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Abstract— A novel spatial modulation (SM) scheme suitable
for correlated Rician fading scenario is proposed with the
help of the key idea of Ungerboeck’s set partitioning. The
motivation is based on the fact that the different error
performance exists between the antenna domain and modu-
lation signal domain in the traditional SM scheme. And the
total system error performance is mainly determined by the
worse case. We analyze the unequal error protection (UEP)
performance and find that the error performance of the
antenna selection is mainly determined by the correlation
coefficient and Rician factor. If the correlation coefficient or
Rician factor is large, the error performance will be bad.
Considering the error performance of the modulation signal
domain is mainly determined by the minimum Euclidean
distance between pair of signal points, the error performance
of two domains will differ significantly over the fading
channels with strong correlation or large Rician factor.
The main idea of the novel scheme is to establish the
relationship between the antenna domain and modulation
signal domain by expanding the signal constellation to carry
all the input information bits. The expanded constellation
is then partitioned into subsets by using Ungerboeck’s set
partitioning. The bits mapping to the antenna index are also
used to select the partitioned subset, while the remaining bits
are used to determine the transmit signal in the selected
partitioned subset. In this way, the error performance of
the bits mapping to the antenna index is improved, while
the error performance of the other bits is preserved by
maximizing the minimum Euclidean distance between any
pair of signal points in the partitioned subset. Performance
analysis and simulation results show that the novel SM
scheme could improve the error system performance greatly
when the correlation coefficient or Rician factor become
larger.

Index Terms— MIMO, spatial modulation, set partitioning,
spatial correlation, unequal error protection (UEP)

I. INTRODUCTION

Spatial modulation (SM) is recently proposed to
further improve data rates of Multiple-Input-Multiple-
Output (MIMO) systems by joint exploiting the potential
of both antenna space and signal space [1], [2]. With SM,
at each time slot, only one transmit antenna is activated.
Consequently, inter-channel interference (ICI) caused by
multiple antennas can be avoided. Meanwhile, such a
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structure of SM makes the decoding at receiver much
simple and Maximum-Likelihood (ML) decoding [3] can
be employed to get optimal performance. SM is actually
a novel 3-dim modulation (spatial plus two-dim modula-
tion) concept for MIMO systems. As a special case, SM
can be taken as Space Shift Keying (SSK) if transmitted
signals are carried by only the transmit antenna index [4].

Since being proposed, most of the literatures concern-
ing SM are mainly focused on the performance analysis
over different channels. [2] analyzed the performance
when MRRC (maximum receive ratio combining) de-
tection is employed over Rayleigh fading channels. [3]
proved that SM with MRRC is suboptimal and in the
same time proposed an optimal ML detection method. In
[3], an upper bound of bit error rate was also derived by
using the union bound method. Other related work could
be found in [5], [6] for SSK modulation, and in [7], [8]
for SM schemes with only one receive antenna. Recently,
[9] extended the performance analysis result of [7], [8] to
the general SM schemes with multiple receive antennas
and arbitrary complex modulation schemes. To the best of
our knowledge, till now little attention has been paid on
effect of a single domain on the whole performance except
for [2], which has compared the performance of SM by
assuming the antenna selection domain and modulation
signal domain to be independent. Generally speaking,
this is not correct, especially for the correlated scenarios.
On the other hand, the previous works, such as [10],
[11], have demonstrated that the UEP (unequal error
protection) properties really exist between the antenna
space and signal space, especially over correlated channel
conditions. In order to tackle this unbalance, trellis coding
has been proposed in [10], [11]. However, in [10] only
the bits for antenna selection are convolutional encoded,
which could provide no coding gain for the other source
bits. As an alter scheme, [11] introduced the jointly trellis
coding design method by considering antenna space and
signal space together, but it is really hard work to design
a good trellis code.

In this article, we develop a novel SM scheme from the
perspective of spatial modulation only. The relationship
between the antenna space and signal space is established,
through which the two components could help each other
to overcome the inherent UEP properties of the traditional
SM scheme. More specially, the novel scheme is mainly
used in the spatial correlated channel conditions, where
the performance of antenna space will be much worse
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than that of the signal space. In order to improve the
error performance of antenna space, we try to allocate
the same bits used to select the transmit antenna onto the
signal space, therefore, an expanded signal constellation is
constructed compared with the traditional SM scheme. In
our work, the novel expanded constellation will carry both
the bits for antenna selection and the bits for traditional
modulation signal. The question is as the constellation
gets larger, and the minimum distance between pair of
signals will get smaller. Hence, the next trick is attempting
to keep the error performance of the bits corresponding
to the modulation signal in the traditional SM scheme.
This design intent coincides with the key ideas of the
Ungerboeck’s set partitioning rule, which is used for the
design of trellis coded modulation (TCM) schemes [12].
Therefore, a novel SM scheme is naturally constructed
based on the Ungerboeck’s set partitioning rule, by which
an improved error performance is achieved compared
with the traditional SM scheme over correlated fading
channels.

The rest of the paper is organized as follows: In Section
II, the traditional SM approach is introduced and the
general SM model is presented. Following which the gen-
eral correlated/uncorrelated Rayleigh/Rician fading chan-
nel model is provided in Section III, and the novel SM
scheme based on the Ungerboeck’s set partitioning rule
is proposed in Section IV. In Section V, the performance
of the two SM schemes are comparably studied, and the
UEP performance is also discussed. Simulation results are
presented in Section VI. Finally, Section VII concludes
the paper.

