
A Protocol for Automatic Node-ID Binding in
CANopen Networks

Guangcan Yu

Department of Control Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
Email: ygcan@QQ.com

Chunjie Zhou and Shuang Huang

Department of Control Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
Email: cjiezhou@mail.hust.edu.cn; huangshuang0709@126.com

Abstract—In a CANopen-compliant industrial control
system, the master node controls slave nodes (devices)
through the corresponding Node-IDs. Though there are
some protocols (such as LSS, LMT etc) established for
Node-ID assignment, it is not competent for configuring
Node-ID for all slaves automatically. In this paper, a new
Node_ID binding protocol is proposed. The protocol can be
used to assign Node-IDs to all the slave nodes of a
networked control system automatically, and the assigned
Node-ID can also reflect the logic position of a physical slave
node in the control system. Firstly, the LSS physical address
structure is applied to a developed protocol for automatic
node discovery (AND) with some necessary modifications.
The revision of the AND protocol (RAND) is proved to be
able to detect LSS addresses of all slaves efficiently. After all
the slave nodes being discovered, each slave node needs to
be assigned with an appropriate Node_ID. In the proposed
protocol, the assignment is divided into two phases: the
Node-IDs pre-assigning phase and the Discovery and
binding phase. The accomplished function, the
implementation rules and the sorting algorithms of the two
phases are described in detail. Finally, the performance of
the protocol is evaluated both from a theoretical point of
view and by means of a network emulator. The latter
approach also verified the correctness of the protocol under
actual conditions. It is illustrated that with the proposed
protocol, it is easier to deploy and maintain a control system.

Index Terms—Communication protocols, CANopen,
Industrial control system, Node discovery and binding

I. INTRODUCTION

CAN[1] is a real-time protocol that is widely adopted
in a number of different application fields[2, 3] , ranging
from the automotive to the automated manufacturing
environments. The CAN specifications define only the
data-link layer, which describes the rules used for
carrying out frame exchanges over the shared
communication support. A higher level protocol is
necessary to specify the process of CAN message frames.

CANopen[4] is an application protocol conceived for
frame exchanges in distributed control systems based on
CAN concepts. CANopen was originally proposed in the
framework of a European research project and is now
maintained by the CAN-in-Automation (CiA)
organization. Recently, it has become a European
standard known as EN 50325-4[5]. A CANopen system is
typically comprised of one master and several slave
devices (slave nodes), in which each slave node is
identified by a 7-bit node address (Node-ID) and message
exchange is achieved by communication objects (COBs).
There are mainly two kinds of COBs: process data
objects (PDOs) and service data objects (SDOs). The
former is used to transfer real-time data from one
producer to (one or more) consumers; the latter is
subjected to node configuration and managements, and
provides a client access to entities defined in a device
object dictionary (OD). However, Node_IDs and the bit
timing parameters could not be configured by SDO
because communication with a given device is not
possible unless it is assigned with a unique node ID and
the correct bit rate has been set. The method of the bit
timing configuration is outside the scope of the paper, we
focus on how the Node_ID can be configured.

The Node-ID can be configured either manually (by
means of dip-switches), or via the CAN bus. If slave
devices were provided in sealed packages (for the
purpose of to be resistant to water, dust, sand or other
hostile agents), the latter is often the only practical
method. Two protocols which support the Layer
Management (LMT) and Layer Setting Services (LSS)
respectively can be used to configure the Node-IDs.
LMT[5] is an earlier solution, features in its ability of
changing values of the Node_IDs. However, the whole
system could break down if two or more slave nodes
were tagged with the same Node_IDs. The latest version
of the CANopen specifications is based directly on the
communication facilities as set in the CAN data-link
layer, leading to the introduction of LSS[6], which is
quite similar to the LMT but was essentially tailored for
the CANopen architecture. It requires that there must be
only one node in the configuration mode while others in
the operational mode if LSS is utilized as the

Manuscript received April 13, 2012; revised July 8, 2012; accepted
July 31, 2012.

This study was supported by National Natural Science Foundation of
China (No. 60674081 and No.61074145), Independent Innovation
Research Foundation of Huazhong University of Science and
Technology, China(No. 2011TS029).

