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Abstract—This paper introduces an algorithm for joint 
spreading codes and information sequences estimation 
based on reversible jump Markov chain Monte Carlo (RJ-
MCMC) for direct-sequence code division multiple access 
(DS-CDMA) signals with low signal-to-noise ratio (SNR) in 
non-cooperative systems, by analyzing signal model. The 
proposed algorithm establishes a joint posterior distribution 
model of signal parameters and user number, and obtains 
the samples of distribution to be estimated through iterative 
sampling. The algorithm is able to construct a reversible 
Markov chain sampler that jumps between parameter 
subspaces of different dimensionality, so that the posterior 
distribution of parameters to be estimated is obtained. 
Simulation results indicate that the proposed algorithm can 
be applied to low SNR with equal or unequal power and to 
different user number. Moreover, the estimation perfor-
mance of this algorithm is a significant improvement of the 
existing method.  
 
Index Terms—Bayesian model, MCMC, Reversible jump, 
Spreading code, Information sequence 
 

I.  INTRODUCTION 

Direct-sequence code division multiple access (DS-
CDMA) signal, due to its use of pseudo-random code 
modulation, has low interception probability, and good 
interference resistance and confidentiality properties. 
Therefore, it is widely used in satellite communications 
and navigation. In conventional cooperative applications, 
the DS-CDMA spreading codes are known to the receiver. 
However, in non-cooperative systems such as communi-
cation reconnaissance, the receiver usually does not know 
the number of user signals, spreading codes and information 
sequences. Hence, the demodulation and processing of the 
received signals are difficult. Blind estimation of spreading 
codes and information sequences of DS-CDMA signals 
with low signal-to-noise ratio (SNR) is important for its 
application in communication reconnaissance. 

Multi-user DS-CDMA signal is divided into synchronous 
and asynchronous signals depending on the time delay at 
which the user signal arrives at the receiver. Or it can be 
divided into long-code and short-code depending on the 
period of spread-spectrum and symbol period. A DS-
CDMA signal is superimposed by multiple user signals, 
which completely overlap in time domain and frequency 
domain. Thus, the estimation of spreading codes and 
information sequences of DS-CDMA signals is in essence 

the separation of these two sequences from the mixed 
signals with overlapping time-frequency domain under 
single-channel condition. This process is very difficult. 

At present, blind despreading and recovery of DS-
CDMA signals have not gained very much attention 
within the research community. The various techniques 
for blind estimation of spreading codes and information 
sequences of DS-CDMA signals commonly estimate the 
spreading codes of each user first, before the obtaining of 
information sequences and power by demodulation. 
However, the joint estimation of the two sequences has 
been rarely reported. Also most of the work in open 
literature is dealing with single user scenarios. Joutsensalo 
proposed the estimation method for spreading codes of 
short-code DS-CDMA signals by subspace iteration in [1]. 
This method has fast convergence speed, though it can be 
hardly applied to low SNR. Building on Joutsensalo’s 
work, Haghighat A and Soleymani proposed the blind 
estimation algorithm for spreading codes based on 
MUSIC in [2-3]. His method can better adapt to low SNR, 
but has the shortcoming of exponentially growing calcu-
lation load. As a modification of this technique, Qin P Y 
et al proposed OSMUSIC algorithm in [4-6], which 
reduces the calculation load. As the spreading code and 
information sequence for each user in DS-CDMA signal 
are mutually independent, Sidiropoulos N D et al modeled 
the observation signals as the mathematical form for 
blind signal separation, and suggested the estimation 
algorithm for spreading codes based on ICA in [7-10]. 
Their method can simultaneously estimate spreading code 
and information sequence for each user with the use of 
multiple receiving arrays. Also, literature [11-14] describe 
some novel methods, but the SNR can further be improved. 

To address the shortcomings of the above methods, 
this paper first assumes that spread-spectrum period and 
chip period have already been estimated. Focusing on 
synchronous short-code DS-CDMA signals in downlink, 
this paper proposes an algorithm for joint estimation of 
spreading codes and information sequences based on RJ-
MCMC under low SNR. After the joint posterior 
distribution model of signal parameters and the number 
of users is established by bayesian theory, direct sampling 
of joint posterior distribution is done by RJ-MCMC. The 
samples of distribution to be estimated are obtained by 
iterative sampling. Finally, the number of users K, 
spreading codes and information sequences are effectively 
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estimated. Simulation experiment confirms that the 
proposed algorithm can be applied to low SNR with equal 
or unequal power and to different number of users. 