Notation: In this paper, Nt and Nr denote the num-
ber of transmit and receive antennas, respectively. Bold,
lowercase and capital letters denote column vectors and
matrices, respectively. (·)∗, (·)T and (·)H stand for com-
plex conjugation, transposition and complex conjugation
transposition, respectively. det(A) and A−1 denotes the
determinant and inverse of A, respectively. E(·) denotes
the expectation operation. ‖·‖F accounts for the Frobenius
norm. CM represents the complex modulation signal
space with the cardinality equal to M . <(·) is to get the
real part of the expression.

II. TRADITIONAL SPATIAL MODULATION

As shown in Fig. 1, we consider a SM system model
with Nt transmit and Nr receive antennas. Moreover, we
assume that the number of transmit antennas is an integer
power of 2, i.e., Nt = 2n. The MIMO channel matrix is
given by

H =




h11 h12 · · · h1Nt

h21 h22 · · · h2Nt

· · · · · · . . . · · ·
hNr1 hNr2 · · · hNrNt


 , (1)

where hij , i = 1, 2, . . . , Nr, j = 1, 2, . . . , Nt denotes
the channel coefficient from the transmit antenna i to the

receive antenna j. Let hj represent the jth column of H

hj =
[
h1j h2j · · · hNrj

]T
, j = 1, 2, . . . , Nt, (2)

which denotes the channel coefficients corresponding to
the transmit antenna j.
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Figure 1. Spatial Modulation System Model

For the traditional SM scheme, we assume M -ary
digital modulation is employed at the transmitter with
M = 2m, and the modulation set is denoted as CM =
{x1, x2, . . . , xM}. And then the spectral efficiency pro-
vided by the SM system is

R = log2(NtM) = n + m. (3)

At transmitter, the information bits are split into groups,
and each group includes n + m bits. Then the two sub-
groups with n and m bits, respectively, are generated by
further splitting each group. Finally, the subgroup with n
bits is used to select antenna and the other subgroup with
m bits is modulated onto one complex constellation point
according to the specified digital modulation method.

For example, as shown in Fig. 1, the input information
is splitted into groups with each one denoted as

b1:n+m =
[
b1 . . . bn bn+1 . . . bn+m

]T
, (4)

which are further splitted into two subgroups, the fisrt n
bits

b1:n =
[
b1 b2 . . . bn

]T
, (5)

and the rest m bits

bn+1:n+m =
[
bn+1 bn+2 . . . bn+m

]T
. (6)

The first subgroup is used to select the transmit antennas
with the antenna index calculated as

j =
n∑

u=1

bu2n−u + 1. (7)

The second subgroup is help to select the modulation
symbols with the symbol index calculated as

q =
m∑

u=1

bn+u2m−u + 1. (8)

Suppose that the jth transmit antenna and the modu-
lation constellation point of xq ∈ CM are selected for
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transmission, the output of the SM mapper could be
defined as

xjq ,




0 . . . 0 xq 0 . . . 0
↑

jth position




T

, (9)

which is a Nt-dim vector with j denoting the activated
antenna. And then the received signals are given by

y =
√

γHxjq + η =
√

γhjxq + η, (10)

where γ denots the average signal to noise ratio (SNR)
at each receive antenna, and η =

[
η1 η2 · · · ηNr

]T

is an Nr-dim additive white Gaussian noise (AWGN),
each element of which is of independent and identically
Gaussian distribution with zero mean and unit variance.

According to [3], the optimal detector based on the
ML (Maximum Likelihood) principle is given by

[ĵML, q̂ML] = arg max
j,q

pY (y|xjq,H)

= arg min
j,q

‖y −Hxjq‖2F , (11)

since the PDF (probability density function) of y condi-
tioned on H and xjq is

pY (y|xjq,H) ∝ exp
(
−‖y −Hxjq‖2F

)
. (12)

Obviously, a number of advantages could be achieved
by adopting the SM approach. Firstly, the ICI is avoided
since only one antenna is activated. Correspondingly the
decoding complexity at the receiver is also reduced.
And then, for a fixed spectral efficiency, the modulation
constellation size is reduced by utilizing antenna index
to carry some information bits, and hereby the minimum
distance between pair of constellation points is increased
and the improved error performance is achieved.

For the traditional SM scheme, there are no relationship
between the information bits for antenna space and the
information bits for modulation space. From the following
analysis, we will know that these two independent bits
will appear different error performance. Especially over
correlated fading channels, their performance will differ
greatly, and the information bits for antenna selection
will have a higher error rate than the information bits
for modulation. To address this issue, trellis coded spatial
modulation (TCSM) schemes have been proposed in [10],
[11] by jointly designing the trellis encoder and the SM
mapper together. In which, [10] have applied the key idea
of TCM [12] to the antenna domain only, whereas in [11]
the total SM bits are jointly encoded to pursue optimized
diversity and coding gain.

In this paper, we propose a novel SM design method
from the viewpoint of SM. In order to improve the
error performance of the information bits for antenna
selection in the traditional SM, one expanded modulation
constellation is adopted to carry all the information bits,
as a result, the information bits for antenna selection will
be protected by the antenna selection and the modulation
symbols together. Moreover, by using the Ungerboeck’s
set partitioning, the error performance the information

bits for the modulation signal in the traditional SM is
preserved as much as possible. Consequently, the total
error performance of SM could be improved.