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012 765

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcm.7.10.765-773

configuration tool. Tindel[7, 8] present a static approach
for assigning identifiers to different CAN messages
according to the deadline monotonic scheme. The CAN
application layer, instead, defines the distributor (DBT)
protocol[9, 10], which enables the dynamic distribution
of the identifiers through a suitable COB database.
Finally, Cavalieri[11] introduced a novel protocol based
on DBT and copes with the online automatic
management of the identifiers. Although these protocols
could meet vary requirements, they are not competent for
Node-ID binding automatically. When these protocols are
used to configure Node_ID for slave nodes, the following
methods would usually be adopted. () Before a slave ⅰ
node is connected to a control system, the Node_ID is
configured by a special auxiliary system (tool) manually,
and the operator must ensure the correctness and
uniqueness of the assigned Node_ID. () If slave nodes ⅱ
possess globally unique identifier (such as LSS address),
a static mapping table which maps each slave node to a
Node_ID should be provided to every deployed control
system. When any slave node is replaced, the static
mapping table needs modified manually. In general, the
two methods are unacceptable in industrial fields.

In order to automatically configure Node-IDs for all
slave nodes in a CANopen network, each slave nodes
need an inherent identifier which may be global unique
and may not be modified. The LSS address is suited to
act as the inherent identifier. As the dynamic host
configuration protocol (DHCP)[12], the MAC addresses
are utilized to configure IP address. At the same time, a
discovery mechanism is needed to detect all the inherent
identifiers automatically. Although LSS identification
services is theoretically possible in discovering unknown
nodes that have already been connected to the network, it
would require an exhaustive scanning of all the 16-byte
LSS addresses, and that is too difficult in real
implantations. Cena and Valenzano[13] presented an
efficient solution for rapid recognition, the Automatic
Node Discovery (AND) protocol, which does not need
any priory information about the unknown nodes. Such a
technique is based on the fact that each device can be
identified unambiguously by a global unique identifier. It
adopts a node identification procedure which comprises a
sequence of identification phases. Each of these phases
contains a request initiated by the master, followed by
different numbers of responses from the slaves. The
master node repeats inquiries to the attached devices with
more and more precise criteria, until a single node
respond and, thus, it is identified. Such procedures will be
repeated until all nodes become known in the network.
The AND protocol is based on four new kinds of
unconfirmed services: identify unknown remote slaves
(IURS), identify unknown slave (IUS), direct identify
remote slave (DIRS) and direct identify slave (DIS).
These four services form the node identification
procedure. Sometimes, it is necessary for the master to be
able to set the state of nodes back to "unknown" or
"identified" directly (for example, to force a new
detection of devices). For this purpose, two additional
switch identification state services (global and selective)

are provided. The application of AND protocol is limited
because of its 6-byte physical address does not conform
to the LSS specifications, and too short to express certain
semantic information.

The proposed automatic Node-ID binding method aims
at configuring Node-IDs for all slave nodes in a
CANopen network automatically and the configured
Node-IDs may also reflect the logic position of a physical
slave node in the network. The LSS address is adapted to
global identify each slave node and is utilized to
configure Node-ID for each slave node. Our method is
based on the following assumption: In a CANopen-
compliant control system, the CANopen network is
always static, the number of slave nodes and the
functionality of each slave node are usually pre-
determined. Slave nodes can be classified by the type
codes (comprised of vendor-id and product-code) in LSS
address, and slave nodes with the same type code may be
equal in functionality. And then, we divide the Node-IDs
assigning work into two phases. In the first step, every
Node-ID is pre-assigned to a slave node according to the
type code, and the mapping relation between Node-IDs
and type codes is stored in the master node. The Node-
IDs are agents of the physical slave nodes and the master
node would control every slave node though the
corresponding Node-ID. In the second phase, slave nodes
would be connected to the network according a given
rules, and the Node-IDs can be automatically assigned to
the corresponding slave nodes which are connected to the
network according to the Node-ID pre-assigning. Slave
nodes store the assigned Node-IDs, and prepare for
responding messages with given Node-IDs. The Node-ID
assignment work is made up of two phases, and only in
the second phase the actual work is done automatically.
In fact, it is very important, for it is not good ideal to
expect workers of industrial fields to do some complicate
configure work, and our method makes it easier to deploy
and maintain the control system. If any slave node failed
in the industrial field, it could be replaced by a well-
behaved device. After a simple operation in the master
node (maybe only by pressing a button), the newly
connected node would be configured automatically,
without any more work.

