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Abstract—Dead reckoning represents a class of meth-
ods for relative position estimation based on a previously
determined absolute reference position. The estimate is
formulated from a combination of the known speed, time
and heading information with the known reference posi-
tion. One of the main obstacles to effective positioning
of pedestrians via dead reckoning is the lack of accurate
speed estimation algorithms. Existing methods are either
complex or provide results that are unsatisfactory at the
low velocities associated with pedestrians. In contrast, the
two algorithms proposed in this paper are relatively simple
to implement and provide accurate results at low velocities.
In the first algorithm, a one-dimensional and unidirectional
two-antenna solution is described where the speed can be
easily estimated from a knowledge of the fixed inter-antenna
distance and the time it takes for the trailing antenna to
sense the same channel conditions (radio frequency (RF)
signature) previously observed at the leading antenna. Com-
puter simulations show that, with typical estimation errors
of less than 2.67% around average pedestrian speeds, the
approach is indeed effective and accurate. A by-product of
the algorithm is an environment specific spatial correlation
function which is used in the second algorithm to provide
even better estimates. With the improvements offered by the
latter algorithm, relative errors of merely around 0.15% on
average are achievable. This improvement in performance
over the first algorithm comes at the cost of slightly higher
computational complexity. When subsequently used for user
displacement estimation, a relatively small error of 24.5cm
is observed after a duration of 60s.

Index Terms—speed estimation, pedestrian dead reckon-
ing, spatial correlation, radio frequency signature matching

I. INTRODUCTION

Pedestrian dead reckoning (PDR) is a popular choice
for positioning and navigation in areas (e.g. indoors)
where Global Positioning System (GPS) based solutions
cannot be used. Two pieces of information are essen-
tial before a valid location estimation can be made: a
reference point with known coordinates and the velocity
(speed and heading) at sufficiently close and successive
intervals. Given the needed information, displacement of
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the user from the reference location can be approximated
and, hence, an estimate of the new location coordinates
can be obtained.

Accurate heading information is readily available from
sensors such as a ring laser gyro [1]; it is the speed
estimate that has been difficult to obtain with a sufficient
degree of accuracy. Step length estimation based devices
([2], [3]) can only be used by pedestrians and must
be mounted directly on the person. Frequent updates of
the absolute position are also required as errors tend to
accumulate with every step. While methods based on
the level crossing rate (LCR) of the received Rayleigh
fading envelope ([4], [5]) typically provide good results
for high speeds, the accuracy drops considerably at speeds
associated with pedestrians and other low velocity entities.
Continuous wavelet transform (CWT) can also be used to
extract speed information from the aforementioned enve-
lope with a good degree of accuracy [6], however such a
procedure is computationally complex and expensive.
In this paper, two novel methods of speed estimation

are described. The first proposed method, termed relative
radio frequency signature matching (RRFSM), correlates
the RF signatures at two antennae separated by a known
distance to determine the time it takes for the trailing
antenna to experience the same channel conditions as
that previously experienced by the leading antenna. As
the antenna separation is predefined and known (e.g.
in a MIMO (multiple-input-multiple-output) device), the
speed is easily calculated from an estimate of the time
delay. As will be shown later, the new speed estimation
approach also employs an adaptive algorithm that allows
accurate estimates at both high and low velocities. Fur-
thermore, it is of low computational complexity as the
main operation only involves the calculation of correlation
values between two channel estimates which are based on
the known existing radio frequency transmission in the
environment.

The second algorithm uses the first to compute a spatial
correlation function. Then, based on this knowledge, the
correlation of the channel data at two different locations
can be used to estimate the speed. This refinement,
while adding some complexity to the speed estimation,
is capable of lowering the estimation errors.

The rest of this paper is organised as follows. In
Section II the wireless channel model considered is pre-
sented and in Section III speed estimation algorithms are
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described. Section IV provides details of the realisation
and the simulation results. Section V concludes the paper.

II. WIRELESS CHANNEL MODEL

The multipath effect is a common phenomenon in
typical terrestrial environments. The RMS (root mean
square) delay spread of the power delay profile determines
the coherence bandwidth of the channel. In future broad-
band wireless communications, the coherence bandwidth
is typically smaller than the total channel bandwidth
which results in frequency selective fading. In addition
to frequency selective fading, signal frequencies can also
experience spreading (frequency dispersion) caused by
Doppler shifts. For antenna arrays, the impulse response
vector h (t) of a multipath channel can be represented by

h(t) =
L(t)−1∑

l=0

Al (t) ejφl(t)a (θl (t)) δ (t − τl (t)) (1)

where L (t) is the number of multipath components, Al is
the amplitude, φl is the carrier phase shift, θl is the angle
of arrival (AoA) of the lth multipath component, δ (·) is
the unit impulse function and τl is the time delay of the
lth multipath component. a (θl (t)) is known as the array
response vector. When the signal and the antenna array
(containing m antennae) at the receiver are restricted to
a two-dimensional (2D) space, the array response vector
is given by

a (θl (t)) =

⎡
⎢⎢⎢⎢⎣

exp (−jΨl,1)
exp (−jΨl,2)
exp (−jΨl,3)

