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Abstract— OFDM/OQAM is a multi-carrier modulation
scheme that, differently from conventional OFDM, does not
require any guard interval. Indeed, the interference that
results from a transmission over time and/or frequency
selective channels can be partly contained if the pulse
shape has been appropriately selected. Nevertheless, for
certain transmission conditions, a simple zero-forcing (ZF)
equalization is not enough to cancel this interference. In
this paper, we propose an Equalization with Interference
Cancellation (EIC) to counteract the performance floor
that characterizes OFDM/OQAM systems using a simple
ZF equalization. The basic principle rests on an accurate
computation of the interference term taking into account the
channel and the prototype filter coefficients. The simulation
results illustrate the efficiency of the EIC method.

Index Terms— OFDM, OFDM/OQAM, equalization

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM)
is an efficient Multi Carrier Modulation (MCM) to fight
against multi-path fading channels. However its robust-
ness to multi-path propagation effects comes from the
insertion of a Cyclic Prefix (CP) and is therefore ob-
tained at the price of a reduced spectral efficiency. As
furthermore the rectangular OFDM symbols lead to a
sin(x)/x frequency spectrum, several alternatives have
been researched to find better MCM schemes w.r.t. the
frequency and/or time-frequency localization criteria. In
OFDM/OQAM each subcarrier is modulated with an
Offset Quadrature Amplitude Modulation (OQAM). This
principle has been introduced long ago [1], but it is more
recently [2] that OFDM/OQAM has been presented as a
viable alternative to OFDM. Thus, relaxing the orthogo-
nality condition to the real field permits the introduction
of a pulse shaping that can provide a good localization in
time and frequency, which is not possible with OFDM.

Actually, one of the reasons to choose MCMs is
owing to its simpler equalization, e.g. OFDM equalizer
is basically carried out using one-tap Zero-forcing (ZF)
or Minimum Mean Square Error criteria, and that can
greatly compensate channel effects. Furthermore, the CP
prevents the inter-block interference introduced by the

This paper is based on "Equalization with Interference Cancellation
for Hermitian Symmetric OFDM/OQAM systems" by H. Lin, C. Lélé
and P. Siohan, which appeared in the Proceedings of the IEEE Interna-
tional Symposium on Power Line Communications and Its Applications,
2008 (ISPLC 2008), Jeju Island, Korea, April, 2008.

channel delay spread. On the other hand, thanks to the
good time/frequency localization feature, OFDM/OQAM
does not append any CP. Moreover, if the transmis-
sion does not require large-order constellations, one-tap
linear equalizer is still feasible [3], [4]. However, this
condition can hardly be guaranteed in modern digital
communications, wherein, it turns out that a one-tap
equalization is not enough to avoid a performance floor
[5]. Straightforwardly, we tend to expect some advanced
channel equalizers.

Among the existing equalization techniques for pulse
shaped MCMs, some of them are particularly based on
cosine modulated filter banks (CMFB), e.g. B. Farhang-
Boroujeny et al. proposed a post-combiner equalizer for
CMFB-based transmultiplexer, where equalization hap-
pens at each subcarrier and cooperates with its up and
down carriers [6]. But its convergence behavior rises
an important issue of complexity. Similarly, Alhava and
Renfors proposed an Adaptive Sine/Cosine equalization
(ASCET) for CMFB-based transmultiplexer which is rel-
atively less complex and takes advantage of fractionally-
spaced equalizer [7]. Besides CMFB, Nedic et al. pro-
posed a per-bin decision feedback equalization (DFE)
for OFDM/OQAM [8], where the equalizer is composed
by a feed-forward filter and a feed-back filter with their
coefficients estimated by Least Mean Square algorithm or
Recursive Least Square algorithm, but its complexity still
remains high. However, none of these presented equal-
izers take into account the knowledge of the prototype
filter’s coefficients. In this paper, we present a DFE-liked
equalizer called Equalization with Interference Cancella-
tion (EIC) which takes advantage of this knowledge to
precisely calculate the interference value so that we can
perfectly remove it. The practical implementation will be
introduced as well.