Our automatic Node-ID binding method is based on
the LSS addresses of slave nodes. Before Node-IDs can
be assigned to slave nodes, the master node needs to
know LSS addresses of all connected slave nodes. A
revision of the AND protocol (RAND) is proposed and
can be used to detect all slave nodes. In RAND, the LSS
address is adopted instead of the 6 bytes self-defined
address, and the extended 29-bit frame format of CAN is
adopted instead of the standard 11-bit frame format, and
some necessary corresponding modifications are made.
The RAND is proved to be able to detect LSS address of
all slaves efficiently.

This paper is structured as follows. Section 2 presents
the revision of the AND protocol. Section 3 presents the
new Node-ID binding protocol. In Section 4, the
correctness and the performance of the proposed

766 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Figure 1. LSS address structure.

Figure 2. LSS address structure. Frame formats and the protocol for identifying one unknown slave device

improvements will be evaluated. And finally, a summary
will be made in Section 5.

II. REVISION OF THE AND PROTOCOL

In RAND, The LSS address, which is significantly
longer than the 6-byte physical address in the AND
protocol, is split up into eight chunks as depicted in Fig. 1.
Here, the extended 29-bit frame format of CAN is
adopted instead of the standard 11-bit frame format, for
fully utilization of the address space, and thus better
performance could be expected.

The IURS frame uses the COB-ID 2021. It contains a
4-byte data field, and the command specifier (cs) 80H is
included in the first byte. The second byte stands for the
phase number, its binary value ranging from 0 to 7. The

successive two bytes are the address mask, and the
remaining 4 bytes are reserved. The phase number is
corresponding to the address mask. (If the phase number
is 0, the address mask is set to null; if the phase number is
1, then the mask is set to chunk (0) of LSS address, and
so on).

The IUS frame has an empty data field. The first 11
bits of COD-ID is 11111010100b (2004), and the
following 16 bit is to be filled with a chunk of LSS
address. The last two bits are reserved.

The DIRS frame format is similar to IURS, the phase
field is set to 8 and the last chunk of LSS address is
specified as the address mask. The DIS frame is similar to
IUS too, but its COB-ID is 2020.

Because the CAN frame has only an 8-byte length data
field, the 16-byte LSS address is obvious too long to be
filled in the data field together. Thus the meaning of the
status flag (identification state) as defined in AND
protocol, which is stored in each slave node and indicates
whether the node itself is identified by the master node or
not, need to be extend to express two statuses. The new
status is named selected, which indicates that a node has
accomplished all prior identification phases in a single

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012 767

© 2012 ACADEMY PUBLISHER

Figure 3. General architecture of CANopen networks.

procedure, and is ready to respond to the next phase.
If a slave has received a zero phase IURS frame and in

the unknown state, or an none zero phase IURS while in
the selected status, then the corresponding part of its
physical address will be checked to determine whether it
matches the address mask specified in the IURS frame. If
so, the node will respond with a suitable frame and its
status will be switched to selected. If not, the status will
be switched to unknown and no actions will be taken. For
example, if the current phase number is zero, then all the
unidentified nodes have to respond. If the phase number
equal to 6, it will involves only those nodes, whose chunk
(5) of the physical address are identical to the 16 most
significant bits in the address mask of the IURS frame,
and whose status is selected. Those nodes with selected
status, whose chunk (5) of the physical address are not
identical to the 16 most significant bits, would switch
their status from selected to unknown.

