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Abstract— In this work we propose an efficient technique
to quantize the immitance spectral frequency (ISF) in an
algebraic code-excited linear prediction (ACELP) wideband
codec. The Constrained Voicing-Based Vector Quantization
(C-VBVQ) presented in this paper improves substantially
the performance of the unconstrained-VBVQ approach for
both clean and noisy speech. Both techniques reduce the
codebook search time by almost one third. However, in the
C-VBVQ training phase, the three codebooks that are indi-
vidually designed for voiced, unvoiced and transition speech,
are jointly reoptimized to impose a structural configuration.
The proposed technique reduces the processing delay since
it restricts the quantization of an input vector to only one
smaller but optimal codebook. For each speech frame, one
codebook is selected from the set of three codebooks based
on the interframe correlation of the spectral information.
The C-VBVQ was successfully implemented in an ACELP
wideband coder. The objective and subjective performance
are not only superior to that of the combination of the split
vector quantization and multistage vector quantization but
also to the unconstrained VBVQ.

Index Terms— Wideband speech coding, constrained
voicing-based vector quantization, low-complexity ISF quan-
tization

I. INTRODUCTION

Code-excited linear prediction (CELP) coding is the
most popular compression approach in many speech-
based communication systems. It represents a good trade-
off between the main four attributes of a speech coder:
coding rate, coded-speech quality, delay and complexity.
While in bandwidth-limited applications, the coding rate
is of major importance, in some realtime applications
the complexity attribute is more important. The com-
putational complexity could generate a processing delay
that is not tolerable by these time-sensitive applications.
The processing delay which is related to the speech
coder complexity may represent a major obstacle to its
deployment in some realtime communication systems.
Modern realtime applications, such as Voice over IP
(VoIP), Internet telephony, video conferencing, video
telephony, and wideband telephony, require high-quality
speech coders with low processing delay. The ITU-T
G.722.2 [1] adaptive multirate wideband (AMR-WB)
coder, which meets most of the implementation criteria,
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is adopted in some time-sensitive applications, such as
the Nokia mobile handsets. However, this standard, as
well as other wideband codecs, still suffers from high
computational complexity when implemented in remote
conferencing systems.
In order to minimize the encoding complexity, current
code-excited linear prediction coders ignore the interac-
tion of the vocal tract shape (modeled by a set of linear
prediction (LP) parameters) with the vocal cords pitch [2].
This suboptimal approximation is reflected in the disjoint
operation of spectral quantization and pitch analysis. A
major component in CELP coding is the quantization
of the LP parameters. In most of the LP model based
coders, this quantization is done on a time frame basis
without fully exploiting the interframe correlation with
past frames [3]. To model the spectral shaping filter
with constant coefficients, the speech signal is considered
stationary over an analysis window. To achieve a fixed bit
rate, the analysis window size is kept constant in most of
the speech coding standards, regardless of the acoustical
nature of the speech frame.
The optimal search of the best match to an input linear
prediction (LP) vector is performed among all codevectors
of the codebook. While this method provides the best
performance in terms of speech quality, its high complex-
ity prevents its implementation in realtime applications.
Several techniques have been proposed to reduce the
computational complexity of the LP coefficients (LPC)
quantization at the cost of some deterioration in speech
quality [4]. The tree search and the multistage vector
quantization are widely used to encode the spectral para-
meters [5]. These quantization approaches speed up the
search procedure but increase the memory requirements.
In [6] the authors introduce a new channel-optimized
multistage vector quantization of LP parameters. Their
approach, which reduces the sensitivity to errors in the
received VQ indices, consists of jointly designing the
stage codebooks using a source and channel-dependant
distortion measure. However, the VQ complexity im-
plementation, mentioned in the paper’s introduction as
a second limitation of VQ, is unexpectedly ignored in
further development and discussions.
In this paper we introduce an optimized technique ex-
ploiting the interframe spectral information correlation to
reduce the search time for the optimal quantized LPC
vector. The voicing-based vector quantization (VBVQ),
introduced in [7] and substantially improved in this work,
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exploits the interframe correlation of the LP parameters to
limit the quantization process to a smaller codebook. The
LP filter coefficients, as well as their different represen-
tations in the frequency domain, show some interframe
redundancy. This redundancy, which is easily noticeable
in voiced speech, could be used to predict the current LP
parameters from those of the past frames.
In the training phase of the constrained voicing-based vec-
tor quantization (C-VBVQ) framework, three disjoint ISF
(Immitance Spectral Frequency; the LPC representation
used in the G.722.2 standard) codebooks are individually
populated from voiced, unvoiced, and transition speech.
The C-VBVQ differs from the unconstrained VBVQ in
the way the codebooks training is performed. In the C-
VBVQ approach, the VBVQ codebooks are reoptimized
to introduce some structural behavior in their configura-
tion. Since only one codebook is used in the spectrum
encoding of each speech frame, the LPC quantization
process in the C-VBVQ technique is preceded by the
selection of the appropriate codebook. This selection is
based on the interframe correlation of the current and
previous frame LPC vectors. The C-VBVQ could be
considered as a special delayed-decision technique. This
type of coding techniques has proven its efficiency in
producing very high speech quality [8]. Classification of
speech for efficient coding was addressed in many multi-
mode coding frameworks. However, our approach focuses
on reducing the coder search complexity while producing
high coded-speech quality at no extra bit resources. The
hybrid coding proposed in [9] combines a frequency-
domain parametric coder for voiced and unvoiced speech
with a time-domain waveform coder for unvoiced speech.
This three mode coder achieves high-quality coded speech
at a rate of 4 kb/s but at the expense of high computational
complexity.

