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Abstract Over the past several years, diversity methods 

such as space, time, and polarization diversity have been 

successfully implemented in wireless communications 

systems. Orthogonal space-time block codes efficiently 

combine space and time diversity, and they have been 

studied in detail. Polarization diversity has also been 

studied, however it is usually considered in a simple 

concatenation with other coding methods. In this paper, an

efficient method for incorporating polarization diversity 

with space and time diversity is studied. The simple yet 

highly efficient technique is based on extending orthogonal 

space-time block codes into the quaternion domain and 

utilizing a description of the dual-polarized signal by means 

of quaternions. The resulting orthogonal space-time-

polarization block codes have given promising results in 

simulations. In the example described in this paper, the 

achievable performance gain for two transmit and one 

receive antennas is approximately 6 dB at a bit error rate of 

10-4 when compared with the Alamouti code.

Index Terms polarization diversity, space-time processing, 

quaternions, block codes

I. INTRODUCTION

Orthogonal space-time block codes (OSTBCs) based on 

complex orthogonal designs were introduced as an 

effective way to combine space and time diversity using 

multiple transmit and (optionally) multiple receive 

antennas [1, 2]. The additional transmit antennas allow 

for transmission channels that experience independent 

Rayleigh fading, and the orthogonality of the columns in 

the underlying design allows for a simple maximum 

likelihood (ML) decoding algorithm based only on linear 

processing at the receiver [1].  However, for more than 

two transmit antennas, it is impossible to achieve full rate 

for complex signal constellations, so any gains must be 

weighed against this reduction in rate [3].  Alternatively, 

the orthogonality condition can be sacrificed, but this 

results in a significant increase in receiver complexity, 

and in general, no means of a decoupled ML decoding 

method [4]. 

Recently, the demand for high rates in mobile 

communications has raised interest in applying 

polarization diversity, often together with other forms of 

diversity [5,6]. Polarization diversity is a technique where 

information is transmitted and received simultaneously 

on orthogonally polarized waves with fade-independent 

propagation characteristics. It has been shown [5,6] that it

can significantly add to the performance improvements 

offered by other diversity techniques and be nearly as 

effective as spatial diversity for base station antennas, 

without a noticeable increase in their dimensions. 

Some efforts to utilize polarization diversity jointly 

with OSTBCs have been previously described [7], but 

these were limited to the use of conventional complex 

OSTBCs without attempting to introduce a code specially 

designed to jointly utilize all three diversity techniques. 

In this paper, we propose to design orthogonal space-

time-polarization block codes (OSTPBCs) based on 

recently defined orthogonal designs with quaternion 

elements [8]. Quaternions were used in the past to 

construct complex OSTBCs, e.g. [9], but the technique 

presented in this paper is significantly different as our 

approach does not involve non-linear processing as the 

one presented in [9]. It should be noted that the similar 

performance gains can be achieved using conventional 

OSTBCs but at the expense of significant increase in the 

receiver dimensions due to antenna spacing requirements.

II. QUATERNION ORTHOGONAL DESIGNS

In this section, we provide an overview of quaternion 

orthogonal designs, which will be the building blocks for 

our proposed space-time-polarization block codes.  As 

quaternion orthogonal designs are a generalization of 

complex orthogonal designs, and as these complex 

designs will be used later in this paper, we begin by 

reviewing complex orthogonal designs.

Complex orthogonal designs and their various 

generalizations have been successfully applied in wireless 
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communications systems. The following generalization 

provided by Tarokh et al [1] has been particularly useful:

Defn 1: A generalized complex orthogonal design G is a

p x n matrix whose entries are from {0, z1, z2 , zu, z1*, 

z2 , zu*} including possible multiplications by the 

complex number i, such that

n

u
2

I||GG
1l

ll

H z

where H indicates the Hermitian transpose, In is the n × n

identity matrix, and l is the positive number of times the 

variable zl appears in each column.