Data fields of all the responding frames are empty, as it
is detailed in the AND protocol. But the COB-ID
assigned to the service is different from the AND
protocol specifications. In fact, COB-IDs are calculated
by attaching two bytes to the value 2004. The two bytes
are the chunk in the physical address that corresponds to
the current phase number (for example, in phase 0 the
chunk (0) is selected). We define the symbol "||" as the
operation of a chunk attaching to another number (for
example, if the corresponding chunk value is 2, the COB-
ID= 2004 (11bit) || 2 (16bit) || 0 (2 bit reserved) =
11111010100000000000000001000b, the last two
reserved bits are omitted in the paper for simplicity). The
format of the frames used to support the services and the
protocol for identifying one unknown slave device are
shown in Fig. 2.

.Ⅲ THE AUTOMATIC NODE-ID BINDING PROTOCOL

CANopen network usually adopts the Client/Server
model, in which the master node serves as the server and
others, clients. The server node can be the NMT master
or LSS master, etc. In a CANopen-compliant control
system, the number of slave nodes and the functionality
of each slave node are usually determined, and the
CANopen network is static. A general architecture of
CANopen networks is shown in Fig. 3.

Each slave node is connected to the network through a
numbered slot. According protocol specifications, the
maximal amount of nodes connected simultaneously to a
CAN bus is 127. The slots could be numbered from 1 to
127 (they can also be given a semantic name). The
automatic Node-ID binding protocol aims at assigning

each slot number to the slave node which is connected to
the corresponding slot and the assigned slot number will
be used as Node-ID of the slave node. So the Node-ID
also reflects the logic position of a physical slave node in
the network. For example, the slot number 1 is assigned
to client A (that is, the Node-ID of the client A will be 1).
It's natural that the assigning work could be done
manually: record all LSS addresses of slave nodes and the
slot number of each node, and then the assigning work
could be achieved through certain HUI of the master node.
However, if this process needs to be accomplished
without human interference, the most challenging task is
to determine the corresponding slot number of each slave
node automatically.

Automatic Node-ID Binding algorithm is actual a
sorting algorithm on LSS addresses. As mentioned above,
an LSS Address consists of a vendor id, a product code, a
revision number and a serial number. Nodes with the
same vendor id and product code are equal in
functionality, therefore vendor-id and product-code
together could be jointed as Type Code. After the
functionality of a control system is decided, the node
types and the amount of nodes belonging to each type
may also be determined. The Node-ID assigning work is
divided into two phases in general. In the first phase,
slave nodes are not connected to the network yet, and the
master node doesn't know LSS addresses of any slave
node in detail, but the master node knows the node types
and the amount of nodes belonging to each type. In this
phase, a node type is mapped to a Node-ID cluster, and
the mapping work is done in the master node. We name
this phase as Node-IDs pre-assigning phase. In the second
phase, slave nodes would be connected to the network
first according the following two rules:

Rule 1: The Type Code of a slave node must match
Type Code which the slot number (Node-ID) is mapped
to, and the slot number represents the slot which the slave
node is connected to.

Rule 2: If a node type is mapped to multi Node-ID
(Several slave nodes would be equal in functionality and
possess the same Type Code), the slave nodes will be
sorted by Revision_Number and Serial_Number (R_SN)
first. The R_SN value of a node is associated with its slot
number: a node with a larger R_SN is connected to a slot
with larger number.

After slave nodes are correctly connected to the
network, The RAND protocol is used to detect all LSS
addresses of all slave nodes. And then, Node-IDs are
assigned to slave nodes using the same rule, and the
assigned Node-ID of a slave node would be equal with
the corresponding slot number and stored in the slave
node. Thus the Node-ID Binding is achieved, and the
binding work is accomplished though message
exchanging between the master node and slave nodes. We
name the second phase as discovery and binding phase.

In fact, we use the LSS protocol to assign a Node-ID to
a slave node. When LSS is utilized as the configuration
tool, it requires that there must be only one node in the
configuration mode while others in the operational mode
and the following three services are involved:

768 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Node_Table[MAX_Node];

Boolean isOK;

For(int i=0;i<MAX_Node;i++)

{Node_Guarding(Node_Table[i].Node_ID);}

//send node guarding frame

Sleep(Tg_coll); //wait for collecting response frame

For(int i=0;i<MAX_Node;i++){

isOK=Node_Guarding_Response(Node_Table[i].Node_ID);

 //search the response frame with

//Node_ID as Node_Table[i].Node_ID

If(isOK) Node_Table[i].isOnline=true

Else{

 Node_Table[i].isOnline=null;

Node Table[i].R SN=null; }}

Figure 4. Pseudo code for algorithm in phase 1.