· · ·
exp (−jΨl,m)

⎤
⎥⎥⎥⎥⎦ (2)

where Ψl,i (t) = [xi cos (θl (t)) + yi sin (θl (t))] β. The
spatial coordinate pair (xi, yi) represents the location
of the antenna element i in 2D space. β = 2π

λ
is the

wavenumber [7], with λ being the carrier wavelength.
For line-of-sight (LoS) channels, the amplitude can be

modeled by a Rician random variable, with the Rician
parameter representing the relative strength of the LoS
component. A Rayleigh distributed random variable is
used instead when there is no single dominant multi-
path component. The phase shift is often assumed to
be uniformly distributed within the interval [0, 2π]. The
AoA is highly dependent on the relative geometry of
the environment and the heights of the scatterers and
the receiver. Although the assumption that the AoA is
uniformly distributed within the interval [0, 2π] is valid
under certain circumstances, there are other models that
are more suitable for a given channel model. An overview
is provided in [7]. The delay associated with each multi-
path component is generally assumed to be exponentially
distributed [8].

The maximum Doppler shift, fd(max), experienced by
a receiver is dependent on the speed, v, and is given by
[9]:

fd(max) =
v

λ
. (3)

Fig. 1. Multipath channel in time and space simulated for a carrier
frequency of 474MHz (DVB-T) and a speed of 1.5ms−1. Assuming
that the movement is restricted to the single direction parallel to the
antenna array A-B, after t seconds antenna B is where antenna A was
and experiences the same channel response that antenna A experienced
t seconds ago. As the distance, da, between the antennae is known, the
speed is easily estimated as |v| = da

t
.

The presence of Doppler spread in a multipath channel
causes it to display variations in time: the higher the
Doppler frequency, the shorter is the coherence time [9],

Tc =
0.423

fd(max)
, (4)

of the channel. The terrestrial digital video broadcast
(DVB-T) service is ubiquitous and wideband – allow-
ing the frequency selective nature of the channel to be
captured over a wide range of locations. Each channel
is 8MHz wide and the first has a carrier frequency of
474MHz [10]. A DVB-T receiver travelling at a typical
pedestrian velocity of approximately 1.5ms−1 experi-
ences a rather insignificant maximum Doppler frequency
of 1.6Hz and hence a relatively long channel coherence
time of 0.26s. Fig. 1 shows the space-time characteristics
of a multipath Rayleigh fading channel as experienced by
such a receiver.
It is clear from the plot that although the channel stays
relatively unchanged over the duration of the coherence
time, it shows rapid variations in space. The spatial
correlation, ρ (d, θ), between signal envelopes separated
by a distance d, along some azimuthal direction θ is
approximated by

ρ (d, θ)≈exp

[
−23Λ2 (1 + γ cos [2 (θ − θmax)])

(
d

λ

)2
]

(5)
as derived in [11]. Λ is the angular spread defined as

Λ =

√
1 −

|F1|2

F 2
0

, (6)

γ is the angular constriction defined as

γ =
|F0F2 − F 2

1 |

F 2
0 − |F1|2

, (7)

θmax is the azimuthal direction of maximum fading de-
fined as

θmax =
1
2

arg
(
F0F2 − F 2

1

)
, (8)
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Fig. 2. Speed estimation using relative RF signature matching. The
time τ required by the device to traverse the fixed distance da can
be estimated by correlating the channel responses obtained at the two
antennae. From an estimate of τ , the speed |v| is easily calculated using
|v| = da

τ
.

and Fn is the nth complex Fourier coefficient of the
angular distribution of multipath power (ADP), p (θ):

Fn =

2π∫
0

p (θx) exp (jnθx) dθx. (9)

As stated earlier, temporal variations in the channel
are quantified by a measure of the coherence time, Tc.
A similar measure of the spatial channel variations can
be developed using (5). If the coherence distance, Dc, is
defined as the distance at which the spatial correlation
coefficient drops to 0.5, i.e. ρ (Dc) = 0.5, it can be
approximated by [11]

Dc ≈
λ
√

ln 2
Λ
√

23 (1 + γ cos [2 (θ − θmax)])
. (10)

For an omnidirectional Rayleigh fading channel, the
coherence distance is often approximated by [11]

Dc ≈
9λ

16π
. (11)

Applying this equation to the DVB-T system mentioned
earlier produces a coherence distance of approximately
11cm. This is in agreement with the spatial variations
observed in Fig. 1.

III. SPEED ESTIMATION ALGORITHMS

The spatial and temporal correlation properties of a
wireless channel makes it ideal for exploitation in mobile
speed estimation. Given a source of RF (radio frequency)
signal and a receiver equipped with multiple antennae,
relative RF signature matching can be used to estimate the
speed of the receiver unit. The following sections describe
the algorithms that utilise the fading characteristics of the
received RF signal to provide an estimate of the speed.

Fig. 3. Structure for the database used to store the channel response
estimates.