II. MOTIVATION

A. General-purpose LPC codebooks

Most of the recent speech coder standards use vector
quantization (VQ) to code the spectral information. While
VQ techniques reduce the coding rate, they increase the
search computation load drastically. The performance of
VQ schemes increase with codebook size. A codebook
with more codewords certainly excels in coding efficiently
the spectral parameters. This is achieved to the detriment
of an increase in coding rate and computational complex-
ity.
For example, in the G.729 narrowband codec standard
[10], a combination of multistage VQ (MVQ) and split
VQ (SVQ) is used to determine which 10-dimensional
LSF (Line Spectral Frequency, the most popular repre-
sentation of the LP coefficients in the frequency domain
[11]) vector corresponds most closely to the set of LSF
input parameters. In the first stage of the search procedure,
a codebook of 128 entries is searched; in the second stage
two codebooks of 32 entries each are examined, for a total
of 192 entries. In the G.722.2 wideband coding standard
[12], the same VQ technique, with slight modifications,

is employed to code 16 ISF coefficients. A total of 896
(256+256+64+128+128+32+32) entries are tested against
the input ISF vector for all the codec modes, except for
the 6.60 kbit/s coder which searches the closed codewords
among 832 (256+256+128+128+64) entries. These num-
bers show the degree of the computational complexity
of wideband coding, even when using suboptimal VQ
techniques such as MVQ and SVQ. The above codebooks
could be classified as general-purpose codebooks since
they are used to code the spectral parameters in voiced as
well as in unvoiced and transient speech. A first step in
easing the implementation of low-rate wideband speech
coders in real-time communication applications, such as
VoIP conferences, lies in minimizing the coder complexity
[13]- [14].
An obvious remedy to the above problem consists of
reducing the LPC quantization rate, which is related to
the number of entries in the VQ codebooks. This solution
however deteriorates the coded speech quality. Another
alternative is to confine the search of the closest codeword
to a smaller number of codebook entries. This latter
approach is widely used in the closed-loop pitch lag
search, where an open-loop pitch analysis is performed
first in order to limit the closed-loop pitch lag search to
few lags around the optimal open-loop pitch period. Even
though the objective is the same, conceptually the two
approaches are different. The issue here is about how to
implement this idea without decreasing the codebook bit
rate, and by consequence without deteriorating the coded-
speech quality. We believe that in CELP coding, some
aspects of the LPC quantization are still not fully utilized.

B. Shortcomings of the traditional CELP analysis

In the CELP encoder, linear prediction analysis of
order p is performed first on windowed speech frame
x(m), m = 0, . . . , M − 1, to extract p linear prediction
coefficients (a1, a2, . . . , ap). These coefficients are used
to build the LP analysis filter A(z),

A(z) =
p∑

i=1

aiz
−i. (1)

When applied to speech signal, this filter removes the
short-term redundancy and outputs an LP error signal
e(m) with quasi flat spectrum. The LP analysis process
is represented by the following equation:

E(z) = X(z)A(z). (2)

where X(z) and E(z) are the Z-transform of the win-
dowed speech x(m) and the LP error signal e(m), re-
spectively. In voiced speech, the magnitude spectrum of
e(m) contains a variety of harmonics which represent the
long-term periodicity in this class of speech.
In high-pitched voices, a harmonic may coincide with
a formant peak. In such situation, the LP analysis filter
will flatten the speech spectral envelope by removing not
only the short-term relevant spectral details but also some
energy of this harmonic. This phenomenon is illustrated
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in Figure 1. In this figure, the third harmonic of the speech
spectrum coincides with the first formant. As can be seen
in the LP error spectrum, the energy of this harmonic
is reduced after LP analysis. According to equation 2,
some of this energy is contained in the LP analysis filter
A(z). We have come to the conclusion that some LP
parameters may bear pertinent information about the long-
term periodicity in voiced speech. The current commonly-
used LP analysis and LP quantization ignore this LPC-
pitch correlation since they are both performed on a time
frame pitch-independent basis.
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Figure 1. (a) Speech spectrum with the LPC spectrum superimposed;
(b) spectrum of the LPC error signal.

To code efficiently the LP filter parameters, one must
employ separate codebooks for voiced, unvoiced, and
transient speech classes. In both G.729 and G.722.2
standards, the error between the current mean-removed
average LSF vector (or ISF in the G.722.2) and the
predicted LSF quantized error is coded using a combina-
tion of split and multistage vector quantization. In other
predictive vector quantization methods, the error between
the current and the last quantized LPC vectors (in the
LSF representation) is quantized by one or another VQ
technique. While the amplitude of this error is too small
in voiced speech, its values for unvoiced and transient
speech are significantly much higher with a large dynamic
range [15]. Figure 2 shows the square of the error rn−1,n

between two consecutive ISF vectors, pn−1 and pn in
a wideband speech signal. The ISF squared error En at
frame n is given by:

En =
p∑

i=1

(pn(i) − pn−1(i))2. (3)

III. VOICING-BASED VECTOR QUANTIZATION

In this section, we propose a new source-based encod-
ing technique to reduce the computational complexity of
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Figure 2. (a) Wideband speech signal; (b) ISF squared error between
consecutive frames.

the LPC vector quantization. This technique, called con-
strained voicing-based multistage vector quantization (C-
VBVQ), consists of three disjoint codebooks; a voiced-
speech codebook (VCB) quantizes the spectral infor-
mation in voiced speech, an unvoiced-speech codebook
(UCB) codes the unvoiced frames, and a third codebook
(TCB) employed in transition speech. This technique
looks similar to the split VQ. However, in the split VQ an
input vector is divided into two or more subvectors. Each
subvector is quantized using a separate codebook. In the
C-VBVQ technique, one main virtual codebook is split
into three codebooks, but each input vector is quantized
using exclusively one codebook. The three codebooks are
trained individually from voiced, unvoiced, and transition
speech, respectively. The search of the closest match to an
input LPC vector is confined to only one codebook. This
technique reduces the computational complexity without
requiring extra storage or additional bit resources. For
each speech frame, LP analysis is performed to extract 16
LP coefficients. The estimated LPC vector is compared
(after conversion to an equivalent ISF vector) to the
quantized LPC vector of the past frame using a squared
error distortion measure. The selection of the optimal
codebook for the current frame is based on the relative
magnitude of this distortion. We expect that in voiced
speech, consecutive LPC vectors are highly correlated. A
small error distortion is a cue of quasi-stationary voiced
speech.
We propose in this paper to exploit this correlation to
estimate the current ISF vector from the past frame ISF
coefficients. The motivation behind this idea is shown in
Figure 3. The interframe variation of different formants is
smooth in voiced segments, unlike unvoiced speech where
successive formants show very weak correlation. In the C-
VBVQ algorithm, a 1st-order predictor, with coefficient
1, is applied to the input ISF vector. The residual ISF
vector rn is quantized using exclusively either one of the

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2009 73

© 2009 ACADEMY PUBLISHER



three C-VBVQ codebooks. The details of this algorithm
will be given in the next section. Figure 4 illustrates the
concept of the C-VBVQ approach.

Figure 3. (a) Original wideband speech signal with voiced period marks;
(b) Formant trajectory.