The following sections are organized as: In section II,
we recall some of the main features of OFDM/OQAM
and its links with CMFB. In section III, we give a short
overview of our transmission model and the demodulation
with one-tap OFDM/OQAM equalization. In section IV,
we analyze the interference of OFDM/OQAM systems. In
section V, we present our EIC equalizer. In section VI,
we compare the performance of conventional OFDM and
OFDM/OQAM with and without EIC. For brevity, in the
rest of this paper we name OFDM/OQAM as OQAM.
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âM−1,n

P

O

L

Y

P

H

A

S

E

F

I

L

T

E

R

I

N

G

P

M

O

D

U

L

A

T

I

O

N

O S T�

�

�

�

�

�

�

�

�

�

�

�

��channel �

Figure 1. Structure of the transmultiplexer associated to the OFDM/OQAM modulation.

II. DESCRIPTION OF OQAM MODULATION

In this section, we give a short remind of OQAM
modulation. The readers who have interests in OQAM
can find the details in [2], [9].

A. General description of continuous-time OQAM

The baseband equivalent of a continuous-time OQAM
signal can be written as follows [2]:

s(t) =
M−1∑
m=0

∑
n∈Z

am,n g(t − nτ0)ej2πmF0tejφm,n︸ ︷︷ ︸
gm,n(t)

. (1)

with φm,n = φ0 +
π

2
(n + m) (mod π), (2)

an additional phase term in which φ0 can be arbitrarily
chosen, M an even number of sub-carriers, F0 = 1/T0 =
1/2τ0 the subcarrier spacing and g the pulse shape.
The transmitted symbols am,n are real-valued. They are
obtained from a 22K-QAM constellation, taking the real
and imaginary parts of these complex-valued symbols of
duration T0 = 2τ0, with τ0 the time offset between the
two parts [2], [9]–[11].

Assuming a distortion-free channel, perfect reconstruc-
tion of real symbols is obtained owing to the following
real orthogonality condition:

�{〈gm,n|gp,q〉} = �{
∫

gm,n(t)g∗p,q(t)dt} = δm,pδn,q,

(3)
where ∗ denotes the complex conjugation, δm,p = 1 if
m = p and δm,p = 0 if m �= p. For concision purpose,
we set 〈g〉p,q

m,n = 〈gm,n|gp,q〉, with 〈gm,n|gp,q〉 a pure
imaginary term for (m, n) �= (p, q).

B. General description of discrete-time OQAM

At a sampling period Te = T0
M

, the discrete-time
formulation of the baseband OQAM signal (1) is given
by

s[k] =
M−1∑
m=0

∑
n∈Z

am,n g[k − nN ]ej 2π
M

m(k− L−1
2 )ejφm,n︸ ︷︷ ︸

gm,n[k]

(4)
where N = M/2 is the discrete-time offset and L is the
length of the prototype filter g. This modulated signal
can be written using the filter bank formalism. Indeed,

it is shown in [9] that after a simple premodulation
stage, the data on each sub-carrier are filtered by an
exponentially modulated version of the prototype filter
g[k]. This implementation can be based, as for OFDM,
on an Inverse Fast Fourier Transform (IFFT). Similarly,
at the receiver side the dual operations are carried out. The
overall structure thus corresponds to a modulated trans-
multiplexer (TMUX) where, assuming that the OQAM
prototype filter is of unit energy, the synthesis and analysis
filter bank, for m = 0, ..., M − 1, k = 0, ..., L − 1, are
such that:

fm[k] = g[k]ej 2π
M

m(k−L−1−N
2 ), (5)

hm[k] = g[k]ej 2π
M

m(k− L−1+N
2 ) = f∗

m[L − 1 − k], (6)

respectively. If, as assumed in the rest of the paper, the
prototype filter g[k], is real-valued and symmetrical, then
hm[k] = fm[k] for all m and k. Note that as OQAM has
no CP, the prototype length can be limited to the FFT
size, i.e. Lmin = M . The prototype filter G(z) can also
be expressed as a function of its polyphase components
El(z) of order 2N [12]:

G(z) =
2N−1∑
l=0

z−lEl(z2N) with El(z) =
∑

n

g[l+2N ]z−n

In [9], it is shown that, for OQAM, one gets a perfect
orthogonality if and only if, for 0 ≤ l ≤ N − 1:

El(z)El(z−1) + El+N (z)El+N (z−1) =
1
N

, ∀z. (7)

In Fig. 1, we depict the main building blocks of this
OQAM TMUX. The details of the structure can be found
in [9]. When a prototype filter satisfies the orthogonality
condition (7), then, for a distortion-free channel, extract-
ing the real part, see � (.) in Fig. 1, we perfectly recover
the transmitted symbol: ∀(m, n), âm,n = am,n. However,
in practice, for transmission over a realistic channel, the
orthogonality property is lost, leading to Inter Symbol
Interference (ISI) and Inter Carrier Interference (ICI).

Note also from (7) that for OQAM we recover a Perfect
Reconstruction (PR) condition already known for CMFB
[12].

III. CHANNEL MODEL

A. OQAM transmission over multi-path channel

For derivation simplicity, we assume the channel is
time-invariant. In [3], it is assumed, as also generally the
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case for CP-OFDM, that, using a sufficiently high number
of sub-carriers, a flat fading happens at each sub-carrier.
Then, the baseband version of the received signal, noise
taken apart, can be written as follows:

y(t) = (h ⊗ s) (t)

=
∑
n∈Z

M−1∑
m=0

am,n

∫ ∆

0

h(τ)gm,n(t − τ) dτ

=
∑
n∈Z

M−1∑
m=0

am,nejφm,ne2jπmF0t

×
∫ ∆

0

h(τ)g(t − τ − nτ0)e−2jπmF0τdτ

=
∑
n∈Z

M−1∑
m=0

am,nHmgm,n(t), (8)

with ⊗ the convolution operation, ∆ the maximum delay
spread and Hm =

∫ ∆

0 h(τ)e−2jπmF0τdτ , where h de-
notes channel impulse response (CIR). The last equality
in (8) only holds if the prototype function has relatively
low variations in time over the interval [0, ∆] that is,
g(t − τ − nτ0) ≈ g(t − nτ0) for τ ∈ [0, ∆].

B. Demodulation and Zero Forcing equalization

The demodulation of the received signal at the (m0, n0)
position, noise taken apart, provides a complex symbol
given by ym0,n0 = 〈y|gm0,n0〉. After computations, we
get the following expression:

ym0,n0 = Hm0am0,n0 +
∑

(m,n) �=(m0,n0)

am,nHm 〈g〉m0,n0
m,n

(9)
Then, as shown in [3], with ZF equalization and noise
taken into apart, for any demodulated signal of index
(m0, n0) in the time-frequency plane, the estimated sym-
bol is given by

âm0,n0 = am0,n0 + �{Im0,n0} (10)

where,

Im0,n0 =
∑

(m,n) �=(m0,n0)

am,n

Hm

Hm0

〈g〉m0,n0
m,n (11)

is a complex-valued term. �{Im0,n0} can be interpreted
as the residual interference due to the channel spreading,
and it will be further analyzed in next section. [3] shows
that, if the prototype filter is well localized in time
and frequency, we can get: �{Im0,n0} ≈ 0, leading to
reliable estimation of am0,n0 . Therefore, we can have
an accurate detection of am0,n0 as long as we know the
channel coefficient Hm0 on the receiver side. However,
the approximations we use for g and �{Im0,n0} are no
longer held when the channel delay spread is long or/and
when the constellation order is high. Indeed large constel-
lations, e.g. 16-QAM or beyond, require high Signal-to-
Noise Ratio (SNR) and then �{Im0,n0} is not negligible
compared to noise.

