coll are normalized with the virtual slot time, Tv, that is

calculated as the average slot length:

Tv = (1−ptr)Tslot +ptr(1−pc)Tsucc +ptrpcTcoll, (43)

where Tslot is the duration of one backoff slot, Tsucc the

duration of one successful slot and Tcoll the duration of

one collision slot3. The probability that a transmission

occurs in a network with n terminals is given by:

ptr = 1 − (1 − pa)n. (44)

This transmission will only be successful if no other

terminal in the network is transmitting simultaneously:

1 − pc =
npa(1 − pa)n−1

ptr

. (45)

Finally, we present Tsucc, T �
succ, Tcoll, T �

coll for the

IEEE 802.11 MAC protocol using DCF without RTS/CTS

handshake:

Tsucc = TH + TDATA + SIFS

+ ACK + DIFS, (46)

T �
succ = TH + TDATA + ACK, (47)

Tcoll = TH + TDATA + DIFS, (48)

T �
coll = TH + TDATA, (49)

where TH is the transmission time of the header, TDATA

the transmission time of the data. SIFS is the Short

Interframe Space and DIFS is the DCF Interframe

Space.

As in [12], we will only consider collisions between

two transmitting CRs, since the amount of higher-order

collisions (more than 2 stations transmit at the same time)

is negligible and will only complicate our analysis.

We first look at the probabilities of direct interference

for successful transmissions. These probabilities do not

change as compared to the perfect sensing model

p
(1)
in,d = 1 − e−δdcs(|Ai\As|). (50)

For collisions the interference area grows, as the total

power being sent from the cell now doubles. Let’s define

A
(2)
i as the interference area around the receiver, defined

by the interference range of d
(2)
in for collisions. Using (5),

this distance can be found as:

d
(2)
in = 2

1
α din (51)

3Note that Tsucc �= T �
succ and Tcoll �= T �

coll as Tsucc and Tsucc

contain idle periods. See (46-49)
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The probability of direct interference from a collision

is then

p
(2)
in,d = 1 − e−δdcc(|A

(2)
i

\As|). (52)

Now we need to find the probability for accumulated

interference in between hot spots. Again, we approximate

this as a Gamma distribution. We find the mean, µ, and

the variance, σ2, through the combination of two parts:

one for successful transmissions (µ(1),
(
σ(1)

)2
) and for

collisions (µ(2),
(
σ(2)

)2
). The same principle as for the

direct interference applies, resulting in a double distance

for collisions. We first determine the ranges for the

integrals

r
(1)
min = max(|ds − dp|, din), (53)

r(1)
max = max(ds + dp, din), (54)

r
(2)
min = max(|ds − dp|, d

(2)
in ), (55)

r(2)
max = max(ds + dp, d

(2)
in ). (56)

These are the resulting means

µ(1) = 2dα
in

∫ r(1)
max

r
(1)
min

θ(r)r1−αdr

+
2πδdα

in

(α − 2)
(
r
(1)
max

)α−2 , (57)

µ(2) = 4dα
in

∫ r(2)
max

r
(2)
min

θ(r)r1−αdr

+
4πδdα

in

(α − 2)
(
r
(2)
max

)α−2 (58)

µ = µ(1) + µ(2). (59)

And the variances(
σ(1)

)2

= 2d2α
in

∫ r(1)
max

r
(1)
min

θ(r)r1−2αdr

+
πδd2α

in

(α − 1)
(
r
(1)
max

)α−2 , (60)

(
σ(2)

)2

= 8d2α
in

∫ r(2)
max

r
(2)
min

θ(r)r1−2αdr

+
4πδd2α

in

(α − 1)
(
r
(2)
max

)α−2 , (61)

σ2 =
(
σ(1)

)2

+
(
σ(2)

)2

. (62)

With µ and σ2, we can again find the appropriate

values k and θ for the Gamma distribution. With these

parameters, we can find the probability of accumulative

interference as in (14). We can then determine the total

probability of interference for 802.11 enabled CR

pin = p
(1)
in,d + (1 − p

(1)
in,d)p

(2)
in,d

+(1 − p
(1)
in,d)(1 − p

(2)
in,d)pin,a. (63)
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Fig. 11. The interference probability for CR networks using the
IEEE 802.11 MAC protocol. The interference probability broken up in

all its subparts. In this scenario, the accumulative component completely

determines the required silenced distance.
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Fig. 12. The interference probability with and without collisions. We

see that the collisions have only a slight impact on the interference
probability. Hence, we can conclude that the current 802.11 technology

is a viable candidate as a driver for new CR networks.

In Fig. 12 we can see that the direct interference from

collisions is not so high as compared to the successful

direct interference. If we look at Fig. 12, we see that an

increase of cognitive radios per hot spot indicates that the

area that needs to be silenced in order to avoid interfer-

ence to an incumbent system grows, since collisions can

not be avoided in the 802.11 protocol. However, only a

slightly larger silence distance (around 6%) is needed to

cope with the increased interference.

V. CONCLUSIONS

In this paper, a model for accumulative interference

from a CR network was presented. With this model we

show that an incumbent system can be protected by

silencing the CRs in an appropriate area surrounding the

incumbent base station. We presented a more accurate

model as the one presented in [7] and showed that the

approximation made there results in a too optimistic

prediction for the interference.

We also evaluated the interference for practical sensing

techniques, giving a lower bound on the samples needed

for the detection process, in order to effectively protect the

incumbent system. We also noted that a trade-off exists
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between the capacity loss due to false alarms and that

of the detection process. With the model we could find

an optimal value for the probability of false alarm, so as

to minimize capacity loss under the constraint that the

incumbent system remains protected. This optimal value

will be different for each scenario.

As a last step, we evaluated the impact of the 802.11

MAC protocol on the interference coming from the CR

network. It was shown that through carrier sense, inter-

ference power from the CR network is reduced. Although

collisions cannot be avoided, carrier sense was shown to

be an efficient technique to protect incumbent systems

from accumulative interference, increasing the sensing

bound only with 6% as compared to a perfect TDMA

system.
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