A. Method I: Relative RF Signature Matching (RRFSM)

It is possible to estimate the speed of a MIMO mobile
wireless device by comparing the channel response ob-
served at each of the antenna array elements. The simplest
such device consists of a receiver with two antennae as
illustrated in Fig. 2. Motion is assumed to be restricted
to a single spatial dimension and the antenna array is
aligned parallel to the direction of motion. This results in
a simplification of Ψl,i (t) in (2) to [xi cos (θl (t))] β.
In operation, the speed estimator traces a diagonal

path in the spatio-temporal plane as illustrated in Fig.
1. Labelling the antenna array elements by the letters
“A” and “B” respectively, the starting position, (A, B)

t0
,

of the array elements can be denoted by the spatio-
temporal coordinate pair [(x1, t0) , (x0, t0)]. The radio
channel sensed at the array elements, (HA, HB)

t0
, can

be similarly represented by [(H1, t0) , (H0, t0)].
Assuming a non-zero velocity, the coordinates are

[(x3, t0 + τ) , (x2, t0 + τ)] and the channel responses are
[(H3, t0 + τ) , (H2, t0 + τ)] after some time τ . For some
value of τ = τ̃ , x2 = x1 and H2 ≈ H1 due to
the relatively large coherence time of the channel. This
implies that the device travels a distance da = x1 − x0

in that time. Since da is the inter-antenna separation
distance, it is constant and known a priori. Therefore, the
speed of the device is easily estimated from an estimate
of τ̃ using

|−→v | =
da

τ̃
. (12)

It is possible to obtain an estimate of the time delay,
τ̃ by comparing the channel responses observed at the
antenna array elements. Accurate channel estimates or
knowledge of the underlying fading process is not re-
quired as the proposed method only looks for a relative
match between channel responses. This also implies that
a reasonably low amount of uncertainty and errors in the
estimates can be safely ignored as long as all the estimates
are affected in a similar fashion.

Clearly, a history of the channel responses observed at
the “leading” antenna (A in this case) must be maintained.
Fig. 3 illustrates the structure of a database that stores
the current and N previous channel response estimates
(CREs) and associated timestamps for antenna A. The
instantaneous CRE of antenna B is also stored for the
duration of the signal correlation computation.

98 JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2009

© 2009 ACADEMY PUBLISHER



The operation used to find the the CRE leading to
maximum correlation is:

idx = argmax
k

(B 
 Ak) ; k = 1, . . . , N. (13)

idx is the database index corresponding to the CRE
from antenna element A yielding maximum correlation
and can be used to determine the elapsed time from the
associated timestamp. The binary operator “
” represents
cross-correlation at a lag of zero. It is unnecessary to
compute B 
A0 since it implies a time delay of zero and
hence infinite speed.

The cross-correlation of two signals at a lag of zero is
identical to their dot-product. As a result, (13) can be sim-
plified to a series of normalised dot-product calculations
followed by maximum detection:

idx = argmax
k

(
B · Ak

||B|| · ||Ak||

)
; k = 1, . . . , N. (14)

The range of speeds detectable with such a device
ultimately depends on the estimation rate and the CRE
history buffer maintained.With vmin and vmax as bounds
to the detectable speed range, the time delay between
CRE estimates must be less than da

vmax
for some inter-

antenna separation distance da. On the other hand, correct
estimation of vmin requires the ability to store CRE
estimates spanning a time of at least da

vmin
. Assuming

that the CRE estimation interval is short enough to detect
vmax, the total number of past CREs to store are:

N =

⎡
⎢⎢⎢
(

da

vmin

)
(

da

vmax

)
⎤
⎥⎥⎥ =

⌈
vmax

vmin

⌉
. (15)

Since the time delay is estimated from a correlation
between CREs, the instantaneous channel response must
be estimated periodically. For a wireless system with
symbol duration Ts, the CRE estimation interval î can be
defined as the number of complete symbols that elapse
between the CRE estimates:

î =
⌊

α

µ

⌋
, (16)

where α is a constant defined as

α =
da

vmax × Ts

(17)

and µ is an adaptive scaling parameter. By adjusting the
CRE estimation interval in accordance with the estimated
speed of the device, it attempts to provide higher accuracy
in the time delay estimates.

The parameter µ is a real number bounded by the
constant α and 1, allowing î to assume integer values
within the range îmin = 1 and îmax = �α�. A CRE
estimation interval lower than îmin is impossible as it
implies an interval shorter than a symbol. An interval
longer than îmax is unnecessary as it would provide speed
estimates lower than vmin for a given value of N .
Initially, the adaptive parameter µ is set to 1 so that

î = îmax. This allows for a rough estimate, vest, to be
obtained for any speed between vmin and vmax. Given

that estimate, linear interpolation is employed to obtain
the new value of µ and hence î:

µ=
{

m · (vest − vmin) + 1, vmin ≤ vest ≤ (vmax + ε)
1, otherwise

(18)
where

m =
α − 1

vmax − vmin
(19)

and ε is a small number required to allow the adaptive
procedure to converge at the upper bound of the detectable
speed range. Defining the maximum speed detectable with
µ = 1 as

ṽmax =
da

Ts × îmax

(20)

and ∆vmax as the absolute difference between ṽmax and
vmax

∆vmax = |ṽmax − vmax| , (21)

ε is defined as

∆vmax ≤ ε ≤ 1.1∆vmax. (22)

Since only a lower bound to ε is logically defined,
an arbitrary upper bound of 1.1∆vmax is introduced to
provide a sensible limit to the possible choices of ε.