III. GENERALIZED RICIAN FADING CHANNEL MODEL

As shown in [9], [10], the generalized Rician fading
channel is modeled as

H =

√
K

K + 1
H̄ +

√
1

K + 1
H̃. (13)

where
√

K
K+1H̄ represents the fixed LOS (line-of-sight)

component, while
√

1
K+1H̃ denotes the variable fading

component caused by the NLOS (Non-line-of-sight) scat-
ter signals. K is the Rician factor which reflects the power
ratio of the fixed and variable parts. Each element of H̄
is equal to one to represent the LOS signal. The scatter
component matrix H̃ is modeled by using the Kronecker
model [13], [14], i.e.,

H̃ = R1/2
r H̆R1/2

t , (14)

where Rt and Rr denotes the correlation matrices at
the transmitter and receiver, respectively. H̆ is a Nr ×
Nt matrix whose entries are independently distributed
according to the complex Gaussian distribution with zero
mean and unit variance. The transmit correlation matrix
Rt is formed as

Rt =




ϕt
11 ϕt

12 · · · ϕt
1Nt

ϕt
21 ϕt

22 · · · ϕt
2Nt

· · · · · · . . . · · ·
ϕt

Nt1
ϕt

Nt2
· · · ϕt

NtNt


 (15)

with ϕt
ij , i, j ∈ {1, 2, . . . , Nt} representing the cross

correlation between the channel coefficients of the two
transmit antennas indexed by i and j.

In a similar way, the receive correlation matrix Rr is
written as

Rr =




ϕr
11 ϕr

12 · · · ϕr
1Nr

ϕr
21 ϕr

22 · · · ϕr
2Nr

· · · · · · . . . · · ·
ϕr

Nr1 ϕr
Nr2 · · · ϕr

NrNr


 , (16)

in which ϕr
ij , i, j ∈ {1, 2, . . . , Nr} denoting the cross

correlation between the channel coefficients related to the
two receive antennas indexed by i and j.

By using the above generalized fading model of (13),
the uncorrelated/correlated Rayleigh/Rician fading chan-
nels could be easily constructed via the appropriate se-
lection of parameters. The channel correlation matrices in
the Kronecker model are frequently calculated according
to two common approaches. One is presented in [15] and
the correlation matrices are computed based on a clustered
channel model using the power azimuth spectrum (PAS)
distribution and the array geometry. The other is the ex-
ponential correlation model of [16], where the correlation
matrix entries are formed as

ϕt
ij = ρ

|i−j|
t , i, j ∈ {1, 2, . . . , Nt}

ϕr
ij = ρ|i−j|

r , i, j ∈ {1, 2, . . . , Nr}, (17)
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in which ρt stands for the correlation coefficients between
two adjacent transmit antennas, and ρr denotes the corre-
lation coefficients between two adjacent receive antennas.

IV. NOVEL SPATIAL MODULATION

A. Novel spatial modulation design

Novel SM Mapper

Splitting
b1:n+m

bn+1:n+m

b1:n

Point Selection

Antenna Index

xq

j

x jqSubset Selection

Modulation

Figure 2. Novel Spatial Modulation Mapper

With the SM system model as shown in Fig. 1, we
propose a novel spatial modulation scheme, in which
the SM mapper is re-designed according to Fig. 2. The
main difference between the newly designed modulation
scheme and the traditional one lies in the different op-
eration of the modulation block compared with the SM
mapper as shown in Fig. 1.

For the novel SM mapper, similarly the input n + m
bits are splitted into two subgroups according to (5)
and (6). Then, the antenna index is determined according
to the bit sequence of b1:n similar with the traditional
SM operation. And the modulated output is determined
by all the input bits b1:n+m, i.e, xq ∈ C2n+m , which is
different from the traditional SM approach as shown in
Fig. 1, where the modulation symbol is determined by
bn+1:n+m, i.e., xq ∈ C2m . In our work, all the input bits
are included in the modulation constellation and the bit-
to-constellation mapping is based on the Ungerboeck’s
set partitioning rule [12]. After n-step Ungerboeck’s set
partitioning, 2n subsets are produced. Elements of them
are from the modulation constellation of C2n+m . To
modulate, one subset will first be chosen according to
b1:n, and then the constellation point will be determined
by bn+1:n+m. Finally, we will get the modulated xq

which is jointly determined by b1:n and bn+1:n+m.
In this paper, by applying the key idea of Ungerboeck’s

set partitioning to the bit-to-constellation mapping of xq,
we mainly try to fulfill the following two key objectives:
Firstly, try to improve the error performance of b1:n by al-
locating them as the antenna selection as well as selecting
one of the partitioned subsets. Secondly, via comparing
the proposed scheme with the traditional SM approach,
the new SM mapper should strive to preserve the error
performance of bn+1:n+m, hence they are allocated to
a signal point in one partitioned subset, in which the
minimum Euclidean distance between pair of signals is
enlarged as much as possible by using Ungerboeck’s set
partitioning.

For the sake of brevity, we define the ith partitioned
subset after n-steps partitioning operation as Ci

2m←2n+m ,

which is partitioned from C2n+m , and i is the integer
value of the n bits used to select the partitioned subset.
For example, suppose that there are 4 transmit antennas,
i.e., Nt = 4 (n = 2), and 4 bps/Hz (n+m = 4) spectrum
efficiency is required. For the conventional SM mapper,
as shown in Fig. 1, QPSK is employed. While for the new
SM mapper shown in Fig. 2, 16QAM should be exploited
to carry 4 information bits and the bit-to-constellation
mapping is demonstrated as Fig. 3.