Switch Mode Global Service is used to switch all LSS
Slaves connected to the network between operational
mode and configuration mode.

Switch Mode Selective Service is used to switch the
LSS Slave, of which LSS address attribute equals to
LSS_address specified in the request frames, into
configuration mode.

Node-ID Configuring Service is used to configure the
NMT-address parameter of a LSS Slave by the LSS
Master. This service requires only one LSS Slave in
configuration mode.

Then, Configuring a Node-ID involves the following
three steps:

(1) Switch all LSS slaves to operational mode with
switch global service.

(2) Put selected slave nodes into configuration mode
using Switch Mode Selective Service.

(3) Use Node-ID Configuring service to assign the
Node-ID to the selected node which is the only slave
node in configuration mode.

A. The Integral Sliding-mode Control
In the phase, slave nodes are yet not connected to the

network, and the master node doesn't know LSS
addresses of slave nodes in detail, but it know the type
code of every slave nodes which is part of the LSS
address and represent functionality of a slave node. A
node type is mapped to a Node-ID cluster, and the
mapping relation would determine the Node-IDs range of
a type of nodes which are equal in functionality.

For registering all slave nodes and saving the mapping
relation between the Node-IDs and the type codes, the
master node need maintain a slave node information table
(Node_Table). The structure of Node_Table is shown as
Table 1. Each row of the table shows the properties of a
slave node: the Node-ID corresponds to the slot number
that the slave node is connected. The Type_Code is the
vendor-id and product_code of a LSS address, and R_SN
stands for Revision_Number and Serial_Number of the
LSS address. The isOnline indicates whether the slave
node has been connected to the network or not and
whether it is proper functioning. The value of Node-ID
and Type_Code reflect the mapping between node type
and Node-IDs cluster, and could be determined after the
functionality of a control system is determined. The value
of R_SN and is Online could be set only after slave nodes
are connected to the network and the automatic binding
procedure is successfully executed.

B. Discovery and Binding Phase
The discovery and binding phase consists of the

following three steps in detail:
a) Preparation step
In the step, the master detects all slave nodes through

NMT node guarding service one by one. If a slave node is
connected and properly functioning, it will response to
the node guarding frame initiated by the master, and the
isOnline field of a row which represents the slave node is
set to true.

If node guarding frame is not responded, both isOnline
and R_SN fields are set null, this would state that the
slave node is not connected or not normal
running.However, if the system is in first time
initialization, the R_SN field of Node_Table will be
empty because the nodes discovery phase has not yet
started. If unknown slave nodes would be connect to a
network that has already been configured, or some failed
nodes were to be replaced, the cleaning work can be done
in the initialization phase.After that, the R_SN and
isOnline fields of fault nodes would be reset, with the
Node-ID and Type_Code fields remain unchanged. The
master node is then ready to accept new nodes after fault
nodes are removed from the network by the system
manager. The master node can also check on the current
states of individual nodes with Node Guarding. A
detailed pseudo-C code description of the initialization
phase is given in Fig. 4.

b) Discovery step
In the discovery step, the RAND protocol as presented

above detects any unknown nodes. Before this searching
mechanism begins, the following steps need to be
executed:

(1) The LSS switch mode global frame is broadcasted
by the master to switch all slave nodes to configuration
mode. The RAND protocol is based on LSS protocol,
services defined in the RAND could only be available in
configuration mode.