More recently, orthogonal designs over the quaternion 

domain have been studied [8].  The noncommutative 

quaternions, invented by Hamilton in 1843, can be 

viewed as a generalization of the complex numbers. The 

quaternion elements Q = {±1, ±i, ±j, ±k} satisfy i2
= j2

=

k2
= ijk = 1. Given a quaternion variable s =

kyjxiyx 2211 where x1, y1, x2, y2 are real variables,

the quaternion conjugate sQ
is defined analogously to the 

complex conjugate so that

kyjxiyx

kyjxiyxs QQ

2211

2211 )(
. (1)

We note that for a complex variable z, we have ,
*

zj jz

where z*
is the complex conjugate of z. It follows that sQs

= |s|
2

= |z1|
2

+ |z2|
2

= x1
2

+ y1
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+ x2
2

+ y2
2

. For matrices of 

quaternion numbers or variables, the quaternion 

transform is analogous to the Hermitian transform for 

complex matrices: For a quaternion matrix S = [slm] , we 

define the quaternion transform as S
Q

= [sQ
ml]. This leads 

to the following definition of quaternion orthogonal 

designs [8], which is clearly a generalization of Defn 1:

Defn 2: A quaternion orthogonal design (QOD) D on

quaternion variables s1, s2 su is a p × n matrix with 

entries from the set

including possible multiplications on the left and/or right 

by quaternion elements q Q satisfying

n

u

l

ll

Q s IDD
1

2|| ,

where l is the positive number of times the variable sl

appears in each column. 

Several construction methods for obtaining QODs over 

quaternion variables, as well as for QODs over real and 

complex variables, have been introduced [8, 10]. One of 

these construction methods will be utilized below in 

Section V.  Previously, the application of QODs as 

orthogonal space-time-polarization block codes has been

briefly described [8], and this current paper expands upon 

on this application 

[11]. 

III. QUATERNIONIC REPRESENTATION  OF DUAL 

POLARIZED SIGNALS

Quaternions are very well suited to describe rotations and 

sequences of rotations and were used by Isayeva and 

Sarytchev [12] to describe dual-polarized radio signals, 

whereby two complex signals are rotated one against 

another by 90 degrees on the polarization plane. Using 

that approach, two complex signals 

iyxziyxz
222111

 and (2)

being orthogonal to each other on a polarization plane 

form a quaternion number 

kyjxiyxjzzs
221121

Tx 
Rx 

               

 

h22 

h11 

h12 h21 Tx Rx 

Fig. 1. Schematic diagram of a channel utilizing dual-polarized antennas 
and its model (below) with the horizontally and vertically polarized 

antennas considered separately; the channel gains are complex numbers.

A rotation s of the signal s on a polarization plane by 

an angle of can be simply represented in the quaternion 

notation as:

)]sin())[cos((

)(

21

21

jjzz

ejzzses jj

. (3)

Similarly, any change to the polarization bases, e.g.,

due to differences between transmit and receive antenna 

alignments, can be easily represented in the quaternion 

notation, as long as the polarization bases are orthogonal 

[12]. 

IV. DIVERSITY GAIN IN DUAL-POLARIZED CHANNELS

The mechanism of a diversity gain for OSTBCs relies 

on providing extra transmission channels that experience 

independent Rayleigh fading through the use of 

additional transmit antennas [13]. This can be also 

achieved using dual-polarized antennas (e.g., antennas 

having both vertical and horizontal polarizations). Even a 

case involving just 1 transmit and 1 receive antenna

results in 4 sub-channels, each characterized by its own 

complex gain (see Fig. 1), much the same as in case of a 

2-input 2-output MIMO system [14].

Mathematically, the channel between transmitter and 

receiver is in such a case described by a channel gain 

matrix H:

JOURNAL OF COMMUNICATIONS, VOL. 4, NO. 1, FEBRUARY 2009 21

© 2009 ACADEMY PUBLISHER



2221

1211

hh

hh
H , (4)

where h11 and h22 are complex channel gains for signals 

received with the same polarization as they were 

transmitted, and h12 and h21 are complex channel gains for 

a cross-polar scatter, i.e., signals received with different 

polarization from that at which it was transmitted due to 

scatter, reflections and polarization twist between the 

transmit and receive antennas. 