The paper is organized as follows. In Section II we 
describe the signal model that is used in this paper. Then 
in Section III we formalize the Bayesian model and 
specify the prior distributions. Section IV is devoted to 
Bayesian computation. The performance of this algorithm 
is illustrated by computer simulations and compared with 
classical method in Section V. Finally, some conclusions 
are drawn in Section VI. 

II.  SIGNAL MODEL 

An synchronous downlink DS-CDMA system with K 
users is considered. Employing down-conversion to 
received signal through carrier synchronization[15], the 
equivalent baseband signal within N spread-spectrum 
period may be modeled as 

( ) ( ) ( ) ( ) ( )
0 1 1

1 0 0

NK N

k k s k
k i l

r t A b i q t iT s t lT w tτ τ
− −

= = =

= − − − −∑∑ ∑ +  (1) 

where N0 denotes the length of the data frame within N 
spread-spectrum period, Ts is the symbol period, Ak, 
{bk(i)}, andτ (0 )sTτ< < denote, respectively, the ampli-
tude, the symbol stream, and the delay of the kth user’s 
signal. T is the spread-spectrum period.  is a 
rectangular pulse of duration 

( )q t
Ts, and  is the received 

zero mean additive white Gaussian noise with variance 
( )w t

2σ . The spreading waveform ( )ks t  can be expressed as 

 ( ) ( ) ( )
1

0
( ) 0

R

k k c
j

s t c j g t jT t
−

=

= − ≤∑ T<  (2) 

where Tc is the chip period, cR T T= is the spreading 
factor,  is the spreading sequence of 
user k, 

{ ( ),0 }kc j j R≤ <
( )g t  is a normalized chip waveform of duration 

Tc. The spreading gain s cP T T= , which called long-
code DS-CDMA system when P  and short-code 
DS-CDMA system when . 

R<
P R=

This paper focus on synchronous short-code DS-CDMA 
signals. At the receiver, the received signal  is filtered 
by a chip matched filter 

( )r t
( c )g T t−  and done chip synchro-

nization[16], then sampled at the chip-rate. The discrete 
form of the received signal may be written as 

(
1

1 0
( ) ( ) ( ) ( ) 1

K N

k k k
k i

r n A b i c n iR w n n NR
−

= =

= − + ≤∑ ∑ )≤

≤

 (3)

It is convenient to express the signal model (3) in a 
vector-matrix form as 

  (4) ( ) ( ) ( ) ( ) ( ), 1n n n n R= + ≤r c A a B w

where ， and 
，elements  

and . The Matrix

1( ) [ ( ),..., ( )]Nn r n r n=r 1( ) [ ( ),..., ( )]Kn c n c n=c

1( ) [ ( ),..., ( )]Nn w n w n=w ( ) [( 1) ]ir n r i R n= − +

( ) [( 1) ]iw n w i R n= − + ( ), K N×∈RA a B  
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where , , 

and then the signal model in (3) can further be written in 
a matrix-matrix form as 

[ ]T
1 2 KA A Aa � "

1 1(0), , ( 1)

(0), , ( 1)K K

b b N

b b N

−⎡ ⎤
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  (6) ( ),R = CA a B + W

Thus, R  is a R N×  matrix composed by  , 

similarly we can see C  and W , and 

NR ( )r n

( )2( ) 0,iw j N σ∼ , 

(1 ,1 )i N j R≤ ≤ ≤ ≤ . 

III.  BAYESIAN MONTE CARLO INFERENCE 

Focusing on the problem of ill-posed in blind estimation 
of spreading codes and information sequences of single-
channel DS-CDMA signal, we convert the blind estimation 
of spreading codes and information sequences into joint 
estimation of signal parameters and the number of users, 
on the basis of mixed signal model constructed in the 
previous section. Then we reconstruct spreading codes 
and information sequences using the sampled value. 

We assume here that the number K of users and their 
parameters 2( , , , )Kθ σa C B�  are unknown. Then the 
parameter space is { , }K K KθΘ � . Given the observation 
data R , our objective is to estimate KΘ . We follow a 
Bayesian approach where the unknowns K and Kθ  are 
regarded as being drawn from appropriate prior 
distributions. These priors reflect our degree of belief of 
the relevant values of these parameters. In order to 
implement a robust estimation of these parameters, we 
adopt a hierarchical prior structure that enables us to treat 
the hyper-parameters as random variables drawn from 
suitable distributions. We first exploit the analytical 
properties of the model to obtain an expression, up to a 
normalizing constant, of the joint posterior distribution 

( , , | )p K Λa,C,B R . Then the conditional posterior distri-
butions of 2, ,σ Λa , B and C  are given. 