IV. ICI AND ISI ANALYSIS

A particular feature of OQAM modulation is the
overlapping between successive OQAM block symbols.
Indeed, as any OQAM filter bank implementation shows,
see e.g. [9], the expansion factor, here given by N =
M/2, is always less than the prototype filter length
(Lmin = M ). Then at the transmitter side, some potential
interferences have already existed even without the pres-
ence of channel effects, and these interferences include
ICI and ISI. If we take a look at the time-frequency

n0

m0

f

tn0 + τ0n0 − τ0

m0 − F0

m0 + F0

Figure 2. Time-frequency lattice.

lattice of the demodulated OQAM symbols with ideal
noiseless channel as shown in Fig. 2, the target symbol
am0,n0 is interfered by its neighboring symbols. Indeed,
the most powerful interferences come from the blue zone
symbols where we call them 1-tap neighborhood symbols.
Moreover, with increasing the zone size, the power of
interferences is decreasing. That is to say if the prototype
filter is well localized in time and frequency domain, then
the interferences can be limited to a certain zone size, or,
certain neighboring taps.
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Figure 3. Ambiguity function for the IOTA4 prototype filter.

For example, Fig 3 shows the ambiguity function
of a prototype called Isotropic Orthogonal Transform
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Algorithm (IOTA) [2], where its energy is isotropically
spreading towards the time and frequency. Actually, how
far does its energy spread shows how far does one symbol
filtered by the prototype filter can impact. Thus, we find
that most of the interferences can be limited into a 3-tap
neighborhood area. On the other hand, it is worth noting
that, although the OQAM modulated signal contains its
own interfering components, the demodulation can still
re-build the orthogonality. It is because these interferences
are pure imaginary valued, which again corresponds to
the orthogonal condition (3), i.e. OQAM allows to have
non-orthogonality in the imaginary field. Mathematically
speaking, let us re-use the demodulation model (9) with
distortion-free noiseless channel as

ym0,n0 = am0,n0 +
∑

(m,n) �=(m0,n0)

am,n 〈g〉m0,n0
m,n

= am0,n0 + Im0,n0 ,

where the transmitted symbols am0,n0 are real-valued,
and as we mentioned before, 〈g〉m0,n0

m,n is pure imaginary
valued. Therefore, Im0,n0 remains pure imaginary valued.
Ultimately, that leads to �{Im0,n0} = 0. However, in the
case of non-ideal channel, �{Im0,n0} = 0 is only an
approximation and it depends on whether the transmission
requires large-order constellations or not. To explain this,
we now detail the interference term of (11), which can
further be separated into two terms as

Im0,n0 = Cm0,n0 + Dm0,n0 , (12)

where

Cm0,n0 =
∑

(p,q) �=(0,0)

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q , (13)

is a pure imaginary term and stands for the interfer-
ences that come from the lattice zone where the channel
coefficients are assumed to be the same as Hm0 (i.e.
Hm0+p = Hm0 ). On the other hand,

Dm0,n0 =
∑

(p′,q′)>(p,q)

am0+p′,n0+q′

Hm0+p′

Hm0

〈g〉m0,n0
m0+p′,n0+q′

(14)
is a complex term and denotes the interferences that come
from the lattice zone where the channel is different to
Hm0 (i.e. Hm0+p′ �= Hm0 ). Then, we can rewrite (10) as

âm0,n0 = am0,n0 + �{Dm0,n0}. (15)

It is obvious that Dm0,n0 is independent of noise,
which means that increasing SNR can not help to reduce
the interference Dm0,n0 . Furthermore, in the large order
constellation case, high SNR is always required to obtain
a satisfying Bit Error Rate (BER), which corresponds to
weak noise. Thus, Dm0,n0 becomes a predominant inter-
ference. Thereby, a performance floor appears. However,
in the small-order constellation case, these interferences
are covered by noise, thus, can be neglected.

V. TWO-STEP EQUALIZATION WITH INTERFERENCE

CANCELLATION (EIC)

A. Theoretical derivation

In this section, we propose a two-step equalization
strategy in order to counteract the performance loss that
occurs when the approximations are no longer satisfied,
i.e. g(t − τ − nτ0) �= g(t − nτ0) and �{Im0,n0} �= 0.