Introducing representation of a quaternion variable s =

z1 + z2j as s = [z1, z2], transmission of the signal through a 

channel between a dual-polarized transmit and a dual-

Fig. 2.  A transmission system utilizing N dual-polarized transmit 
-polarized antenna.

polarized receive antennas can be modeled as a product 

sH. Hence the received quaternion signal r is given by:

jnnjhzhzhzhz

nnhzhzhzhz

nnzz

nsr

21222121212111

21222121212111

2121

)()(

],[],[

],[],[ H

H

, (5)

where n1, n2 are complex additive White Gaussian noises 

being the independent identically distributed (i.i.d.) zero-

mean two dimensional Gaussian random variables with 

identical variance per dimension. The exact value of the 

variance depends on the value of a signal-to-noise ratio 

(SNR) at the receiver.

This consideration can be extended to the scenarios 

with multiple transmit and/or receive antennas [8], like 

the scenario considered in Fig. 2. 

For example, for the scenario considered there, the 

received signal r can be modeled as a quaternionic 

variable given by:

, (6)

where s1, s2 sN are the input signal symbols applied to 

,

,

and matrices H
(m)

; m N, are all of the structure 

defined by Eqn. (4). 

V. ORTHOGONAL SPACE-TIME-POLARIZATION BLOCK 

CODES

Orthogonal space-time block codes (OSTBCs) jointly 

utilize space and time diversities and allow for a 

decoupled maximum likelihood (ML) decoding at the 

receiver [1]. To jointly utilize space, time, and 

polarization diversities, we propose here orthogonal 

space-time-polarization block codes (OSTPBCs). Such 

codes can be derived from the quaternion orthogonal 

designs defined in Section II.

Of the various techniques recently presented to 

construct QODs [8, 10], one of the simplest techniques is 

based on symmetric-paired designs: Two complex 

orthogonal designs A and B are said to be symmetric-

paired designs if AB
H

is symmetric and/or A
H
B is 

symmetric [8]. This condition is similar to that required 

of complex amicable designs [8]. It has been shown [8]

that if the complex orthogonal designs A and B are 

symmetric-paired designs, then

                              A + Bj (7)

is a QOD.

Consider now two CODs of order 2

and , (8)

which are two Alamouti [11] OSTBCs, one of them (B)

having  switched columns. Since we have

(9)

then A
H
B is clearly symmetric and the design

jzzjzz

jzzjzz
j

*

2

*

1

*

1

*

2

1221

1 BAQ (10)

is a QOD. Introducing now a quaternion variable 

Q1 can be expressed as:

, (11)

H 
(N)  

r 

R x1  

Tx1  

H 
(1) 

H
(2) 

Tx 2  

Tx N 

s1 

s2 

sN 
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and can be considered as a QOD on the one quaternion 

variable a. The orthogonality can be easily checked, as

. (12)

Because for two quaternion variables b and c [7]:

(13)

Eqn. (12) can be expanded to:

(14)

.

From the definition of a quaternion, we have:

.

Hence

and   .

Substituting the latest results into (14) and utilizing the 

principles of the arithmetic of quaternions, yields:

(15)

Using the same notation as in (5), Q1 can be expressed 

as:

*

2

*

1

*

1

*

2

1221

1
zzzz

zzzz
Q (16)

where odd columns represent signals transmitted through 

one polarization and even columns represent signals 

transmitted through the polarization orthogonal to the 

first one. 

For a single receive dual-polarized antenna, the 

channels between dual-polarized transmit antennas Tx1 

and Tx2, and the dual-polarized receive antenna Rx1 are 

described by their own channel gain matrices, 

22

)1()1( ][
mn

hH and 
22

)2()2( ][
mn

hH , respectively. The 

received signal vector R is given by

j
n

n

n

n
j
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(17)

where nml; m, l = 1, 2 represent complex noises being the 

independent identically distributed (i.i.d.) zero-mean two 

dimensional Gaussian random variables with identical 

variance per dimension. 

Assuming perfect channel knowledge at the receiver, 

i.e. assuming that matrices H
(1)

and H
(2)

are known and 

constant for some reasonable time, as in the case of slow 

or block fading channels [14], the ML decoding means 

finding a pair of elements z1 and z2 of the complex signal 

constellation Z that minimizes the following metric:

2)2(
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(18)

where r1 and r2 are the elements of the receive vector R.