A.  Prior Distributions 
In general considerations, the selection of the prior 

distributions is based on two principles. One is the prior 
distributions should be chosen such that they have a 
minimal impact on the posterior distribution. Such priors 
are termed noninformative. Another consideration in the 
selection of the prior distributions is to simplify 
computations. To that end, conjugate priors are usually 
used to obtain simple analytical forms for the resulting 
posterior distributions. The property guaranteed that the 
posterior distribution belongs to the same distribution 
family as the prior distribution. According to the 
hierarchical prior structure, the overall parameter space is 
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KΘ ×ψ . The hyper-parameter space , with element{ψ }Λ . 
We formalize by modeling the joint posterior distribution 
of all variables as 

( , , , )( , , | )= ( | , , ) ( , , )
( )
K

K K K
p Kp K p K p K

p
θ ψθ ψ θ ψ∝

RR R
R

θ ψ  (7) 

where ( | , , )Kp K θ ψR  is the likelihood, ( , , )Kp K θ ψ  is 
the parameters’ joint prior distribution. From the model 
given in (6), the likelihood is 

22 / 2
1: , 1: ,2

1

1( | , , )=(2 ) exp ( )
2

N
NR

K R i
i

p K θ ψ πσ
σ

−

=

⎛ ⎞− −⎜
⎝

∑R R K i ⎟
⎠

CA a,B  (8) 

where 1: ,R iR and 1: ,( ) K iA a,B denotes the ith column of 
matrix R  and respectively. For ( ,(A a,B) , )KK θ ψ , we 
assume the following structure 

2

2

( , , ) ( , , , )

= ( | ) ( | ) ( ) ( | ) ( ) ( )
Kp K p K

p K p K p p K p p

θ ψ σ

σ

= Λ

Λ Λ

a,C,B

B C a
 (9) 

where 2σ  is a scale parameter that is assumed to be 
distributed according to a conjugate inverse-Gamma prior 
distribution 0 0( , )Ig v γ  

 
( )
( ) ( )

0
0 102 2 0

2
0

( ) exp
v

v
p

v
γ γ

σ σ
σ

− − ⎛ ⎞
= ⎜Γ ⎝ ⎠

− ⎟  (10) 

We have Chosen here 0 0= =0v γ , then Jeffreys’ uninfor-
mative prior 2( ) 1 /p 2σ σ∝  is obtained. Conditional 
upon , the prior probability model distributionΛ ( | )p K Λ  
is a truncated Poisson distribution 

 ( )|
!

K

p K e
K

−ΛΛ
Λ =  (11) 

where . For the unknown amplitude vector a , 
a truncated Gaussian prior distribution N

max[0, ]K K∈

( 0)( , ) >Ι0 0 aa Σ is 
assumed 

1/ 2 1
0

1( ) | 2 | exp ( ) ( )
2

p π − −⎡ ⎤′= −⎢ ⎥⎣ ⎦
0 0a Σ a - a Σ a - a0  (12) 

where  is an indicator that is 1 if all elements of are 
positive and it is zero otherwise. Note that large value 
of corresponds to the less-informative prior. For hyper-
parameter , an uninformative conjugate Gamma prior 
distribution

( 0)>Ι a a

0Σ
Λ

1 2(1 / 2 , )ga ε ε+ , ( 1 is assumed , 1,2i iε =� )

 
1

1

1/ 2
1/ 22

2
1
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(1/ 2 )

p
ε

εε
ε

ε

+
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Since the spreading codes{ (  
are assumed to be independent of each other, the prior 
distribution is a discrete uniform distribution 

with  

),1 ,0 }kc j k K j R≤ ≤ ≤ <

( )p C

( )DU S { }1, 1− +�S

 ( )( ) 1 2 KRp =C  (14) 

Similarly the symbols are 
assumed to be independent of each other, the prior 
distribution

{ ( ),1 ,0 }kb i k K i N≤ ≤ ≤ <

( )p B is a discrete uniform distribution 

( )DU ^ . If modulation type of BPSK is adopted, then 

{ }1, 1− +^ � . We assumed that the discrete alphabet 
number T has been estimated in previous work. The prior 
distribution ( )p B can be expressed as 