Then, the demodulated signal at the (m0, n0) position,
noise taken apart, is given by

ym0,n0 = 〈y|gm0,n0〉

=
∫ ∞

−∞

∑
n∈Z

M−1∑
m=0

am,n

×
∫ ∆

0

h(τ)gm,n(t − τ) dτg∗m0,n0
(t)dt

=
∑
n∈Z

M−1∑
m=0

am,nej(φm,n−φm0,n0)

×
∫ ∆

0

h(τ)e−j2πmF0τf(τ)dτ (16)

where,

f(τ) =
∫ ∞

−∞

ej2π(m−m0)F0tg(t−τ −nτ0)g∗(t−n0τ0)dt.

(17)
Substituting in f(τ) the variables as follows, t−τ−nτ0 =
µ + τ ′

2 and t − n0τ0 = µ − τ ′

2 , we get

f(τ) =
∫ ∞

−∞

g(µ +
τ ′

2
)g∗(µ − τ ′

2
)

× e
j2π(m−m0)F0

(
µ+

(n0+n)τ0+τ

2

)
dµ

= ejπ(m−m0)F0((n0+n)τ0+τ)

× Ag[(n0 − n)τ0 − τ, (m − m0)F0] (18)

where, Ag(τ, ν), the ambiguity function of g(t), is defined
as:

Ag(τ, ν) =
∫ ∞

−∞

g(t +
τ

2
)g∗(t − τ

2
)ej2πνtdt. (19)

Substituting (18) into (16) leads to:

ym0,n0 =
∑
n∈Z

M−1∑
m=0

am,nej(φm,n−φm0,n0 )

×
∫ ∆

0

h(τ)e−j2πmF0τf(τ)dτ

= am0,n0

∫ ∆

0

h(τ)e−j2πm0F0τAg(−τ, 0)dτ + Jm0,n0

where the complex-valued term Jm0,n0 , summation of ISI
and ICI for a given time-frequency point (m0, n0), is:

Jm0,n0 =
∑

(m,n) �=(m0,n0)

am,nej(φm,n−φm0,n0)

× ej π
2 (m−m0)(n0+n)

∫ ∆

0

h(τ)e−jπ(m0+m)F0τ

× Ag[(n0 − n)τ0 − τ, (m − m0)F0]dτ.
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Based on the two previous equations, an ideal equalization
with interference cancellation would provide equalized
data symbols given by:

âm0,n0 = �
{

ym0,n0 − Jm0,n0∫∆

0
h(τ)e−j2πm0F0τAg(−τ, 0)dτ

}
.

�

�

�

OQAM

DEMOD

CE

EIC

â
(1)
m0,n0 â

(2)
m0,n0

Figure 4. Receiver structure with EIC equalizer.

The receiver structure depicted in Fig. 4 shows a
practical implementation of this ideal equalizer. In a first
step, we get equalized data symbols such that

â(1)
m0,n0

= HD

[
�
{

ym0,n0

Ĥm0

}]
, (20)

where HD[·] denotes hard decision, Ĥm0 stands for the
estimated channel coefficient at frequency m0, which can
be obtained using Channel Estimation (CE) [3].

In a second step, we compute the channel time re-
sponse, ĥ(τ), Inverse Fourier Transform (IFT) of Ĥ

(c)
m

with m = 0, · · · , M − 1. Thus, we can get an estimated
value of the interference term

Ĵm0,n0 =
∑

(m,n) �=(m0,n0)

â(1)
m,nej(φm,n−φm0,n0)

× ej π
2 (m−m0)(n0+n)

∫ ∆

0

ĥ(τ)e−jπ(m0+m)F0τ

× Ag[(n0 − n)τ0 − τ, (m − m0)F0]dτ. (21)

Finally, using the interference cancellation principle, we
find equalized data symbols given by

â(2)
m0,n0

= �
{

ym0,n0 − Ĵm0,n0∫∆

0
ĥ(τ)e−j2πm0F0τAg(−τ, 0)dτ

}
. (22)

B. Implementation algorithm

However, if a direct computation based on (22) imple-
ments a nearly-perfect ICI and ISI cancellation, it also
requires with (21) a computational complexity of order
M2 for each time-frequency point (m0, n0), with M
generally being a fairly large number. In practice, this
complexity can be reduced taking into account the three
following facts.