IV. VOICING-BASED CODEBOOK DESIGN

A. Codebook optimization

In the C-VBVQ paradigm, the three codebooks are
trained from a large speech database. In the first phase
of the training process, we manipulate manually the
speech database to build three sets of speech segments.
The first set contains voiced speech, while the second
and third are populated from transition and unvoiced
speech, respectively. For each frame, we defined the
corresponding speech class using three criteria: the signal
normalized energy, the zero crossing rate, and the LPC
feature with linear discriminant analysis [16]. Since the
silence segments have very low energy, the adopted
classification criteria tend to join them to the unvoiced
speech set. In the second phase, for each set, LP analy-
sis of order 16 is performed every 20 ms using a 30
ms asymmetric window. The resulting LPC vectors are
converted to their corresponding ISF vectors. The error
between each pair of consecutive ISF vectors is then used
in the training of each codebook. Three codebooks, VCB,
TCB, and UCB using a combination of SVQ and MVQ,
are respectively designed for the three types of speech
segments. The procedure is similar to the one used in the
G.722.2 standard but it is applied to each of the three
codebooks of the C-VBVQ framework. Table I illustrates
the algorithm of the C-VBVQ codebooks training. Unlike
the unconstrained VBVQ framework, in which the three
codebooks are designed independently, the training of the
codebooks in the present work is structured. The VCB is
reoptimized, according to the UCB design, to guarantee
that the energy of each of its codevectors (or ISF errors)
is always smaller than those of the UCB ISF errors.
The TCB is designed separately since their codevectors
show significantly higher energy. This constrained design
of the VBVQ codebooks improves the performance of
the VBVQ approach since it provides robust criteria
for selecting the optimal codebook for ISF quantization.
These criteria are discussed in the next section.

TABLE I.
C-VBVQ CODEBOOKS TRAINING ALGORITHM

1) Classify the speech database into voiced, unvoiced and
transition speech.

2) Start with the class of unvoiced speech.
3) Perform LP analysis on every two consecutive frames

of the current speech class.
4) Transform the resulting LPC vectors to ISF vectors.
5) Compute the error between each consecutive ISF vec-

tors and stored it in an ISF error database.
6) Calculate the energy of these errors and store them

temporarily for later use.
7) Design a SVQ-MVQ based codebook from the ISF

error database.
8) Find the minimum ISF error energy, E

(UCB)
min .

9) Find the maximum ISF error energy, E
(UCB)
max and

define it as ε2.
10) Repeat steps 3 to 7 for the class of voiced speech.
11) Find the maximum ISF error energy for voiced speech,

E
(V CB)
max .

12) If E
(V CB)
max < E

(UCB)
min

go to step 14.
else

a) update the class of voiced speech by replacing
the speech frames providing errors greater than
E

(UCB)
min by new ones (producing errors smaller

than E
(UCB)
min ) from the speech database,

b) go to step 10.

13) Define E
(V CB)
max as ε1.

14) Repeat steps 3 to 7 for the class of transition speech.

B. Codebook bit allocation

To achieve a fixed bit rate, the three codebooks are
allocated the same amount of bits (44 bits). It is worth
mentioning that for the VCB codebook, a much smaller
bit rate is sufficient to produce competitive objective and
subjective performance to that of the G.722.2 codec. The
error between two consecutive ISF vectors is too small
in voiced speech. Its small variance allows significant bit
rate reduction.
At the end of the training process, each codebook will be
characterized by one index l, ranging from 0 to 2. Table
II shows the bit allocation of the C-VBVQ method. rn

is the ISF error vector between the current ISF vector
and the last frame quantized vector. In the first stage,
this vector is split into two subvectors rn,1 and rn,2 of
9 and 7 coefficients, respectively. Then quantized to r̂n,1

and r̂n,2. In the second stage, the resulting quantization
errors rn − r̂n,1 and rn − r̂n,2 are split into three and
two subvectors, respectively. A coding rate of 46 (44+2)
bits per ISF vector is required to encode the spectral
information. The codebook index is encoded as side
information with two bits. A total of 640 entries are to be
tested over the two stages of the quantization. This is a
reduction of almost 30% compared to the G.722.2 MVQ-
SVQ. Table III shows the number of the entries per vector
to be tested in the C-VBVQ.

V. SELECTION OF THE OPTIMAL CODEBOOK

For every frame, the input ISF vector, pn, is compared
to the last frame quantized ISF vector p̂n−1. A comparator
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Figure 4. (a) Concept of the constrained voicing-based vector quantization.