 ( )( ) 1 KNp T=B  (15) 

Use the prior distribution mentioned above, (9) can be 
written as 
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According to Bayesian theory 

( ) 01
1

22 /2
1: , 1: ,2

1

1/2 1
0

1/2
01/22

2
1

( , , | ) ( | , , ) ( , , )

1 1(2 ) exp ( )
2 2

1| 2 | exp ( ) ( )
! 2

exp( )
(1/ 2 )

K K K

1KN KN
NR

R i K i
i

K

v

p K p K p K

T

e
K

ε
ε

R

θ ψ θ ψ θ ψ

πσ
σ

π

γε ε
ε

−

=

−Λ − −

+
−

∝

⎛ ⎞⎛ ⎞ ⎛ ⎞∝ − − ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎡ ⎤Λ ⎡ ⎤′× −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
× Λ − Λ⎢ ⎥Γ +⎣ ⎦

∑

0 0 0

R R

R CA a,B

Σ a - a Σ a - a

( ) ( ) 0 12 0
2

0

exp
v

v
γσ
σ

− −⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟Γ⎢ ⎥⎝ ⎠⎣ ⎦

 (17) 

The integration of 2σ with inverse-Gamma distribution 
yields 
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 (18) 

B.  Conditional Posterior Distributions 
We propose to use Gibbs steps to sample 2, ,σ Λa , 

Metropolis-Hastings(MH) steps to sample B and C . The 
following full conditional posterior distributions are 
required by the RJ-MCMC sampler. The derivations can 
reference [17]. 
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1)  Full Conditional Posterior Distributions of 2, ,σ Λa  
The conditional posterior distribution of the amplitude 

vector given anda 2, ,K σ Λ,C,B R is given by

 2
* *( | , , , ) ( , )p K Nσ Λ ∼a ,C,B R a Σ  (19)

with mean 1
* * 0 0 1: ,2

1

1 ( )
N

R i
i

i
σ

−

=
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⎝

∑a Σ Σ a B C R� ⎞
⎟
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1 1
* 0 2

1

1 ( ) ( )
N

i

i i
σ

− −

=

′+ ∑Σ Σ B C CB� , { }( )=diag (1, ), , ( , )i iB B B" K i  

The conditional posterior distribution of the noise 
variance 2σ given and, ,K Λa ,C,B R is given by  

2

2
0 1: , 1: ,

1

( | , , , )
1+ , ( ) +

2 2

N

R i K i
i

p K
NRIg

σ

0ν γ
=

Λ

⎛ −⎜
⎝

∑

a ,C,B R

R CA a,B∼ ⎞
⎟
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 (20) 

The full conditional distribution of the hyper-
parameter givenΛ 2, ,K σa ,C,B and R is given by 

2
1( | , , , ) ( 1 / 2 ,1 )p K ga K 2σ εΛ +∼a ,C,B R ε+ +  (21) 

2)  Full Conditional Posterior Distributions of B and  C
To simplify the calculations, using (18) to obtain the 

full conditional posterior distributions of B and . The 
conditional posterior distributions of given 

C
( , )k iB R  and 

can be obtained from , kiK Λa ,C,B ,

02
2 2

0 1: , 1: ,

( ( , ) | , , , )

2 ( )
2

ki

NR

R i K i

p k i K
ν

γ
+⎛ ⎞−⎜

⎝

Λ

⎛ ⎞+ − + ∑
⎜ ⎟∝
⎜ ⎟
⎝ ⎠

B a ,C,B R

R CA a,B
⎟
⎠  (22) 

where denotes the kth row and ith column element 
of the matrix

( , )k iB
B ,  denotes the set 
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\ ( , )ki k i�B B B

B except for , with 
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a constant. The full conditional posterior distributions 
of given( , )r kC R and is given by , rkK Λa ,C ,B,
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where denotes the rth row and kth column element 
of the matrix ,  denotes the set 
containing all elements of except for , with 

. 