While the first case in (18) is useful for adapting the
value of µ while the device is in motion, the second
case is necessary to reset the value of µ to 1 in case
of erroneous estimates (e.g. vest � vmax) or when the
device is stationary (vest = 0).
Due to the integer nature of î, any time delay estimated

is generally an integer multiple of Ts. As a result, the
speeds estimated between vmin and vmax do not form a
continuous range:

vest =
da

k × Ts × î
. (23)

k is an integer related to the idx in (14).
Example Let vmin = 0.1ms−1, vmax = 15ms−1,

Ts = 224µs, î = îmax = 14, da = 0.05m, and
N = 150. The speeds detectable are then 15.94ms−1,
7.97ms−1, 5.31ms−1, . . . , 0.106ms−1 corresponding to
k = 1, 2, 3, . . . , N respectively.

The example cited also indicates that the performance
is quite poor in the vicinity of vmax with î = îmax. This is
due to the fact that the CRE estimation interval is not short
enough to provide the time resolution needed at higher
speeds. Table I compares the result of using î = îmax and
î = îmin for the example provided.

The tabulated data indicates that a longer estimation
interval works well for speeds in the vicinity of vmin

while higher speeds require shorter estimation intervals
for more accurate estimates. The improved accuracy at in
the vicinity of vmax comes at the cost of the minimum
speed detectable – it increases to 1.4881ms−1 when
î = îmin.
From (18) it is clear that the adaptive parameter µ

always tries to provide the most suitable î for a given
database size – higher values of vest result in higher
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TABLE I
THE EFFECT OF THE CRE ESTIMATION INTERVAL ON SPEEDS

DETECTABLE.

î = îmax = 14 î = îmin = 1

k Speed (m/s) k Speed (m/s)

1 15.944 1 223.21

2 7.9719 . . . . . .

3 5.3146 14 15.944

4 3.9860 15 14.881

. . . . . . 16 13.951

148 0.10773 . . . . . .

149 0.10701 149 1.4981

150 0.10629 150 1.4881

values of µ which in turn lead to a reduction in the CRE
estimation interval. The opposite is true for lower values
of vest.

While it is obvious that the setting î = îmin yields
the finest time resolution possible and hence the most
accurate results, it is inefficient in practice as the number
of past CRE estimates that must be stored in memory to
detect vmin is prohibitively large (N = 4465 for a DVB-T
receiver with Ts = 224µs, da = 10cm, vmin = 0.1ms−1).
Dynamically adjusting î to the estimated speed allows the
RRFSM algorithm to be more memory efficient (N = 150
for vmin = 0.1ms−1 and vmax = 15ms−1).

Table I also shows that with the initial value of î = 14
and hence µ = 1, a true speed of 15ms−1 is most likely
to be detected as 15.944ms−1. At the absence of the
parameter ε, µ will always remain at that initial value
(since the condition vest ≤ (vmax + ε) in (18) would
not be satisfied) and hence the speed will continue to
be estimated as 15.944ms−1. With ε = 1, however, that
condition will be satisfied and µ will be increased accord-
ingly – reducing the estimation interval and yielding an
estimate that is more precise than the last.

To avoid erroneous speed estimates, the maximum
value produced by (14) must be above a sufficiently high
threshold. If that value is below the threshold, the CREs
at the antenna elements are assumed to be uncorrelated
and hence the device is assumed to be at a standstill. It is
important to pick a suitable threshold as a value too low
may result in erroneous results while a value too high will
reduce the sensitivity of the algorithm. It may be possible
to determine a sensible threshold from spatial correlation
models of the channel or real-world experiments.

A flow diagram of the one dimensional and uni-
directional algorithm is shown in Fig. 4. The method
can be extended for multi-dimensional speed estimation
by intelligently combining the results from additional
antenna arrays oriented parallel to each of the spatial
dimensions desired.

B. Method II: Modified RRFSM

The algorithm described in Section III-A produces
discrete speed estimates and as such is generally not
expected to be exact. However, the method can be further

Fig. 4. 2-antenna speed estimation algorithm. “dbA[]” is the CRE buffer
associated with antenna A. The function xcorr(a,b,L) provides the
normalised cross correlation product at delay = L (i.e. it performs the
operations necessary to compute the parenthesised expression in (14)).

extended by utilising the signal spatial correlation model
described by (5).

Once again, assuming that the motion of the antenna
array is restricted to a single constant direction θ0, (5)
can be simplified to:

ρ (d)≈exp

[
−23Λ2 (1 + γ cos [2 (θ0 − θmax)])

(
d

λ

)2
]

.