TABLE I.
STRUCTURE OF THE NODE_TABLE

Node_ID Type_Code R_SN isOnline
1 0x0100000100000001
2 0x0000000100000001
3 0x0000000100000005
4 0x0000000100000001
5 0x0000000100000001
… …

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012 769

© 2012 ACADEMY PUBLISHER

Node_Table[MAX_Node];
Discovered_New_Node[MAX_Node];
Int newNodeAmount;
Boolean isOK;
Switch_mode_global(true);
// switch all slave nodes to configuration mode
Switch_identification_state_global(False);
// switch all slave nodes to unknown state
For(int i=0;i<MAX_Node;i++){
 If(Node_Table[i].R_SN!=Null)
//switch a registered slave node to identified state
Switch_identification_state_selective

(Node_Table[i].Type_Code,
Node_Table[i].R_SN);}

Figure 5. Pseudo code for algorithm in phase 2.

Node_Table[MAX_Node];
Discovered_New_Node[MAX_Node];
// sorted LSS addresses of new discovered nodes (sequence)
Int newNodeAmount;
// amount of new discovered nodes
For (i=0;i<newNodeAmount;i++)
{ For (j=0;j<MAX_Node;j++){
 // Type Code matching

If (Node_Table[j].Type_Code==
Discovery_New_Node[i].byte(0..7)
and Node_Table[j].R_SN==NULL)

//the j(th) row of Node_Table yet not be registered
{Node_Table[j].R_SN= Discovery_New_Node[i].byte(8..15)
 //register a slave node
Node_Table[i].isOnline=true;} } }

For (i=0;i<MAX_Node;i++)
{If(Node_Table[i].R_SN!=Null and Node_Table[i].isOnline==false)

{Switch_mode_global(false);
// switch all slave nodes to operation state
// switch selected nodes to configure state
Switch_mode_selective
(Node_Table[i].Node_Type,Node_Table[i].R_SN);
//assigning the Node_ID to the slave
node with the specified LSS address

Configure_Node_ID(Node_Table[i].Node_Type,Node_Table[i].R_SN,
 Node_Table[i].Node_ID); } }

Figure 6. Pseudo code for algorithm in phase 3.

Figure 7. Time sequences in frame exchanges between the master
and the slave nodes.

(2) The RAND switch identification state global frame
is broadcasted by the master to switch all slave nodes to
unknown state. State of nodes which are newly connected
to the network may be identified (nodes come from other
running automation systems), and the situation will
obstruct the RAND protocol.

(3) The RAND switch identification state selective
frame is send to each slave node which is registered in
Node_Table. The states of slave nodes, which are already
registered in the master node, are transfer to identified,
which will improve efficiency of the RAND.

After these three steps, the RAND protocol can be
used to detect the connected but not recognized nodes. A
detailed description of the discovery mechanism is given
in Fig. 5.

c) Binding step
In the binding step, nodes recognized in discovery

phase, of which the LSS addresses are stored in array
Discovered_New_Node, are then assigned with NMT
addresses (Node_IDs). The Node_ID assignment relies
on a particular sorting algorithm on LSS addresses.

After Note_IDs have been pre-assigned to each newly
discovered node in the Node_Table, the LSS Configure
Node-ID service is used to configure all the recent
discovered nodes indeed. The Switch Mode Global
Service and Switch Mode Selective Service are used
alternatively to ensure only one slave node be in
configuration mode in a time, so as to conform to the
constraints of the LSS Configure Node-ID service. A
detailed description of this sorting algorithm is given in
Fig. 6, and the general time sequences of frame
exchanges between the master and the slave nodes is
given in Fig. 7.

Ⅳ EVALUATION OF THE BINDING PROTOCOL

We evaluate the performance of the proposed protocol
from a theoretical point of view first, and then a network
emulator is used to confirm the results and the correctness
of the protocol under practical conditions.

In the preparation step, the master inquiries each slave
node with NMT node guarding service. The detection is
achieved by the master broadcasting a node guarding
frame to the slaves, which are expected to reply with
responding frames. The master has to wait for the
response for a certain time. Thus, the time needed in
discovering one node could be described as the formula
given as below,

respn_guard_rn_guarddetect T+T+T=T (1)

where Tn_guard and Tn_guard_r are the durations of the
broadcasting and responding frames respectively, and
Tresp is the waiting time of the master node (Its value may
equal to the maximum value of Tn_guard_r and we may
assume it as a constant). Tdetect is the time needed for
detecting one slave node.