Utilizing the principles of quaternionic arithmetic given 

in Section II, the decoding rule can be simplified and 

proven to be decoupled. The resulting decoding statistics 

for z1 is:

)}()(Re{2

)|||||||(|||min

43

*

122111

2

4

2

3

2

2

2

1

2

1
1
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and for z2 it is:

)}()(Re{2
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where 
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VI. SIMULATION RESULTS

To assess performance gain that can be achieved using 

the developed OSTPBC for 2 transmit and a single 

receive dual-polarized antennas, the system was 

implemented using MATLAB. The following conditions 

were assumed:

constellation was applied, and the code based on Q1

was used (OSTPBC).

Total transmitted power in both polarizations and 

through both antennas was equal to 1 and equally 

distributed per antenna and per polarization.

Channel coefficient matrices, H
(1)

and H
(2)

were 

assumed known at the receiver and kept constant 

for 1024 data bits (the block fading scenario).

In the dynamic indoor scenario, variances of 

channel coefficients can change randomly due to 

changing scattering conditions. Hence we only 

assumed that the sum of variances of all the 

coefficients was equal to 1 and that the variance of 

real and imaginary part of a particular coefficient 

was identical. The variances were then drawn 

randomly, every time the new set of coefficients 

was drawn.

The channel coefficients were generated as random 

complex Gaussian i.i.d. variables. 

The additive noise was assumed to be AWGN 

added uniformly for each polarization and each 
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real/imaginary component (a quaternion zero-mean 

Gaussian variable).

Fig. 3.  Bit-error-rate (BER) performance of the developed scheme 
(OSTPBC) combined with QPSK modulation in a slow flat Rayleigh 

fading channel experiencing random cross-polar scatter compared 
with the 

antenna system.

To compare the performance achieved, we also 

simulated a single polarization, single transmit single 

receive system experiencing slow Rayleigh fading, and a 

single polarization Alamouti systems with two transmit 

and one receive (2Tx/1Rx) antennas and with 4Tx/2Rx 

configuration [2]. The simulation parameters were 

adjusted for those systems to ensure consistency of the 

conditions. The simulation results are presented in Fig. 3,

where we have also drawn the curve representing 

performance of QPSK in the AWGN channel. It is clearly 

visible that the proposed OSTPBC performs very robustly 

in a realistic indoor environment and significantly 

outperforms the 2Tx/1Rx Alamouti system and performs 

exactly the same as 4Tx/2Rx Alamouti scheme. This is 

due to the fact that the proposed OSTPBC is equivalent to 

the 4Tx/2Rx Alamouti scheme. The benefit of the 

proposed scheme follows from the fact that its physical 

dimensions are similar to the system using 2Tx/1Rx 

Alamouti OSTBC with the performance of the 4Tx/2Rx 

code. For a fair comparison, the average total received 

power in all systems before adding noise was set to 1, and 

we used the same SNR normalization as used in [2].

In addition, the 2Tx/1Rx Alamouti scheme is 

susceptible to the cross-polar scatter unless antennas 

capturing energy from both polarizations are used with 

the dimensions fully comparable to antenna system of the 

proposed scheme.

VII. CONCLUSIONS

In this paper, we proposed a method to jointly utilize 

space, time, and polarization diversities by introducing 

the concept of orthogonal space-time-polarization block 

codes (OSTPBCs). The given example performs very 

well in an environment characterized by block or slow 

Rayleigh fading combined with slowly changing cross-

polar scatter. The use of quaternionic arithmetic to design 

OSTPBCs and to perform decoding opens new 

possibilities for increasing the total diversity gain and 

improving system performance in harsh radio 

environments without increasing dimensions of antenna 

system. In the paper, we considered a very simple 

channel model. More realistic channel models taking to 

account possibility of correlation between polarizations 

need to be considered as well. Future research efforts will 

be devoted to designing maximum rate, full diversity 

OSTPBCs for two and more transmit antennas. 
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