( , )r kC
C \ ( , )rk r kC C C�

C ( , )r kC
1 ,1r R k K≤ ≤ ≤ ≤

IV.  BAYESIAN COMPUTATION WITH RJ-MCMC 

See from (18), it is worth noticing that this posterior 
distribution is highly non-linear in the amplitude vector  
and that an expression of cannot be obtained in 
closed-form. For the case where K is unknown, the 
standard MCMC method suffers from severe drawbacks 
to estimate the required posterior distribution. Firstly, it is 
computationally very expensive since

a
( | )p K R

maxK can be large. 
Secondly, the same computational effort is attributed to 
each value of K, but in fact, some of these values are of 
no interest in practice. So we employ RJ-MCMC sampler 
[18] for direct sampling of joint posterior distribution 

( , , | )p K Λa,C,B R . It can jump between subspaces of 
different dimensions, thus avoiding over-sampling of 
useless values and reducing the calculation load. Also, 
the number of users K is estimated. 

RJ-MCMC basically resembles MCMC, both obtaining 
the samples of posterior distribution to be estimated by 
iterative sampling. For each iteration, the direct sampling 
of distribution to be estimated is impossible, therefore it 
is necessary to first determine the proposal distribution of 
the current model order. The sampling of the proposal 
distribution is the candidate sampling, which is either 
accepted or rejected according to acceptance ratio. If the 
candidate sampling is rejected, then the sampled value of 
the current iteration is identical to that of the previous 
iteration. This method ensures reversibility and thus 
invariance of the Markov chain with respect to the 
posterior distribution, which make the chain must move 
across subspaces of different dimensions. The acceptance 
probability is given by 

( ) ( )
( ) ( )

* * * *

* *

, , , , , ,
min 1,

, , , , , ,
K K K

K K K

p K q K K
A

p K q K K

θ ψ θ ψ θ ψ

θ ψ θ ψ θ ψ

∗ ∗

∗

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

R

R
 (24) 

where * *, ,KK θ ψ∗ denotes the candidate values and 
, ,KK θ ψ denotes the current values. The selection 

principle for proposal distribution is easy to sample. 
For our problem, the following moves have been selected: 

( )q i

1) birth of a new user (demand maxK K< ), i.e., 
proposing a new user with prior distribution ( )p B  
and , the parameter space changes from ( )p C
{ , , }KK θ ψ to +1{ +1, , }KK θ ψ ; 

2) death of an existing user (demand ), i.e., 
removing an user chosen randomly, the parameter 
space changes from{ ,

0K >

, }KK θ ψ to -1{ -1, , }KK θ ψ ; 
3)   update of the parameters of all the users for fixed K. 
The resulting transition kernel of the simulated Markov 

chain is then a mixture of the different transition kernels 
associated with the moves described above. This means 
that at each iteration, one of the candidate moves (birth, 
death or update) is randomly chosen. The probabilities for 
choosing these moves are ,K Kb d and Ku ,respectively, 
such that  for all+ + =1K K Kb d u max0 K K≤ ≤ . For 0K = , 
the death move is impossible, therefore, . For 0 0d �

maxK K= , the birth move is impossible, and thus, 
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max
0Kb � . Except in the cases described above, we adopt 

the following probabilities 

 {min 1, ( 1) ( )Kb p Kε ⋅ +� }p K  (25) 

 {1 min 1, ( ) ( 1)Kd p K pε+ ⋅� }K +  (26) 

where is the prior probability of user number K 
and

( )p K
ε is a parameter that tunes the proportion of update 

move to jump move. We choose 0.5ε = and 
then for all K. We can now describe the 
main steps of the algorithm as follows: 

+ [0.5,K Kb d ∈ 1]

Step 1. Initialisation: set (0) (0) (0)( , , )K KK θ ψ ∈Θ ×ψ , 
 and choose the number of iterations m . 1i ←

Step 2. Iteration . Firstly, samplei [0,1]Uμ ∼ , if ( )i
Kbμ ≤ , 

then birth move; else if ( ) ( )+i i
K Kb dμ ≤ , then death move; 

else update the parameters; End if. Secondly, sample the 
parameters  using (19) (20) and (21). 2, ,σ Λa

Step 3. Set . If , go back to step 2. 1i i← + i m≤
In the above steps, we drop the superscript ( )i⋅ from all 

variables at iteration i . To further understand the 
algorithm, we describe more precisely these different 
moves in the following subsections. 