(24)
As Λ, γ, and θmax are also constants for a given ADP

(see Section II), the equation can be further simplified to:

ρ (d) ≈ exp

[
−23K

(
d

λ

)2
]

, (25)

where the constant K is defined as

K = Λ2 (1 + γ cos [2 (θ0 − θmax)]) . (26)

Therefore, given the inverse function of (25):

d ≈ λ

√
−

ln (ρ)
23K

, (27)

it is possible to estimate the distance d between two
signal envelopes given their correlation factor ρ, the signal
wavelength λ, and the channel dependent constant K . If
the time delay τ between the envelopes is known, an
estimate of the speed can be obtained from the estimate
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Fig. 5. Speed estimation using signal spatial correlation (modified
RRFSM). Knowledge of the channel parameters and the correlation ρ
between two signal fading envelopes sampled τ seconds apart allows
the distance traversed to be estimated using (29). The speed, |v|, can
then be estimated using |v| = d

τ
.

of d using (12) by substituting d for da. The concept
is illustrated in Fig. 5. Assuming that the value of K is
known, a single antenna can be used for speed estimation
using (27).

Unfortunately, the parameter K is directly related to
the ADP which is highly dependent on the geometry of
the radio environment. Therefore it is virtually impossible
to obtain an analytical expression for the instantaneous
value of K . Hence it must be estimated before the speed
estimation algorithm can be applied. Reordering of the
variables in (27) provides an approximation

K ≈ −
ln (ρ)
23

(
λ

d

)2

(28)

in terms of the envelope correlation ρ and the distance d.
This is where the scheme described in Section III-A can

be exploited.While evaluating (14), the CRE at antenna B
is correlated against all the CREs in the database to yield a
set of correlation factors (ρ1, ρ2, ρ3, . . . , ρN). Then, using
the rough speed estimate, vest, each correlation factor ρk

can be mapped to a distance dk using

dk = da − (tk · vest) ; k = L, L + 1, . . . , M (29)

where tk is the time delay associated with ρk and L

and M define a subset of the coefficients that meet
some suitability criterion as explained later in this sec-
tion. Given the set of correlation coefficients and their
associated distance estimates, a set of estimates for K

can be obtained using (28). The final estimate K ′ is then
obtained by taking the arithmetic mean over that set:

K ′ =
1

M − L + 1

M∑
k=L

K ′

k
. (30)

Since K ′ is an estimate of the true value of K , it is
necessary to evaluate its accuracy. Given the procedure
employed to obtain the estimate, the most likely source
of errors are the correlation coefficients ρk and vest. As
vest already represents the “best-effort” of the algorithm
in Section III-A, an attempt is made to pick the most
suitable set of correlation coefficients. The relative error
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Fig. 6. Relative error in the estimate of K for a relative error of 10%
in the correlation coefficients. The error is below 30% for coefficients
between 0.2 and 0.7. The singularity observed at a correlation of 0.1
is due to the choice of a relative error of 10% or 0.1. This causes the
logarithm in the numerator of (31) to approach infinity at that point.

eK in the estimate of K for any correlation factor ρ′ is
given by:

eK =
∣∣∣∣K − K ′

K

∣∣∣∣ =
∣∣∣∣∣∣
ln
(

ρ
′

ρ′
−eρ′

)
ln (ρ′ − eρ′)

∣∣∣∣∣∣ , (31)

where eρ′ is the relative error in the correlation coefficient
ρ′. The derivation is provided in the Appendix A.
Since it is not possible to determine the relative error

in each correlation coefficient computed, eρ′ is assumed
to be the same for all coefficients. Fig. 6 plots (31) for
eρ′ = 0.1 (i.e. 10%). It can be seen that the lowest
relative errors in K are obtained for coefficients that lie
within the 0.2 to 0.7 range. The reason for this becomes
clear from a plot of the spatial correlation functions for
various channel conditions (Fig. 7). The figure shows
that the rate of change of the distance with respect to
the correlation coefficient is the least over the 0.2 to 0.7
range – implying that a large uncertainty in the value of ρ
leads to relative little error in the value of d, minimising
the relative error in K . Therefore, L and M in (29) are
chosen such that only coefficients with values within a
certain range [ρmin, ρmax] are considered.

Once an estimate of K is available, subsequent corre-
lation coefficients ρk estimated at intervals of ∆t, where
∆t � Tc, can be used to obtain the associated set of
distances dk using (27). The corresponding set of speed
estimates can then be obtained as follows:

vest,k =
dk

k × ∆t
; k = L, L + 1, . . . , M. (32)

The final estimate is obtained by taking the arithmetic
mean of the set of estimated speeds:

vest =
1

M − L + 1

M∑
k=L

vest,k. (33)

For the algorithm to remain accurate and effective, the
estimate of K must be periodically updated. Fig. 8 shows
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Fig. 7. Plot of the correlation function for various channel conditions.
The gradient is steepest roughly between ρ = 0.7 and ρ = 0.2.
Therefore, the rate of change of the distance with respect to the
correlation coefficient is the lowest over that range. This implies that
large errors in the value of ρ leads to relatively small errors in the
estimate of d.

a flow chart of the algorithm.

IV. SIMULATION & RESULTS

MATLAB simulations are used to evaluate the per-
formance of the speed estimation algorithms. The speed
profile utilised is designed to emulate the motion of a
pedestrian as illustrated by Fig. 9. The duration of the
profile is 60s.