Firstly, as discussed in section IV, with a time-
frequency well-localized prototype filter, the summation
in (21) can be limited to a small size neighborhood around
(m0, n0). Let Ω∗

∆m,∆n denote this neighborhood with
Ω∗

∆m,∆n = Ω∆m,∆n − (0, 0) and Ω∆m,∆n = {(m0 +

p, n0 + q), |p| ≤ ∆m, |q| ≤ ∆n}. The main interference
terms are due to the closest positions, i.e. |p| and |q| less
or equal 3 for IOTA case.

Secondly, Ĵm0,n0 can be computed with FFTs.
Thirdly, since the channel delay spread ∆ is signifi-

cantly less than T0 (in discrete time, this means that the
channel length, we denote by Lh, is only a fraction of M ),
then the computation complexity may be further reduced
with pruned FFTs.

Let us illustrate more in details this three-step reduction
of complexity using, for example, a neighborhood Ω∗

1,1,
also called 1-tap neighborhood, where |p| = |q| ≤ 1.
Without loss of generality, we assume that the phase term
in (2) is such that φ0 = 0. Then, the interference can be
expressed as

Ĵm0,n0 =
∑

(p,q)∈Ω∗
1,1

â
(1)
m0+p,n0+qe

j π
2 (p+q)ej π

2 p(2n0+q)

×
∫ ∆

0

ĥ(τ)e−jπ(2m0+p)F0τAg(−qτ0 − τ, pF0)dτ.

As in discrete-time, we have T0 = 2τ0 = 1/F0 =
MTe, the 1-tap neighborhood interference becomes:

Ĵm0,n0 =
∑

(p,q)∈Ω∗
1,1

â
(1)
m0+p,n0+qe

j π
2 (p+q+pq+2pn0)Bm0 [q, p],

(23)

where

Bm0 [q, p] =
Lh−1∑
k=0

ĥ[k]Ag

[
−q

M

2
− k, pF0

]
e−j

π(2m0+p)k
M .

(24)

Note that in the computation of Bm0 [q, p] all terms related
to the ambiguity function can be calculated off-line and
also that, since Bm0 [q, p] does not depend on n0, it only
needs to be evaluated at the preamble rate, i.e. at a slow
rate. Furthermore, this computation can be computed by
FFTs. First of all, for a given m0, when p = 0, we have:

Bm0 [q, p = 0] =
Lh−1∑
k=0

ĥ[k]Ag

[
−q

M

2
− k, 0

]
e−j

2πm0k

M ,

and for |p| = 1 we have:

Bm0 [q, p] =
Lh−1∑
k=0

ĥ[k]Ag

[
−q

M

2
− k, pF0

]
e−j

2π(2m0+p)k
2M .

As ĥ[k] is zero for k ≥ Lh, both quantities can be
obtained as pruned FFTs [13] of size M and 2M ,
respectively. For p = 0, the vector Bm[q, 0] is calculated
by an M -point pruned FFT of ĥ[k]Ag

[−q M
2 − k, 0

]
.

For p = 1, Bm[q, p] corresponds to the even
polyphase components of a 2M -point pruned FFT of
ĥ[k]Ag

[−q M
2 − k, pF0

]
. Then, using the symmetry prop-

erty of the ambiguity function Ag(τ, ν), (i.e. Ag(τ, ν) =
Ag(τ,−ν)), Bm[q,−p] does not need to be calculated
again, and it is only a frequency shift version of Bm[q, p].
Moreover, for q = p = 0, an M -point pruned FFT of
ĥ[k]Ag[−k, 0] gives the denominator coefficients of (22).
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Consequently, the overall computational cost of the inter-
ference calculation is in O(M log2 Lh). A more general
complexity analysis as a function of the neighboring taps
will be shown later.

VI. SIMULATION RESULTS

In our simulations, we compare CP-OFDM with
OQAM with/without EIC over a multi-path channel
model with constellation orders from small to large.
Moreover, we first consider the case of a transmission
without channel coding, then the simulation results with
channel coding will be shown to check the efficiency of
EIC equalizer.