TABLE II.
BIT ALLOCATION OF THE C-VBVQ

Stage 1 stage 2
r1 (7 bits) (r − r̂1)(0 : 2) (6 bits)

(r − r̂1)(3 : 5) (7 bits)
(r − r̂1)(6 : 8) (7 bits)

r2 (7 bits) (r − r̂2)(0 : 2) (5 bits)
(r − r̂2)(3 : 6) (5 bits)

TABLE III.
NUMBER OF TESTED ENTRIES PER ISF ERROR IN THE C-VBVQ

Input vector Number of entries
r1 128
r2 128
(r − r̂1)(0 : 2) 64
(r − r̂1)(3 : 5) 128
(r − r̂1)(6 : 8) 128
(r − r̂2)(0 : 2) 32
(r − r̂2)(3 : 6) 32
Total 640

checks the error distortion, rn = pn − p̂n−1, between
the two vectors. If the energy of rn is smaller than a
certain threshold ε1 (defined in Table I as E

(V CB)
max ), the

VCB will be used for the search of the closest vector
to the input vector pn. Otherwise UCB or TCB will
be adopted according to the value of the square of rn

relative to another threshold ε2, which is introduced in
Table I as E

(UCB)
max . The advantage of this method is that

for steady-state speech frames, the percentage of hitting
the optimum in the VCB codebook is greater than 95%.
For non-stationary speech, such as unvoiced and transition
between different phonemes, the UCB and the TCB will
be used, respectively. Table IV illustrates the algorithm
for optimal codebook selection.

TABLE IV.
SELECTION OF THE OPTIMAL CODEBOOK

En =
∑i=15

i=0
r2
n(i)

if En ≤ ε1
optimal codebook = V CB

elseif ε1 < En ≤ ε2
optimal codebook = UCB

elseif ε2 < En

optimal codebook = T CB
end

VI. EVALUATION

We have conducted several simulations to compare
the performance, in terms of objective and subjective
measures, of the C-VBVQ to the common SVQ-MVQ
combination approach and unconstrained VBVQ. The
codebooks in the three techniques have been trained using
the same database. This is to avoid any effects of the
type of the database on the performance comparison. As
an objective quality measure, we selected the segmental
signal-to-noise Ratio (SEGSNR) at the output of the
decoder. The SEGSNR represents the average of the SNR
over the whole duration of the speech file. For a given
speech frame, the SNR is defined as

SNR(dB) = 10 log(
∑319

m=0 s(m)2∑319
m=0[s(m) − ŝ(m)]2

). (4)

where s(m) and ŝ(m) are the original and reconstructed
speech, respectively. The systems to be evaluated
are three versions of the same wideband algebraic
CELP (ACELP) coder. The three coders are similar
except in the ISF quantization, where in the first coder
we use a standard combination of SVQ-MVQ . In
the second and third ACELP coders, we implement
the unconstrained VBVQ (U-VBVQ) and C-VBVQ
techniques, respectively. To separate the effects of the
quantization of the other coder parameters (such as
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pitch lag and gain, LP excitation signal, and fixed
codebook contribution) on the result of the three coders
performance, only the spectral information is quantized
in the above coders. The database for training phase
consists of 150 minutes of English speech from 8
speakers; four women and four men. Each speaker read
the same short utterance 10 times. We used the squared
error ISF distortion for training and testing. However, the
weighted distortion measure of Paliwal and Atal [17] is
used to evaluate the ISF quantization in the three versions
of the ACELP coder. The evaluation simulations have
been conducted on eight different input sentences uttered
by other speakers. Table V presents the SEGSNR of the
three ACELP versions for clean speech. Table VI shows
the average spectral distortion between the input ISF
vectors and their corresponding quantized ISF vectors
after implementing the three quantization techniques for
clean speech. The improvements of the C-VBVQ over
the U-VBVQ approach are shown in Table VII and Table
VIII for noisy speech.
Informal listening tests, represented by the comparative
mean opinion score (CMOS), has been carried out as
subjective measure tool. The C-VBVQ coded speech is
compared separately with the SVQ-MVQ and U-VBVQ
coded speech. We rated, on a 3-point scale (-1, 0, 1),
the listeners opinion on the better quality among the
C-VBVQ versus U-VBVQ and SVQ-MVQ coded speech.
Point 1 is marked if a listener chooses the C-VBVQ
coded speech, -1 if the rival technique (SVQ-MVQ
or U-VBVQ) , and 0 if a listener couldn’t report any
clear difference between both signals. Table IX and
Table X depicts the high subjective performance of the
C-VBVQ approach with regard to both the SVQ-MVQ
and U-VBVQ.