A. Method I: RRFSM

For simulation purposes, the RF signal source is as-
sumed to be a DVB-T transmitter with a carrier frequency
of 474MHz and OFDM symbols consisting of 1705
subcarriers (2K mode of DVB-T). The multipath channel
is modeled as Rayleigh fading [8] with component phase
offsets (φl) and time delays (τl) obtained from [10]. For
simplicity, the AoAs (θl) are assumed to be time-invariant
and uniformly distributed in [0, 2π]. Furthermore, it is also
assumed that the channel response estimates are error
free and displacement is in one dimension only. The
correlation threshold is maintained at 0.95. The use of
such a high threshold is justified since the CRE estimates
are assumed to be perfectly known and error-free.
Fig. 10 shows the performance of the estimation al-

gorithm at da = 0.10m and 0.30m. A moving average
filter with a memory of 4ms is applied to the estimates
for a smoother output. With da = 0.10m, a good match
between the real and estimated speeds is obtained while a
larger da shows relatively poorer performance. The reason
for this becomes clear once the coherence time of the
channel is taken into account. At a separation distance
of 0.30m, the time required by antenna B to traverse the
inter-antenna separation distance is 0.6s for a constant
speed of 0.5ms−1. However, at that speed, the coherence
time of the channel is only about 0.54s. Consequently,

Fig. 8. Speed estimation algorithm utilising spatial correlation (mod-
ified RRFSM). Sj represents the jth envelope. ρmin and ρmax define
the coefficient range considered for speed estimation.

Fig. 9. Model of pedestrian behaviour. Starting from a standstill,
the person crosses the street at an average speed of 1.5ms−1. On
reaching the pavement on the other side, the speed reduces to a leisurely
0.5ms−1. When at the second road, the average speed increases to a
brisk 2.0ms−1 for a fast crossing. Once on the other side, the speed
returns to an average of 0.5ms−1 and is maintained till the pedestrian
reaches the destination and stops.

the relevant CREs are no longer strongly correlated and
a reliable speed estimate cannot be obtained.

The estimated profiles show that the algorithm tends to
momentarily lose track of the speed when the device un-
dergoes a sudden change in speed. This can be attributed
to a radical change in the behaviour of the channel model.
At constant speeds, the channel response is a function
of linear time, t. However, when the device undergoes
constant acceleration, the response becomes a function of
the time squared, t2, as shown in the Appendix B. This
implies that any CRE recorded at some time t0 is in fact
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Fig. 10. Simulation of the relative RF signature matching algorithm for
antenna separation distances (da) of 0.10m and 0.30m. The estimates
are passed through a 4ms long moving average filter for smoothing. The
speed profile used is the one illustrated in Fig. 9.
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Fig. 11. CDF of relative errors in estimating speeds of 0.5ms−1,
1.5ms−1 and 2.0ms−1 at an antenna separation distance of 0.10m.
The time resolution issue described in section III-A manifests itself in
the form of discrete steps in the error CDF.

similar to a CRE at time t20. This fundamental change in
the recorded CREs leads to a disruption of algorithm and
produces erroneous results at the points where there is a
sudden change in the speed. Once the speed stabilises,
however, the algorithm is quick to recover and continues
tracking the real speed with a low error margin.
Fig. 11 shows cumulative distribution function (CDF)

of the percentage errors ( vest−vreal

vreal
×100%) in estimating

speeds of 0.5ms−1, 1.5ms−1 and 2.0ms−1 at an antenna
separation distance of 0.10m. From the plot it is evident
that the performance of the algorithm is independent of
the actual speed of the device. On average, the relative
error is approximately 2.67% with a standard deviation
of 5%. The quantisation of detectable speeds due to
time resolution available (section III-A) also leads to
discretisation of the relative error. This is the reason
behind the stair-like CDF.
It may be noted that the average error is positive –

indicating a tendency to overestimate the speed. Since
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Fig. 12. Spatial and temporal correlation coefficients for a device
with da = 0.10m moving at 15ms−1. As antenna B approaches the
position previously occupied by antenna A (point of interest, xA), the
spatial correlation increases while the temporal correlation decreases.
This leads to a joint maximum at a position shortly before xA – leading
to an underestimate of the time delay and hence an overestimate of the
speed.

da is constant, this implies that the time delay is un-
derestimated. This is due to the time-varying nature of
the channel and a difference in the rate at which the
spatial and temporal correlation functions evolve. Fig. 12
shows how the spatial and temporal correlation changes
for a device with da = 0.10m moving at 15ms−1.
Although a time axis, t, is not explicitly shown, it is
related to the displacement axis, s, by the simple equation
t = s

15 + c, where c is some constant. It can be seen
that as antenna B approaches the desired spatial location,
xA, the spatial correlation rapidly increases while the
temporal correlation gradually decreases. As a result, the
joint maximum of the correlation functions is not at the
desired location but shortly before it – leading to an
underestimate of the time delay and hence an overestimate
of the speed.