A. Simulation parameters and channel model

The main parameters of the transmission system are:
• Sampling frequency: 10 MHz;
• Constellation: 4, 16, 64-QAM;
• FFT size: 128;
• CP length: maximum channel delay spread plus 2

samples (Lh + 2);
The simulations are carried out with discrete-time models
and prototype filters of finite length that are all optimized
w.r.t. the time-frequency localization (TFL). Thus, the
IOTA prototype function [2] used is truncated, and has
a duration of 4T0 leading to a length L = 4M = 512. It
is designated as IOTA4.

Note that since the objective of our simulations is to
evaluate EIC performance, we assume perfect channel
estimation at the receiver i.e. the receiver knows perfectly
channel coefficients. The channel model, in our simu-
lations, is a simple 2-path Rayleigh channel with Line-
of-Sight (LOS) propagation. The complex coefficients
of the two paths, named α1 and α2, are independently
generated and with power profiles (in dB): −4,−15, i.e.
E{|α1|2} = 0.398 and E{|α2|2} = 0.03162. Moreover,
in order to guarantee the LOS propagation, we set the
amplitude of α1 to be at least 4 dB stronger than that of
α2 in each channel realization. The channel coefficients
are normalized before being applied to simulations, such
that, the normalized coefficients of the two paths are
α′

1 = α1√∑
n

E{|αn|2}
and α′

2 = α2√∑
n

E{|αn|2}
, with

n = 1, 2. Furthermore, since OQAM modulation is pretty
sensitive to the delay spread, therefore, the delay profile
of this model is set to around 12.5% of FFT interval (1.6
µs) and 16.7% of FFT interval (2.31 µs), respectively.
Note also that we assume that the channel remains non-
variant during 20 symbols duration (0.288 ms).

B. Simulation results

The simulation results, in BER versus SNR, expressed
as Eb/N0, are depicted in Figs. 5, 6, 7 for 4, 16 and 64-
QAM, respectively. Each figure has 4 curves which are
CP-OFDM with CP length of Lh + 2 where Lh = M

8
(1.6 µs), OQAM with simple one-tap ZF, OQAM with
EIC and ideal OFDM, where ideal OFDM corresponds to
CP-OFDM without considering the loss due to CP.
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OQAM−EIC Ω*
3,3

Figure 5. BER versus Eb/N0 for uncoded 4-QAM with Lh = M
8 .
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Figure 6. BER versus Eb/N0 for uncoded 16-QAM Lh = M
8 .

For 4-QAM in Fig. 5, let us first see the difference
between CP-OFDM versus ideal OFDM. Since the CP
length of OFDM is longer than the maximum channel
delay spread, then we can expect an ICI/ISI-free trans-
mission. That is to say the performance decay of CP-
OFDM, compared to the ideal OFDM bound, is due to
the loss of spectral efficiency, which can be calculated
by 10 log10

128+18
128 ≈ 0.57 dB. Next we take a look at

the case of OQAM with ZF versus CP-OFDM. Since
OQAM does not apply CP, then it fully gains spectral
efficiency, but compared to ideal OFDM, OQAM still
has a performance loss which reveals one-tap ZF can not
perfectly cancel interference. Besides, the performance
floor problem of OQAM with ZF is not that obvious in 4-
QAM case, that proves what we mentioned before: when
noise is more powerful than interference, ZF equalizer
remains feasible for OQAM system. On the other hand,
the curve of OQAM with EIC is totally superposed with
that of ideal OFDM, which proves that the EIC equalizer
can perfectly cancel the interference.
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Figure 7. BER versus Eb/N0 for uncoded 64-QAM Lh = M
8 .

Fig. 6, 7 show that when increasing the constellation
order, the results are relatively changing. The first insight
points to OQAM with ZF where a performance floor
problem appears in a more obvious way. This again proves
that, when constellation order gets larger, the system
requires more SNR for satisfactory transmission. In this
case, the remaining interference of OQAM turns to be
a serious issue that one-tap ZF equalizer is no longer
be able to fix. Differently, in OQAM with EIC case,
its performance curve always attaches the one of ideal
OFDM even with 64-QAM constellation.
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ideal OFDM

OQAM−EIC Ω*
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Figure 8. BER versus Eb/N0 for uncoded 4-QAM Lh = M
6

.