A.  Birth Move 
Suppose that the current state of the Markov chain is in 

parameter space{ , , }KK θ ψ , and maxK K< . According to 
the prior distribution of ( )p B and , we can propose a 
new user randomly, the parameter space changes 
to

( )p C

+1{ +1, , }KK θ ψ . Then proposal distribution is given by 

( ) ( ) ( )11, , | , , 1 2 1R N
K K Kq K K b Tθ ψ θ ψ++ = ⋅ ⋅  (27) 

( )1 1, , | 1, , = 1K K Kq K K d Kθ ψ θ ψ+ ++ +  (28) 

From (25) and (26) we obtain
( )
( )1

1K

K

p Kb
d p K+

+
= , thus the 

proposal ratio can be written as 

( )
( )

( )
( ) ( )

1

1

, , | 1, , 2
=

1, , | , , 1 1

R N
K K

K K

q K K p K T
q K K p K K

θ ψ θ ψ
θ ψ θ ψ

+

+

+ ⋅
+

⋅
+ ⋅ +

 (29) 

Also, the posterior distributions ratio can derived from 
(18) 
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 (30) 

where 1: ,1: 1R K +C and 1: 1,( ) K i+A a,B denote, respectively, the 
spreading codes matrix and the ith column of information 
sequences matrix after proposing a new user. According 
to (29) and (30), the acceptance ratio for the proposed 
birth move is given by 

( )
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 (31) 
Then the acceptance probability for the proposed birth 
move is 

{min 1,birth birthA = }r  (32) 

B.  Death Move 
Similarly, in the death move case, we assume the 

current state is in { , , }KK θ ψ , and , removing an 
user chosen randomly, the parameter space changes 
to

0K >

-1{ -1, , }KK θ ψ , the acceptance ratio for the proposed 
death move is then generated  

( )
( )

( )
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2
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 (33) 
Similarly, the acceptance probability for the proposed 
death move is  

{min 1,death deathA = }r  (34) 

C.  Update Move 
Here, we assume the current state is in { , , }KK θ ψ . 

When the update move is selected, the algorithm samples 
only on the space of Kθ , for K fixed. We propose to use 
Gibbs steps to update and MH steps to update 2, ,σ Λa
B and  C

1) Update B and C  
For parameter B , using (22) as the invariant distribution 

and as proposal distribution, 
which involves sampling a candidate value given 
the current value according to . 
Similarly, for parameter , using (23) as the invariant 
distribution and  as the 
proposal distribution. Respectively, the acceptance proba-
bilities are given by 

*( ( , ) | ( , )) ( )q k i k i DUB B ∼ ^
* ( , )k iB

( , )k iB *( ( , ) | ( , ))q k i k iB B
C

*( ( , ) | ( , )) ( )q r k r k DUC C ∼ S
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where and*C *B are similar to C and B with 
replaced by and replaced by 
. 

( , )r kC * ( , )r kC ( , )k iB
* ( , )k iB
2) Update  2, ,σ Λa
Sample these parameters using (19), (20) and 

(21), respectively. 

2, ,σ Λa

V.  SIMULATION EXPERIMENT AND ANALYSIS 

In this section, the performance of the proposed 
algorithm is studied as a function of SNR and number of 
iterations used in the estimation. 

A.  Simulation Setup 
To verify the performance of the proposed algorithm, 

we need to establish reasonable assessment indicators. In 
light of the contents of this study, the cosine of vector of 
estimated spreading sequence and that of true spreading 
sequence can be used to assess the performance (i.e. the 
similarity degree between the two vectors)[19]. Also the 
output SNR can be used in assessing the estimation 
performance. For the estimation of information sequence, 
bit error rate is more suitable. Below are the expressions 
for the first 2 assessment indicators 

HˆˆR( , )=
ˆ
u uu u
u u

 (37) 

( )

2

o 2

E ( )
SNR 10lg

ˆE ( ) ( )
kk

k k

c n

c n c n

⎡ ⎤⎣ ⎦=
⎡ ⎤−⎣ ⎦

 (38) 

When the power is the same with all users, mean 

output SNR o
1

1SNR = SNR
K

k

kK =
∑ o  can be used to assess 

the estimation performance. 
Parameter selection for the algorithm has no impact on 

posterior distribution, but only on the convergence speed 
of the algorithm. We choose , 2