Obviously, with the novel spatial modulation opera-
tion, the performance of bn+1:n+m is mainly determined
by the minimum Euclidean distance between pair of
signals in the partitioned subset of Ci

2m←2n+m . While
the performance of b1:n is mainly determined by both
the transmit antenna selection and the partitioned subset
selection. With respect to the transmit antenna selection,
the probability density function of the transmit channel
coefficients and the correlation between them will have
main effect on the decoding performance, while for the
the partitioned subset selection, the decoding performance
is mainly determined by the the minimum Euclidean
distance between pair of the partitioned subsets, that is
equal to the minimum Euclidean distance between pair
of signals in C2n+m . So by the new design, the decoding
performance of b1:n is improved, especially in the case
of correlated channels.

However, it should be noted that the minimum Eu-
clidean distance between pair of signals in the parti-
tioned subset of Ci

2m←2n+m may be less than that of the
conventional modulation constellation C2m , which will
have a negative impact on the required signal-to-noise
ratio (SNR) for correct decoding. In other words, by
using the novel SM mapper, the decoding performance
of bn+1:n+m may be worse than the traditional SM
approach. But we should note that the total performance
of SM is mainly determined by the worse one between
bn+1:n+m and b1:n. When the SM channels become
strong correlation, the decoding performance of b1:n will
become very poor. For example, when the correlation
coefficient is one, no correct decoding of b1:n is achieved,
while bn+1:n+m could still be correctly decoded. Hence,
we attempt to improve the decoding performance of b1:n

by allocating them in the modulation constellation. At
the same time, we will try to enlarge the minimum Eu-
clidean distance between pair of signals in the partitioned
subset of Ci

2m←2n+m in order to preserve the decoding
performance of bn+1:n+m compared to the traditional SM
approach.

Compared with the conventional modulation schemes,
the SNR loss caused by the Ungerboeck’s set partitioning
is defined as

γl(Ci
2m←2n+m) = 10 log10

(
d2

min(C2m)
d2

min(Ci
2m←2n+m)

)
,

(18)

where dmin(·) is to get the minimum Euclidean distance
between pair of signals in the specified modulation con-
stellation. Table I illustrates the corresponding SNR loss
with some cases as examples. From which we could see
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Figure 3. Ungerboeck’s Set Partitioning of 16QAM

TABLE I.
THE SNR LOSS CAUSED BY THE UNGERBOECK’S SET PARTITIONING COMPARED WITHE THE CONVETIONAL MODULATION

SCHEMES (Ci
2m←2n+m VS C2m ).

Ci
2←2n+m

vs BPSK
Ci

22←2n+m

vs QPSK
Ci

23←2n+m

vs 8PSK
Ci

24←2n+m

vs 16QAM
Ci

25←2n+m

vs 32QAM
Ci

26←2n+m

vs 64QAM
Ci

27←2n+m

vs 128QAM
QPSK(n + m = 2) 0 0 / / / / /
8PSK(n + m = 3) 0 0 0 / / / /

16QAM(n + m = 4) 0.97 0.97 -1.35 0 / / /
32QAM(n + m = 5) 1.18 1.18 -1.14 0.21 0 / /
64QAM(n + m = 6) 1.18 1.18 -1.14 0.21 0 0 /

128QAM(n + m = 7) 1.23 1.23 -1.09 0.26 0.05 0.05 0
256QAM(n + m = 8) 1.23 1.23 -1.09 0.26 0.05 0.05 0

that for the partitioned subsets Ci
2←2n+m and Ci

22←2n+m ,
there is no SNR loss when MPSK (M = 2m,m > 2)
is partitioned, while about 1dB SNR loss exists when
MQAM (M = 2m,m > 3) is partitioned. Moreover
when Ci

2m←2n+m , m > 2 is partitioned from MQAM,
only a small SNR loss exists. It is also interesting
that some SNR gain could be achieved for some cases,
for example, Ci

8←2n+m , n + m > 3 partitioned from
MQAM (M = 2m,m > 3) will have better performance
than 8PSK.

B. Optimal detection for the novel spatial modulation

As similar with (11), the optimal detector based on the
ML principle for the novel SM scheme is given by

[ĵML, q̂ML] = arg max
j,q

pY (y|xjq′ ,H)

= arg min
j,q

‖y −Hxjq′‖2F , (19)

with

q′ = (j − 1)× 2m + q.

Here, j ∈ {1, 2, . . . , Nt} and q ∈ {1, 2, . . . , M} are
determined by b1:n and bn+1:n+m, which are given by (7)
and (8), respectively. And the transmit SM constellation
is defined as

xjq′ ,




0 . . . 0 xq′ 0 . . . 0
↑

jth position




T

(20)

with xq′ ∈ C2n+m .
By comparing (19) with (11), it is clear that the novel

SM scheme has the same decoding complexity as the
traditional SM one. On the other hand, although the
modulation block of the novel SM includes two modules
as shown in Fig. 2, in terms of architectural or software
design these two modules will be one looking-up-table,
just as the conventional modulation scheme. Specially,
with any given configuration of n + m, one bits-to-
constellation mapping will be produced by adopting the
two proposed operations of “Subset Selection” and “Point
Selection”. For instance, when n + m = 4, the bits-to-
constellation mapping is produced as shown in Fig. 3. For
implementation we only need to store this mapping table.
By this way, for each input of n+m bits, one modulation
signal point will be looked up. As a result, the complexity
comparison of the two schemes is mainly determined
by the size of the looking-up-table, which is equal to
2n+m and 2m for the proposed SM and traditional SM,
respectively. In the practical wireless applications, such
difference is quite trivial. Consequently, we can say that
the proposed scheme has little effect on the system
implementation.