Next, since OQAM system is fairly sensitive to channel
delay spread, thereby, we enlarge the channel delay spread
length to evaluate how far can EIC equalizer go. This time
we set our channel delay spread to Lh = M

6 (2.31 µs). In
the cases of 4, 16-QAM as shown in Fig. 8, 9, EIC can
have the same performance as ideal OFDM. Moreover,
compared to CP-OFDM, the spectral gain increases to
10 log10

128+23.34
128 ≈ 0.73 dB. Thus, we can say that until

now EIC equalizer performs perfectly on interference

cancellation. Although, for the last case of 64-QAM in
Fig. 10, the curve of OQAM with EIC tends to intersect
with that of CP-OFDM, however, we can reasonably
expect that channel coding can help to compensate this
performance delay.
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Figure 9. BER versus Eb/N0 for uncoded 16-QAM Lh = M
6 .
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Figure 10. BER versus Eb/N0 for uncoded 64-QAM Lh = M
6 .

Finally, we re-simulate the worst case for OQAM: 64-
QAM, Lh = M

6 , and this time we use convolutional chan-
nel coding (R = 1

2 , K = 7, g0 = 133oct, g1 = 171oct).
The performances are depicted in Fig. 11, the curve of
OQAM with EIC returns back to the expected place.
Conservatively speaking, for this simulation model, EIC
equalizer with convolutional coding can perfectly cancel
interference and retain the spectral efficiency gain with
constellation up to 64-QAM, as long as the maximum
channel delay spread is less than 16.7% of FFT interval.

C. Complexity evaluation

Speaking of the complexity, OQAM with EIC has two
types of computation. One is the calculations that are
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TABLE I.
COMPUTATIONAL COMPLEXITY OF κ-TAP NEIGHBORHOOD EIC EQUALIZER: FFT SIZE M , CHANNEL LENGTH Lh .

Mr Ar Dr

off-line (8κ2 + 8κ + 4)M log2 Lh − 4Lh (4κ2 + 4κ + 2)(3M log2 Lh + 2M) − (2κ2 + 3κ + 3)2Lh 0
on-line (16κ2 + 16κ + 6)M (16κ2 + 16κ)M 2M
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Figure 11. BER versus Eb/N0 for 64-QAM with convolutional code
and Lh = M

6 .

triggered only once when the estimated channel coeffi-
cients are updated. Furthermore, the calculation can be
implemented off-line. Thus, we denote this type as off-
line computation. The other one is the calculations that
need to be carried out in each τ0 symbol period, we
denote this one as on-line computation. The extra compu-
tations of EIC are: the off-line computations of calculating
the estimated CIR by an IFFT and a calculation of a
part of Ĵm0,n0 i.e., Bm0 [q, p] in (24). Plus, the on-line
computations of calculating the rest part of Ĵm0,n0 (23);
a subtraction (ym0,n0 − Ĵm0,n0) in (22) and a vector
division of (22). Numerically, Markel’s algorithm shows
that a pruning output sample with length-L of M-point
FFT [14] (i.e. assuming that only the first L, L < M ,
output points are needed) requires 2M log2 L − 4L real
multiplications (Mr), and 3M log2 L + 2M − 4L real
additions (Ar). While, Skinner’s algorithm shows that a
pruning input sample with length-L of M-point FFT [15]
requires 2M log2 L (Mr), and 3M log2 L + 2M − 2L
(Ar). Thus, with reference to the symmetry property
of ambiguity function in section. V-B, we layout the
computational complexity of EIC equalizer with Ω∗

κ,κ in
Table I, assuming that one complex multiplication needs
4 Mr and 2 Ar; one complex addition needs 2 Ar; one
complex inversion needs 2 Mr, 1 Ar and 2 real division
(Dr).

VII. CONCLUSION

In this paper, we have presented an equalization algo-
rithm, named Equalization with Interference Cancellation
(EIC), that counteracts the error floor effect which is

characteristic of OFDM/OQAM modulation schemes with
one tap equalization. The efficiency of this method has
been illustrated with various simulation results.
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