0 0 0 0( , ) 0Igσ ν γ ν γ→ = =∼

( ) 4
1 2 1 21 / 2 , 10ga ε ε ε ε −Λ + → = =∼ , ,max 30K = =0.5ε ,

and ( ) ( ) ( )ones ,1 , 1000eyeN K→ = =∼ 0 0 0 0a a ,Σ a Σ K  

B.  Simulation Experiments and Analysis 
Five experiments are carried out to verify the estima-

tion performance of the proposed algorithm. Experiment 
1 tests the convergence of the algorithm; experiment 2 
and 3 test the estimation performance of spreading codes 
and information sequences either at equal or unequal 
power; experiment 4 is a performance simulation of 
spreading sequence and information sequences at diff-
erent number of users; experiment 5 is the comparison 
between the performance of OSMUSIC algorithm [5] and 
Fast-ICA algorithm [9]. In the five experiments, SNR of 
the kth user SNRk is defined as 2 210 lg kA σ , and at equal 
power for all users, the mean SNR=SNRk. The algorithm 
is performed for 500 iterations, with the first 100 
iterations as the “burn-in”period, and the iterated results 
of 100-500 iterations are used for estimation. 

Experiment 1: convergence of the proposed algorithm 
Simulation conditions: user number ; spreading 

code for each user is
5K =

127R = bit random sequence; chip 
rate 10MHz; symbol rate 10MHz/127=78.74KHz; 
spreading gain 127P = ; the length of data is 200N =  
spread-spectrum period, and the length of information 
sequence is 200 (randomly generated sequence, BPSK-
modulated). The sampling is done at chip rate, with the 
number of sampling points within each spread-spectrum 
period of 127. If the power is equal for all users, 
i.e. ( )2 8dB 1 5kA k= − ≤ ≤ , , the output 2 2dBσ = −

2 2SNR SNR 10lg 6dBk kA σ= = = − . 
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Figure 1.  Convergence of each parameter for samples 
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Figure 2.  Histogram of 2, , kK Aσ  for posterior distribution 
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Fig. 1 shows the sampled values of posterior distribution 
of parameters K , 2σ , kA , and in the first 
200 iterations. The corresponding true values are also 
shown in the same figure as the straight lines, from which 
we can see that after a dozen of iteration, the posterior 
distribution nearly converges to the true values. 

5 (6)c 4 (50)b

Fig. 2 shows the parameter estimation using the values 
of the last 400 iterations, presented in histogram. The top 
panel in Fig. 2 is the estimation of posterior distribution 
of user number. We can see that when the number of 
users amounts to 5, there is the maximum posterior 
probability, that is, the estimated number of users is 5, 
which is equal to the true value. The middle panel in Fig. 
2 is the estimation of posterior distribution of noise 
variance, revealing that the maximum posterior probability 
is very close to 0.63, the true value of noise variance. The 
bottom panel in Fig. 2 indicates the estimation of posterior 
distribution of signal amplitude of users, the maximum 
posterior probability also very close to 0.3981, the true 
value. The estimated spreading codes and information 
sequences will be listed in the following experiments. 

Experiment 2: performance of spreading codes and 
information sequences at equal power 

Simulation conditions: the simulation conditions for 
experiment 2 are basically the same with those in 
experiment 1, except that SNR varies from -20dB to 
20dB as kA  and 2σ  change dynamically. 

Fig. 3 shows the estimation performance of spreading 
code and information sequence at 5 users, SNR varying 
between -20dB and 20dB, and the similarity degree 
specified by (37). In this paper, only the results for user 1 
is given. When SNR is greater than -12dB, the similarity 
degree between the estimated value and the true value for 
the two sequences exceed 0.95. Therefore, the proposed 
algorithm can effectively estimate spreading code and 
information sequence at low SNR. 

Fig. 4 shows the estimation performance of information 
sequence, at 5 users and SNR varying between -20dB and 
20dB, using bit error rate as the assessment indicator. The 
simulation results for user 1 and 3 are given. In 
simulation experiment 50100 iterations are done, and the 
values of the last 50000 iterations are averaged to obtain 
the bit error rate. When SNR is greater than -12dB, the bit 
error rate for the estimated information sequence is lower 
than 10-2. 