V. PERFORMANCE ANALYSIS

A. Performance of the traditional SM scheme

Based on the channel model of (13), [9] has proposed
a general method for the error analysis of SM systems
over correlated/uncorrelated Rayleigh and Rician fading
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channels. The related works could also be found in [7],
[8], [17]. In the following, we will extend them to the
novel proposed SM scheme.

As shown in [9], [17], the upper-bounded average bit
error probability (ABEP) is derived by using the well-
known union upper bounding technique in [18] for the
conventional SM scheme with the optimal detection [3],
which is written as

P̄b ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

P̄b(j, q; ĵ, q̂) (21)

with

P̄b(j, q; ĵ, q̂) =
Nb(j, q; ĵ, q̂)
log2(NtM)

P̄s(j, q; ĵ, q̂). (22)

In which c = 1
NtM

, P̄s(j, q; ĵ, q̂) is the average pairwise
symbol error probability (ASEP) of pair of SM symbols
denoted by xjq and xĵq̂, respectively. Nb(j, q; ĵ, q̂) de-
notes the Hamming distance between two transmit bit
sequences corresponding to xjq and xĵq̂, respectively.
Notice that xjq and xĵq̂ have the definition of (9).
According to [9], P̄s(j, q; ĵ, q̂) is calculated as

P̄s(j, q; ĵ, q̂) =
1
π

∫ π
2

0

e−mH
z [I sin2 θ+Rz]−1

mz

det
(
I + Rz

sin2 θ

) dθ (23)

with

mz =

√
γK

4(K + 1)
(xq − xq̂)eNr , (24)

Rz =
γ

4(K + 1)

[
|xq|2 + |xq̂|2 − 2<{ϕt

jĵ
xqx

∗
q̂}

]
Rr,

(25)

where eNr
is an Nr-dim column vector with all entries

equal to one.
Similar with (21), we have the total ASEP of the

conventional SM scheme, which is written

P̄s ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(j, q; ĵ, q̂)P̄s(j, q; ĵ, q̂) (26)

with δ̄(a1, a2, . . . , ak; b1, b2, . . . , bk) defined as

δ̄(a1, a2, . . . , ak; b1, b2, . . . , bk)

=

{
0, if aj = bj , j = 1, 2, . . . , k

1, else
. (27)

B. Performance of the novel SM scheme

By comparing the two optimal detection formulas of
the traditional and novel SM schemes, which are given
by (11) and (19), respectively, we could know that the
ABEP and ASEP of the novel scheme will have a similar
form with the traditional SM scheme. According to (19),
(21) and (26), the ABEP and ASEP of the novel SM
scheme are given by

P̄nb ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

P̄nb(j, q′; ĵ, q̂′) (28)

and

P̄ns ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(q′; q̂′)P̄ns(j, q′; ĵ, q̂′), (29)

respectively. Here,

q′ = (j − 1)× 2m + q = (j − 1)M + q, (30)

q̂′ = (ĵ − 1)× 2m + q̂ = (ĵ − 1)M + q̂, (31)

P̄nb(j, q′; ĵ, q̂′) =
Nb(j, q′; ĵ, q̂′)
log2(NtM)

P̄ns(j, q′; ĵ, q̂′), (32)

in which j ∈ {1, 2, . . . , Nt} and q ∈ {1, 2, . . . , M}
are the inter values determined by b1:n and bn+1:n+m,
respectively. Nb(j, q′; ĵ, q̂′) is the Hamming distance be-
tween two transmit bit sequences corresponding to xjq′

and xĵq̂′ , respectively. Notice that xjq′ and xĵq̂′ have the
definition of (20). P̄ns(j, q′; ĵ, q̂′) denotes the ASEP of
pair of SM symbols denoted by xjq′ and xĵq̂′ , which is
calculated as

P̄ns(j, q′; ĵ, q̂′) =
1
π

∫ π
2

0

e−m̃H
z [I sin2 θ+R̃z]−1

m̃z

det
(
I + R̃z

sin2 θ

) dθ

(33)

with

m̃z =

√
γK

4(K + 1)
(xq′ − xq̂′)eNr

(34)

R̃z =
γ

4(K + 1)

[
|xq′ |2 + |xq̂′ |2 − 2<{ϕt

jĵ
xq′x

∗
q̂′}

]
Rr.

(35)

C. Unequal error protection (UEP) performance analysis

According to (11) and (19), the traditional and novel
SM schemes imply two components’ estimation process,
one is the estimation of b1:n, the other is the estimation
of bn+1:n+m. For the the traditional SM scheme, the
former means the transmit antenna index is estimated, and
the latter means to estimate the transmitted modulation
symbol. While for the novel SM scheme, the former
means the transmit antenna index and the partitioned
subset are estimated at the same time, and the latter
means to estimate the transmitted modulation symbol in
the partitioned subset.

Notice that b1:n and bn+1:n+m are mapped to different
signal space, which implies that they may have different
error performance. In other words, the UEP performance
is introduced. In the following, we will study the UEP
performance of the two SM schemes, from which we
could know the advantages of the proposed SM scheme.
Without loss of generality, we mainly focus on the ASEP
analysis for simply.