B. Method II: Modified RRFSM

The simulator implemented is similar in design to the
one described in Section IV-A.
Fig. 13 shows the performance of the modified RRFSM
algorithm under different channel conditions as repre-
sented by the parameter K . It is assumed that perfect
knowledge of the channel is available and hence the cor-
relation coefficients ρ and the estimates of the parameter
K are error free. From the plot, it is immediately clear
that there is a near-perfect match between the real speed
profile and that estimated by the algorithm – showing
that the method described works as expected under ideal
circumstances. The lack of any substantial difference
between the estimates indicates that the results are not
affected by the channel conditions. This is due to the
assumption that both ρ and K are error free.

To investigate the impact of small uncertainties in the
estimates of the parameter K , a uniformly distributed
random relative error between ±10% is introduced. Fig.
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Fig. 13. Simulation of the spatial correlation algorithm for various
channel conditions. Perfect knowledge of the channel parameters is
assumed.
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Fig. 14. Simulation of the spatial correlation algorithm for various
channel conditions. The estimate of the parameter K is not exact and
contains a random relative error uniformly distributed between ±10%.

14 shows the results for different channel conditions as
represented by the parameter K . As exact knowledge of
the channel is no longer available, larger errors in the
estimates appear. An analysis of the error statistics is
provided later.

The plot reveals that no estimates are obtained for
speeds that are below approximately 0.3ms−1. A compar-
ison of the minimum speeds detectable with the algorithm
under various (exact) values of the parameter K is shown
in Fig. 15. The general trend appears to be that the higher
the value of K , the lower is the speed detectable. There
are three contributing factors to this observation: the first
is the relationship between ρ and K as described by (25),
the second is related to the duration of each “run” of
the algorithm and the third is tied to the choice of the
“admissible” range of correlation coefficient values as
shown in (29). The following attempts to explain the role
each of these factors:

1) For a fixed value of d, (25) shows that ρ ≈
exp [−XK] where X is a constant greater than
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Fig. 15. Minimum speed detectable by the spatial correlation algorithm
under various channel conditions for the speed profile shown in Fig. 13.

zero. This implies that the larger the value of K ,
the smaller the ρ for a given d.

2) At each run of the algorithm, the signal envelope
is estimated at intervals of ∆t seconds for a total
duration of T seconds where T is predetermined
and fixed. At low speeds, a relatively small distance
is travelled by the device in T seconds and as a
result, the channel still remains highly correlated
after that run.

3) As explained in Section III-B, only those values of
ρ that fall within a certain range are utilised for
speed estimation. Values that are too high or too
low are ignored to minimise errors.

The consequence of the above is that at low speeds, the
correlation coefficient for smaller values of K is higher
than the upper bound defined and hence no estimate
can be obtained. For the same speed, (25) implies that
a larger K may perform better as it leads to a lower
value of ρ. If that value is lower than the upper bound
to admissible correlation coefficients, an estimate of the
speed can be obtained. Since the minimum detectable
speed clearly depends on a number of user-set parameters,
it may be possible to lower the bound by increasing the
time between runs and relaxing the [ρmin, ρmax] limits
placed on the correlation coefficients considered for speed
estimation.

To investigate the error performance of the algorithm,
simulations are performed at typical pedestrian speeds of
1.0ms−1, 1.5ms−1 and 2.0ms−1. The percentage relative
error in the estimates (where available) are computed
using vest−vreal

vreal
× 100%. When the channel parameters

are known exactly, the mean error in the estimates is less
than 0.04% with a standard deviation of approximately
0.86%.
Fig. 16 shows the CDF of the errors when the estimate

of the parameter K contains a random relative error uni-
formly distributed between ±10%. As the error CDFs are
very similar to one another, it is reasonable to conclude
that the relative error in the estimates is independent of
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Fig. 16. CDF of relative errors in estimating speeds of 1.0ms−1,
1.5ms−1 and 2.0ms−1. The estimate of the parameter K has a random
relative error uniformly distributed between ±10%.
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Fig. 17. Displacement (real and estimation) of a device moving
according to Fig. 9 using the modified RRFSM algorithm with a 10%
uncertainty in the parameter K . Despite the errors in K , the estimate
is still excellent (error of 24.5cm after 60s) due to the fact that
overestimates and underestimates in the speed cancel each other (as
seen in Fig. 14).

both the speed and the actual channel characteristics.With
a 10% uncertainty in the parameterK , the average error in
the estimates is less than 0.15% with a standard deviation
of approximately 3%.
Fig. 17 shows how the estimate of the displacement

is affected by the errors in the speed estimates for a
device moving according to the model in Fig. 9. After
60s, the error in displacement estimate is a mere 24.5cm.
The error in the estimate is very low due to the fact that
overestimates and underestimates in the speed cancel each
other – resulting in a mean error that is very close to zero.
This is particularly beneficial in context of PDR where the
accumulation of error is a common problem.

To summarise, the basic RRFSM algorithm provides
good results (2.67% error around pedestrian speeds on
average) with a relatively low complexity. The modified
RRFSM scheme requires additional computations but pro-
duce excellent speed estimates (0.15% error on average)

even when accurate estimates of the model parameters are
unavailable.