770 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Therefore, the time needed in discovering all slave
nodes in the network (Tdetect_all) could be calculated by

respn_guard_rn_guards_nodedetect_all T+)T+(T×N=T (2)

 where Ns_node is the total number of slave nodes in
the system.

Our technique adopts an extended 29-bit CAN frame
format. The data field of node guarding frame is empty
and the response frame is 1 byte. Consider the worst
scenario of transmission on the CAN bus: the length of
the node guarding frame is 150 bits and the responding
frame is 160bits. Assume the following running
conditions (which will also be applied to the following
scenarios): Number of online slave nodes is 30, baud rate
of the CAN network is 50kb/s (which is very slow), the
worst-case slave response time is 4 ms, and the master
processing time is 1 ms. Then, the time needed in the
preparation phase is 190ms. If the control system is first
configured, the value of Tdetect_all is zero because the
R_SN field of the Node_Table is empty (the discovery
phase has yet not started).

In the discovery step, the RAND protocol is used to
discovery nodes which are newly connected to the
network but yet to be recognized. According to the AND
(nonrecursive) algorithm, the identification of each
unknown node requires 12 identification phases, plus one
final direct identification phase. However, in RAND
protocol, the count of the identification phases is 8.
Similar to the AND protocol, each identification phase of
the RAND consists of an IURS frame sent by the master,
a time interval , during which replies from the slaves are
collected, and some processing time(e.g. during which
the master analyzes replies and computes the content of
next IURS frame). This could be expressed as below,

IUSrespcollcet 1)T+(8+T≥T (3)

proccollectIURSID_phase T+T+T=T (4)

Where TIURS, Tcollect, Tproc are the time needed for
sending the IURS frame, collecting replies and
processing respectively.

The time needed to direct identification(Tdirect_ID) is

procDISrespDIRSdirect_ID T+T+T+T=T (5)

Where TDIRS and TDIS are the durations of the DIRS
and DIS frames respectively.

The time needed to identify one node(Tnode_ID) is

direct_IDID_phasenode_ID T+T×8=T (6)

The time needed to discover all the unknown nodes in
the network is

ID_phaseID_phaseunknownnetwork_ID T+T×N=T (7)

Where Nunknown is the total number of unknown nodes.
The data field of IURS, DIRS, and DIS frame is 4

bytes, while that of the IUS frame is empty. The identifier
of all the frames is 29 bits. In the worst transmission
scenario as mentioned above, the lengths of the two

frames are 185 and 145 bits respectively. According to
(3), the collect time is greater than 30.1ms (taken as
40ms). The time needed to discover 30 unknown nodes is
at least 11.2s. Under the same assumed conditions, the
time consumed is shorter than that of AND protocol
(16.09s).

In the binding step, nodes discovered in the discovery
phase are assigned with NMT addresses (Node_ID). To
bind a new node involves a switch mode global frame
(duration Ts_global), four switch mode selective frames
(duration 4Ts_sele) and a corresponding response frame
(duration Ts_sele_r), a configure Node-ID frame (duration
Tc_ID) and a corresponding response frame (duration
Tc_ID_s), and some waiting time consumed by the master
(Tresp).The total time needed to bind a node (Ta_bind)is
therefore given as:

prccrespc_ID_sc_IDs_sele_rs_seles_globala_bind T+T×2+T+T+T+T×4+T=T (8)

Suppose the number of newly discovered nodes in the
network is Nnew_node, then the time needed to bind all of
them (Tall_bind) is

a_bindnew_nodeall_bind T×N=T (9)

The data field of switch mode global frame is 2 bytes,
that of the switch mode selective is 5 bytes, the response
frame is 2 bytes, configure Node-ID is 2 bytes and that of
the response frame is 3 bytes. The identifier of all frames
is 29 bits. By considering the worst case transmission
times on the CAN bus, the two bytes data field frames are
165 bits, three bytes data field frames are 175 bits, five
bytes data field frames are 195 bits. If the number of new
discovered nodes (Nnew_node is 30, the time taken to bind
the nodes (Tall_bind) is 1.15s.