1) UEP performance analysis of the traditional SM
scheme: According to (26), we have the two ASEPs for
b1:n and bn+1:n+m given by

P̄s,1 ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(j; ĵ)P̄s(j, q; ĵ, q̂) (36)
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and

P̄s,2 ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(q; q̂)P̄s(j, q; ĵ, q̂), (37)

respectively. Here δ̄(·) has the same definition as (27).
And the difference between P̄s,1 and P̄s,2 is given by

P̄s,1−s,2 ,P̄s,1 − P̄s,2 (38)

Since δ̄(j; ĵ) = δ̄(q; q̂) = 1 for j 6= ĵ and q 6= q̂, we have

P̄s,1−s,2 ≈

PA︷ ︸︸ ︷

c

Nt∑

j=1

Nt∑

ĵ=1,ĵ 6=j

M∑

q=q̂=1

P̄s(j, q; ĵ, q̂)

− c

Nt∑

j=ĵ=1

M∑
q=1

M∑

q̂=1,q̂ 6=q

P̄s(j, q; ĵ, q̂)

︸ ︷︷ ︸
PB

, (39)

where PA means to estimate two different transmit an-
tennas with the same transmit modulation symbol, while
PB means to estimate two different modulation signals
at the same transmit antenna. In other words, PA is an
equivalent SSK modulation scheme with a specified com-
plex signal transmission [4], while PB is corresponding to
the conventional digital modulation schemes with a single
transmit antenna.

For PA, i.e., j 6= ĵ, q = q̂, according to (23), (24)
and (25) we have

mAz = 0eNr
, (40)

RAz =
γ|xq|2

2(K + 1)

[
1−<{ϕt

jĵ
}
]
Rr, (41)

P̄s(j, q; ĵ, q̂) =
1
π

∫ π
2

0

[
det

(
I +

RAz

sin2 θ

)]−1

dθ. (42)

Similarly, for PB , i.e., j = ĵ, q 6= q̂, we have

mBz =

√
γK

4(K + 1)
(xq − xq̂)eNr

, (43)

RBz =
γ|xq − xq̂|2
4(K + 1)

Rr, (44)

P̄s(j, q; ĵ, q̂) =
1
π

∫ π
2

0

e−mH
Bz[I sin2 θ+RBz]−1

mBz

det
(
I + RBz

sin2 θ

) dθ.

(45)

By analyzing (40), (41), (42), (43), (44) and (45), we
could define the virtual SNR at each received antenna for
PA and PB , respectively, which are given by

γ̃A(j 6= ĵ, q = q̂) =
γ|xq|2

2(K + 1)

[
1−<{ϕt

jĵ
}
]
, (46)

γ̃B(j = ĵ, q 6= q̂) =
γK|xq − xq̂|2

4(K + 1)
+

γ|xq − xq̂|2
4(K + 1)

=
γ|xq − xq̂|2

4
. (47)

In fact, the total error performance is mainly determined
by minimum values of γ̃A(j 6= ĵ, q = q̂) and γ̃B(j =
ĵ, q 6= q̂), so we further define

γ̃A,min = min
j,ĵ,q

{
γ|xq|2

2(K + 1)

[
1−<{ϕt

jĵ
}
]}

, (48)

γ̃B,min = min
q,q̂

{
γ|xq − xq̂|2

4

}
. (49)

Clearly, PA is mainly determined by the maximum cor-
relation coefficient and the Rician factor, while PB is
mainly determined by the minimum Euclidean distance
between pair of modulation signals. Define

gA/B =
γ̃A,min

γ̃B,min
=

2minj,ĵ,q

{
|xq|2

[
1−<{ϕt

jĵ
}
]}

(K + 1)minq,q̂ {|xq − xq̂|2} .

(50)

We could approximately determine that if gA/B ≥ 1, PA

is better than PB .
As a special case for independent fading channels with

K = 0, we have gA/B =
minj,ĵ,q{2|xq|2}
minq,q̂{|xq−xq̂|2} ≥ 1 for the

conventional MPSK and MQAM constellations, hence
the antenna selection has better performance than the
modulation symbols.

But unfortunately, with larger correlation coefficient or
larger Rician factor, gA/B will become less, and hereby
the performance of the antenna selection will become
worse than the performance of the modulation symbol.
Thus the total SM performance will be mainly determined
by PA. For the special case with <{ϕt

jĵ
} → 1, gA/B → 0

and the antenna index will become undetectable, which
could also be derived from (42). However, in this case
the modulation symbol could be still correctly decoded
according to (45) and (49). In order to tackle this issue,
we proposed the novel SM scheme to balance the perfor-
mance of PA and PB .