V. SUMMARY AND CONCLUSION

The spatial correlation properties of a multipath fading
channel are exploited for speed estimation. If, in addition,
heading information is available through an electronic
compass, for example, indoor pedestrian dead reckoning
can be performed. This enables the determination of the
position of a mobile device, and hence, allows mobile
navigation at places where GPS fails to work.
First, it is demonstrated that the RRFSM algorithm

based on two antennas separated by a known distance
provides speed estimation errors of less than 2.67% on
average at typical pedestrian velocities. A by-product of
this algorithm is a metric that characterises the actual
propagation environment which, in turn, helps establish
an environment specific relationship between the spatial
correlation coefficient and the antenna displacement. This
relationship is exploited by a modified RRFSM algorithm,
with a further improvement of the accuracy (relative error
of 0.15% or less on average even when the propagation
environment cannot be estimated exactly) at the cost
of a slightly increased computational complexity. Both
algorithms can be combined intelligently to provide the
best estimates possible. Where applicable, the modified
RRFSM algorithm can be utilised to improve the speed
estimate. Otherwise, the basic RRFSM algorithm is used
as a fall-back solution since it generally also provides
good estimates.
Simulations also show that when the modified RRFSM

method is used for speed and subsequently displacement
estimation, the error accumulated is very low. After 60s,
the estimate differs by only 24.5cm for a typical pedes-
trian speed profile. This indicates that the algorithm is
ideal for use in PDR applications where a high rate of
accumulation of error is a common problem.

As no assumptions are made about the environment,
the schemes are completely self-sufficient. The only re-
quirement is a source of RF signal that leads to a fading
channel at the receiver. Since the methods do not rely
on the properties of any particular wireless standard,
any wideband system capable of effectively capturing the
effect of a fading channel is usable. In this paper, DVB-T
is chosen for its wideband nature (8MHz channels) and
ubiquity.

With the recent influx of MIMO capable devices, the
low computational complexity of the proposed algorithms
and the fact that some of the required information such
as the channel estimates is simply recycled from the data
detection process, the speed estimation algorithms can
easily be integrated into current mobile communication
devices.

At this point, one of the largest open issues is the
extension of the algorithms to multiple dimensions. As
mentioned earlier in Section III-A, this can be achieved
with at least two antennae in each of the spatial di-
mensions desired. Preliminary investigations with multi-
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antenna arrays have produced promising results but re-
quire further research. The multi-antenna array is also
useful for heading estimation – opening up the possibility
of “one-step” location estimates using the proposed basic
algorithms.

Other issues that merit further research are assessment
and mitigation of errors due to acceleration, investigations
of the robustness of the algorithms under real-world
conditions and the development of a mechanism for the
determination of the level of accuracy in any estimate of
the channel dependent parameter K .

APPENDIX A
DERIVATION OF THE RELATIVE ERROR IN K

Given a correlation coefficient ρ′ and the associated
distance d′, an estimate K ′ can be obtained using (28):

K ′ = −
ln (ρ′)

23

(
λ

d′

)2

= C
ln (ρ′)
(d′)2

, (34)

where C is a constant. Assuming that the real value of
the coefficient is ρ, the true K is then:

K = −
ln (ρ)
23

(
λ

d′

)2

= C
ln (ρ′ − eρ′)

(d′)2
, (35)

where eρ′ is the relative error in the correlation coefficient.
Therefore, the error in the estimate for K is given by:

K ′ − K = C
ln (ρ′)
(d′)2

− C
ln (ρ′ − eρ′)

(d′)2

= C
ln
(

ρ
′

ρ′
−eρ′

)
(d′)2

. (36)

Rewriting (27) as

(d′)2 =
λ2

−23
×

ln (ρ)
K

= C
ln (ρ′ − eρ′)

K
(37)

and substituting into (36), an expression for the relative
error in K , eK , is obtained:

eK =
∣∣∣∣K − K ′

K

∣∣∣∣ =
∣∣∣∣∣∣
ln
(

ρ
′

ρ′
−eρ′

)
ln (ρ′ − eρ′)

∣∣∣∣∣∣ . (38)

APPENDIX B
ACCELERATION AND CHANNEL RESPONSE

For a receiver with a single antenna, the spatio-temporal
transfer function, H (t, f, x), with time invariant multi-
path components can be written as

H (t, f, x) =
L−1∑
l=0

Ale
j2πfd(l)t+jφl−j2πτlfa (θl) (39)

where fd(l) is the Doppler spread associated with the
component l and all other parameters are as previously
defined in Section II. Substituting the one-dimensional
version of (2) into (39) and rewriting the Doppler spread
as a function of the speed v and angle ωl,

H (t, f, x) =
L−1∑
l=0

Al exp
[
j2π

v

λ
cos (ωl) t

+jφl−j2πτlf−β cos (θl)x
]
.(40)

Since v = v0 + bt and x = x0 + v0t + 1
2bt2, where v0

is the initial speed, x0 is the initial position and b is the
constant acceleration,

H (t, f, x) =
L−1∑
l=0

Al exp
[
j2π

v0 + bt

λ
cos (ωl) t

+ jφl − j2πτlf

−βcos (θl)
(

x0+v0t+
1
2
bt2
)]

. (41)

From (41) it is clear that the response is non-linear in
t when the acceleration is non-zero.
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JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2009 107

© 2009 ACADEMY PUBLISHER