Experiment 3: performance of spreading codes and 
information sequences at unequal power  

Simulation conditions: the simulation conditions in 
experiment 3 are basically the same as in experiment 1, 
except that user number 4K = . The ratio of power among 
4 users is 1:2:4:8. SNR1 for user with the smallest power 
varies between -20dB and 20dB. The level of the smallest 
power is the same to that in experiment 1. 
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Figure 3. The curve of similarity degree against SNR for equal power 
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Figure 4. The curve of bit error rate against SNR for equal power 
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Figure 5. The curve of output SNR against SNR for unequal power 
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Figure 6. The curve of bit error rate against SNR for unequal power 
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Fig. 5 shows that when there are four users, the ratio of 
power among the users is 1:2:4:8. The curve of output 
SNR against SNR1 for the smallest power is plotted using 
(38). We can see from the figure that when the power is 
unequal, the proposed algorithm can maintain its 
performance in estimating spreading code and infor-
mation sequence for each user. As the ratio of power 
among all users is 2, the output SNR varies by about 3dB, 
which is consistent with SNR set by the user. Comparison 
of the results for user 1 and 4 reveals that the estimation 
performance for signals with greater power is significantly 
higher than signals with smaller power. This corresponds 
to the results of theoretical analysis. 

Fig. 6 shows the curve of bit error rate plotted against 
SNR1 for the smallest power. When SNR is greater than   
-11dB, bit error rate of estimated information sequence 
for all users is lower than 10-2, which is slightly lower 
than the situation where the power is equal. 

Experiment 4: performance of spreading sequence and 
information sequence at different number of users 

Simulation conditions: simulation conditions in experi-
ment 4 are basically the same with those in experiment 1, 
except that SNR varies from -20dB to 20dB, and the 
number of users K is respectively 2, 4, 6, 8 and 10.  

Fig. 7 shows the curve of similarity degree of spreading 
sequence plotted against SNR and Fig. 8 shows the curve 
of bit error rate of information sequence against SNR in 
the proposed algorithm at different number of users. The 
procedures of the experiment are the same as in all the 

experiments above. Under multi-user condition, the bit 
error rate are calculated based on the mean values of 
estimated information sequence for all users. The figure 
indicates that since short-code DS-CDMA signals for all 
users are not strictly orthogonal, with the increasing 
number of users, the estimation performance of 
information sequence will decrease somewhat. When 
SNR is greater than -12dB and the number of users is not 
over 10, the similarity degree between the estimated 
sequence and the true sequence exceeds 0.95. Bit error 
rate of estimated information sequence for all users is 
lower than 10-2. 

Experiment 5: comparison of the proposed algorithm 
with Fast-ICA and OSMUSIC algorithm 

The simulation conditions in experiment 5 are identical 
to those in experiment 2. Fig. 9 shows the performance 
comparison of the proposed algorithm, Fast-ICA 
algorithm and OSMUSIC algorithm in estimating output 
SNR. Fig. 10 shows the comparison in estimation perfor-
mance among the three algorithms with respect to bit 
error rate. The proposed algorithm has the highest 
estimation performance, with SNR higher by an average 
of respectively about 3dB than Fast-ICA algorithm and 
OSMUSIC algorithm. When the input SNR is greater 
than -12dB with the proposed algorithm, output SNR of 
information sequence is greater than 20dB, and the 
corresponding bit error rate lower than 10-2. However, the 
calculation load required in the proposed algorithm is 
greater than in the other two algorithms. 
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Figure 7. Curve of similarity degree against SNR for different users 
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Figure 8. Curve of bit error rate against SNR for different users  
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Figure 9. The output SNR comparison for different algorithms 

-20 -15 -10 -5 0 5 10 15 20
10-5

10-4

10-3

10-2

10-1

100

SNR(dB)

B
it 

er
ro

r r
at

e

 

 
RJ-MCMC
Fast-ICA
OSMUSIC

 
Figure 10. The bit error rate comparison for different algorithms 
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VI.  CONCLUSION 

This paper deduces an algorithm for multi-user detection 
of DS-CDMA signals in non-cooperative system, built on 
Bayesian theory. Given unknown number of users, the 
proposed algorithm uses RJ-MCMC algorithm for direct 
sampling of joint posterior distribution. A reversible 
Markov chain sampler is constructed. It can jump between 
subspaces with different dimensionality. The iteration 
using the proposed algorithm finally converges to 
posterior distribution of parameter to be estimated. The 
simulation experiment confirms the estimation performance 
of the proposed algorithm.  

The deduction process is based on the simplest 
synchronous short-code DS-CDMA signal model. Only 
the situation when the signal is the real value of analyzed. 
The extended application of the proposed technique is 
possible for multipath delay of signals which are complex 
values and asynchronous long-code DS-CDMA signals. 
In future work, theoretical analysis of the estimation 
performance can be performed, which further confirms 
the effectiveness of the proposed algorithm. 
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