2) UEP performance analysis of the novel SM scheme:
According to (29), we have two ASEPs for b1:n and
bn+1:n+m given by

P̄ns,1 ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(j; ĵ)P̄ns(j, q′; ĵ, q̂′) (51)

and

P̄ns,2 ≤ c

Nt∑

j=1

Nt∑

ĵ=1

M∑
q=1

M∑

q̂=1

δ̄(q; q̂)P̄ns(j, q′; ĵ, q̂′), (52)

respectively. Here q′ = (j− 1)M + q, q̂′ = (ĵ− 1)M + q̂
and δ̄(·) is defined as (27). Define

P̄ns,1−ns,2 ,P̄ns,1 − P̄ns,2. (53)
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Since δ̄(j; ĵ) = δ̄(q; q̂) = 1 for j 6= ĵ and q 6= q̂, we have

P̄ns,1−ns,2 ≈

PnA︷ ︸︸ ︷

c

Nt∑

j=1

Nt∑

ĵ=1,ĵ 6=j

M∑

q=q̂=1

P̄ns(j, q′; ĵ, q̂′)

− c

Nt∑

j=ĵ=1

M∑
q=1

M∑

q̂=1,q̂ 6=q

P̄ns(j, q′; ĵ, q̂′)

︸ ︷︷ ︸
PnB

, (54)

where P̄ns(j, q′; ĵ, q̂′) has the form of (33). According
to (34) and (35), we could define the virtual SNR at each
received antenna for PnA and PnB , respectively,

γ̃nA(j 6= ĵ, q = q̂)

=
γK|xq′ − xq̂′ |2

4(K + 1)
+

γ
[
|xq′ |2 + |xq̂′ |2 − 2<{ϕt

jĵ
xq′x

∗
q̂′
}
]

4(K + 1)

=
γ|xq′ − xq̂′ |2

4
+

γ
[
<{(1− ϕt

jĵ
)xq′x

∗
q̂′
}
]

2(K + 1)
, (55)

γ̃nB(j = ĵ, q 6= q̂) =
γK|xq′ − xq̂′ |2

4(K + 1)
+

γ|xq′ − xq̂′ |2
4(K + 1)

=
γ|xq′ − xq̂′ |2

4
. (56)

And the minimum values of γ̃nA(j 6= ĵ, q = q̂) and
γ̃nB(j = ĵ, q 6= q̂) are denoted as

γ̃nA,min = min
j,ĵ,q

{
γ̃nA(j 6= ĵ, q = q̂)

}
, (57)

γ̃nB,min = min
j,q,q̂

{
γ̃nB(j = ĵ, q 6= q̂)

}
. (58)

By comparing {(57), (55)} with {(48), (46)}, we
know that the minimum value of the component
γ
[
<{(1−ϕt

jĵ
)xq′x

∗
q̂′}

]

2(K+1) in (55) may be less than γ̃A,min,

however another additional part of
γ|xq′−x

q̂′ |
2

4 was in-
troduced in (55), which could make up the former SNR
loss. Furthermore, when the correlation coefficient or the
Rician factor becomes larger, the performance of b1:n will

be mainly determined by the additional part of
γ|xq′−x

q̂′ |
2

4
for the novel SM scheme, while for the traditional SM
scheme, its virtual SNR will become very small, which is
really terrible for the correctly decoding. In the following,
let’s further compare their performance in terms of virtual
SNRs in detail.

D. Performance comparison

It is difficult to obtain the performance difference of
the two SM schemes exactly since we can not get their
ABEP or ASEP in closed form. But we still think this
point is indeed very important to clarify our contributions.
In this part, we will address this issue via comparing their
minimum virtual SNRs for simply.

Firstly, by comparing {(47), (49)} and {(56), (58)},
the different performance behavior of bn+1:n+m could be
easily formulated. Which exactly reflects the performance

loss caused by the set-partitioning process in the novel SM
scheme, and some detailed values have been provided in
Table I. Obviously, there is no performance loss for PSK
modulation, whereas the performance loss exists for QAM
modulation.

Next, let’s further analyze the difference of {(55), (57)}
and {(46), (48)}, which reflects the performance of b1:n.

When PSK modulation scheme is employed, according
to (55) and (57), the minimum virtual SNR of γ̃nA for
the novel SM could be calculated as

γ̃PSK
nA,min =

γ(1− cos 2π
NtM

)
2

+
γ(1− ρt) cos 2π

NtM

2(K + 1)
,

(59)

which occurs on the condition of selecting two adjacent
symbols in the expanded modulation constellation. Corre-
spondingly, from (48) we could get the minimum virtual
SNR of γ̃A for the traditional SM given by

γ̃PSK
A,min =

γ(1− ρt)
2(K + 1)

, (60)

and

γ̃PSK
nA,min − γ̃PSK

A,min =
γ(K + ρt)(1− cos 2π

NtM
)

2(K + 1)
> 0.

(61)

Moreover, we have known that there is no performance
loss for bn+1:n+m when PSK is employed, and hereby
the SNR gain could be achieved for the novel SM scheme
over the traditional one with PSK employed. Through
comparing (59) and (60), we can find that larger correlated
coefficients or larger Rician factor will lead to more SNR
gain.

Similarly, when QAM modulation scheme is employed,
according to (55) and (57), we have the minimum virtual
SNR of γ̃nA for the novel SM scheme calculated as

γ̃QAM
nA,min =

γd2
min(C2n+m)

2
, (62)

which occurs on the condition of selecting two adjacent
symbols among the candidates closest to the origin.
Obviously, these two symbols satisfy <{xqx

∗
q′} = 0. (62)

means that the novel SM could provide at least the same
minimum Euclidean distance as the QAM constellation
with the same spectrum efficiency for single antenna
transmission.