VII. DISCUSSION AND CONCLUSIONS

The objective measure illustrates that the performance
of the C-VBVQ approach are slightly superior to the stan-
dard combination of SVQ-MVQ whilst the complexity is
reduced by almost one third in the C-VBVQ. The informal
listening tests reveal that the three techniques provide
competitive overall subjective quality for both clean and
noisy speech. For voiced clean speech, the U-VBVQ
and C-VBVQ subjective performance are significantly
higher than that of the SVQ-MVQ. However, the C-
VBVQ produces better coded-speech quality for voiced
noisy speech. The C-VBVQ technique, as well as the U-
VBVQ, reduces the execution time of the ISF parameters
quantization when operating at the same bit rate of
the G.722.2 SVQ-MVQ method. The overall complexity
expense of the spectral parameters coding is reduced by
almost 30 %. The major drawback of the U-VBVQ is
that its efficiency for noisy speech is negatively affected.
The correlation between two consecutive LPC vectors is
not too high in noisy speech, even for voiced stationary
segments. Unlike in clean speech, the number of wrong
decisions in the selection of the optimal codebook in-

TABLE V.
SEGSNR COMPARISON OF SVQ-MVQ, U-VBVQ, AND C-VBVQ

FOR CLEAN SPEECH

Speaker SEGSNR (dB)
SVQ-MVQ U-VBVQ C-VBVQ

Female 10.72 11.36 11.41
Male 9.88 10.55 10.60
Average 10.3 10.955 11.005

TABLE VI.
SPECTRAL DISTORTION COMPARISON OF COMMON SVQ-MVQ,

U-VBVQ, AND C-VBVQ FOR CLEAN SPEECH

ISF Quantization Avg SD (dB) Outliers (in %)
2-4 dB > 4 dB

SVQ-MVQ 1.29 2.34 0.04
U-VBVQ 1.20 2.36 0.07
C-VBVQ 0.92 2.01 0.03

TABLE VII.
SEGSNR COMPARISON OF COMMON SVQ-MVQ, U-VBVQ AND

C-VBVQ FOR NOISY SPEECH

Speaker SEGSNR (dB)
SVQ-MVQ U-VBVQ C-VBVQ

Female 10.10 10.90 11.38
Male 9.70 10.14 10.50
Average 9.9 10.52 10.94

creases in noisy voiced segments; UCB might be selected
to quantize the ISF vectors of a voiced frame. Since
each of the three codebooks of the U-VBVQ technique is
optimized specifically for only one type of speech (voiced,
unvoiced or transition), a wrong decision in the selection
of the optimal codebook will generate high quantization
errors. The C-VBVQ accommodates this drawback since
it imposes some robust criteria for selecting the best
codebook. The structural configuration of the C-VBVQ
codebooks, leading to three disjoint optimal codebooks, is
granted by the design constraints on the training process.
Even though not explicitly designed for noisy channels,
the C-VBVQ is fairly robust to propagation errors in the
transmitted ISF codevector index. When a transmission
error occurs, the codevector at the decoder is still obtained
from the same selected codebook at the encoder. This
will limit the quantization error to an upper worst-case
value. For example, when the transmission error occurs
in the VCB optimal ISF index, the quantization error is
still smaller than ε1 since at the decoder another vector
from the same VCB will be used instead. In the common
SVQ-MVQ, G.722.2-adopted technique, a channel error
in the ISF vector may lead to the use of a different-speech
class ISF vector at the decoder.
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TABLE VIII.
SPECTRAL DISTORTION COMPARISON OF COMMON SVQ-MVQ,

U-VBVQ AND C-VBVQ FOR NOISY SPEECH.

ISF Quantization Avg SD (dB) Outliers (in %)
2-4 dB > 4 dB

SVQ-MVQ 1.32 2.42 0.07
U-VBVQ 1.26 2.46 0.09
C-VBVQ 0.95 2.07 0.05

TABLE IX.
COMPARISON MEAN OPINION SCORE OF THE U-VBVQ TECHNIQUE

FOR CLEAN SPEECH.

Speaker CMOS
C-VBVQ vs SVQ-MVQ C-VBVQ vs U-VBVQ

Female 0.94 0.86
Male 0.90 0.82
Average 0.92 0.84

TABLE X.
COMPARISON MEAN OPINION SCORE OF THE U-VBVQ TECHNIQUE

FOR NOISY SPEECH.

Speaker CMOS
C-VBVQ vs SVQ-MVQ C-VBVQ vs U-VBVQ

Female 0.86 0.91
Male 0.83 0.82
Average 0.845 0.865
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