On the other hand, the minimum virtual SNR of γ̃A for
the traditional SM is given by

γ̃QAM
A,min =

γ(1− ρt)d2
min(C2m)

2(K + 1)
. (63)

Through comparing (62) and (63) we could know that
the SNR gain only exists at the case of γ̃QAM

nA,min >

γ̃QAM
A,min, i.e., over the correlated fading channels with

larger correlated coefficients or larger Rician factor. Oth-
erwise, the novel SM will lead to a performance loss.
From this point of view, the novel SM scheme is more
suitable for the PSK modulation schemes.
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VI. SIMULATION RESULTS

In this section, we show the performance of the novel
and traditional SM schemes over different channel condi-
tions by using the Monte Carlo simulation and numerical
analysis. In simulated figures NSM and TSM denote the
novel and traditional SM schemes, respectively, and Nr

accounts for the number of receive antennas. The upper
bounds are calculated by numerical integration.
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Figure 4. SER performance of two SM schemes over independent
Rayleigh fading channels (3 bps/Hz: Nt = 2, QPSK for the traditional
               SM scheme and 8PSK for the novel SM scheme).
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Figure 5. SER performance of two SM schemes over independent
Rayleigh fading channels (4 bps/Hz: Nt = 4, QPSK for the traditional
               SM scheme and 16QAM for the novel SM scheme).

With Nt = 2, 4 as examples, Fig. 4 and Fig. 5 demon-
strate the performance of the novel SM scheme com-
pared with the traditional SM scheme over independent
Rayleigh fading channels. The total spectrum efficiencies
are set to be 3bps/Hz and 4bps/Hz for Fig. 4 and Fig. 5,
respectively. From Fig. 4 we could see that almost the
same symbol error rate (SER) performance is achieved
for the novel and traditional SM schemes. The reason
is straightforward. Because over independent Rayleigh
fading channels the overall performance is mainly deter-
mined by the modulation signal domain, which is worse

than the antenna domain. So the performance of the
novel SM scheme will be determined by the minimum
Euclidean distance between pair of modulation signals in
the partitioned subset. From Table I we could see that
there is no performance loss by partitioning 8PSK to
QPSK, and hereby the same performance is achieved for
the novel and traditional SM schemes in Fig. 4. With the
same reason, the performance loss is observed in Fig. 5,
because there is about 1 dB SNR loss for each receive
antenna by partitioning 16QAM to QPSK, as shown in
Table I. If there is more receive antennas, there will be
more overall SNR loss, as demonstrated in Fig. 5. Hence
we conclude that the novel scheme have no advantages
over the independent Rayleigh fading channels.

With Nt = 4 as examples, Fig. 6 illustrates the SER
performance of the two SM schemes over Rician fading
channels with respect to different Rician factor. From
them we could see the improved SER performance is
achieved for the novel SM scheme compared with the
traditional one. Although the later is better than the for-
mer over the independent Rayleigh fading channels. Via
jointly comparing Fig. 5 and Fig. 6, another phenomena
is that with the increasing of the Rician factor (K), the
performance of the traditional SM becomes worse, while
the performance of the novel SM scheme is improved.
This is consistent with our theoretical analysis about the
UEP performances.
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Figure 6. SER performance of two SM schemes over Rician fading
channels with Rician factor (K) equal to 5 and 10, respectively (4
bps/Hz: Nt = 4, QPSK for the traditional SM scheme and 16QAM
                                   for the novel SM scheme).

Fig. 7 shows the SER performance of the two SM
schemes over correlated fading channels. Here two differ-
ent correlated coefficients are considered, i.e., ρ = ρt =
ρr = 0.5 and 0.9, respectively. The correlated coefficients
are generated by using the exponential correlation model
of (17) with ρ denoting the correlation coefficient between
adjacent transmit/receive antennas. The obvious result is
when the the correlated coefficients become large enough,
the performance of the novel SM will become better
than the traditional one. And larger correlated coefficients,
more performance improvement. This is also consistent

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 11, NOVEMBER 2012 855

©2012 ACADEMY PUBLISHER



with our UEP performance analysis.
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Figure 7. SER performance of two SM schemes over correlated fading
channels with correlated factor ρ = 0.5 and 0.9, respectively (4 bps/Hz:
Nt = 4, QPSK for the traditional SM scheme and 16QAM for the novel
                                                SM scheme).

Through comparing Fig. 7 and Fig. 6, another phe-
nomena is observed that the channel correlation has a
negative impact on the error performance, while the effect
of the Rician factor is positive. That is to say, the system
performance will be weakened with the increasing of the
correlation coefficients, whereas the larger Rician factor
will improve the system performance. The reason is also
straightforward, because larger Rician factor means more
close to the AWGN channel and reduced fading impact.
On the contrary, larger correlation means more difficult
to distinguish the different transmit antennas while the
channel fading still doesn’t weaken.

VII. CONCLUSION

In this paper, we have introduced a novel spatial modu-
lation scheme based on the Ungerboeck’s set partitioning
rule. Different from the traditional SM scheme with only
a part of input bits mapping to the modulation signal,
the proposed scheme maps all the input bits to the mod-
ulation signal constellation. The antenna selection is the
same with that of traditional SM scheme. Therefore, the
relationship is established between antenna domain and
signal domain, with which the balanced error performance
between this two domains could be achieved, and thereby
the total system performance is improved. The strong
correlation or large Rician factor could significantly de-
teriorate the error performance of antenna domain, but
it has only very limited effect on the signal domain.
Both performance analysis and simulation results have
reinforced this phenomena and the advantages of the
novel SM scheme. Note that the decoding complexity of
the novel scheme is kept unchanged compared with the
conventional SM scheme. Moreover, the set partitioning
ideas and the balanced error performance will facilitate
the joint design of channel coding and spatial modulation.
Detailed study will be included in our further research
works.
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