In order to prove the correctness and the performance
of our technique, a network analyzer for CAN systems
which also supports virtual node emulations is utilized to
verify the binding protocol. The CANoe tool is used to
trace the frame flows over the bus. Real time messages
generated by CAPL block of the virtual nodes is recorded
in log files, which reflects the current states and
emulation results of the virtual system. Thus, the
correctness and the performance of the binding protocol
could be both verified. In Fig. 9, a screenshot of the
output obtained by CANoe is present. The trace window
contains the sequence of the frames exchanged over the
bus, while the write window shows the state of the master
and slave nodes as the algorithm proceeds.

We emulate a CAN network which contains a virtual
master node and 120 virtual slave nodes, part of nodes are
show as Fig. 8. The behavior of master and slave nodes is
described in the Communication Access Programming
Language (CAPL), a C-like programming language. Both
the master and slave nodes are RAND-compliant, and
each virtual slave is assigned with a 16 bytes LSS address.
The result of our emulation experiment shows that all
slave nodes can be discovery efficiently and be signed a
proper Node-ID.

In order to demonstrate our method more explicitly, we
consider a network with one master and five slave nodes.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012 771

© 2012 ACADEMY PUBLISHER

Figure 9. A LSS address discovery process of RAND

Figure 10. A Node-ID configure process

Figure 8. Part of nodes in emulated can network

In Node-IDs pre-assigning phase, Node_Table which
is maintained by the master is filled as table 1. This
indicates that there are three types of slave nodes in the
network, and type codes of the slave nodes are
0x0100000100000001 (A), 0x0000000100000001 (B)
and 0x0000000100000005 (C) respectively. The number
of slave nodes with type code as B is three, A and C are
one. Slave nodes with type code A must be connected to
the network through slot 1, C through slot 3, and B
through slot (2,4,5). In discovery and binding phase, after
discovery step is completed, the master node collects LSS
addresses of all the five slave nodes, and the LSS
addresses are temporarily store in array
Discovered_New_Node ascendingly. In the binding step,
the collected LSS addresses are filled in Node_Table
according to the given algorithm (Table 2). We use s1 to
represent the slave node with LSS address
0x01000001000000010000000000000001, s2, s3, s4, s5
are similar. According to the given rules, the slave node
s1 should have been connected to the network through
slot 1, and s2, s3, s4, s5 through slot 2, 3, 4, 5
respectively.

The detail process of frames exchanging between the
master and slave nodes is shown as Fig. 9. The master
issues a IURS (phase 0) to start a node discovery process,
and all slave nodes response a IUS frame. In the phase 1,
the master sends a IURS whose data field is (80 01 00 00),
and this indicates that the slave nodes whose chunk(0) of
the LSS address is (00 00) will be selected. The chunk(0)
of the slave node s1 is (01 00), so s1 switches its status to
unknown. The chunk(0) of the others nodes match (00 00),
they switch their status to selected and issue the
responding IUS frame. For chunk(0),chunk(1) and chunk
(2) of slave nodes s2,s3,s4,s5 are equivalent, they all
issue IUS frame to response the IURS frame in phase 1, 2
and 3. In phase 4, the data field of IURS is (08 04 00 01).
The slave node s3 switches its status to unknown and the
slave nodes s2, s4, s5 continue to keep their status

selected. In phase 5, 6 and 7, the slave nodes s2, s4 and s5
can't be made a distinction for their corresponding chunks
are equal. After phase 7, the master issues the DIRS
frame whose data field is (80 08 00 05), and only the
slave node s2 is selected. The slave node s2 is detected by
the master and switches its status to identified. The status
of s4 and s5 will be switched to unknown. The slave
nodes s1, s3, s4 and s5 will participate in the next slave
node discovery process for their statuses are all unknown.

After the discovery step is ended and the Node_Table
is filled, the LSS protocol is utilized to configure
Node_ID for slave nodes. The detail process of frames
exchanging between the master and slave nodes is shown
as Fig. 10. The master issues a switch mode global frame
to switch all slave nodes to operational mode first.
Second, four switch mode selective frame are issued by
the master to switch the slave node s1 to configure mode,
and s1 issues a response frame after be selected by the
master. Last, the master issues the configure Node ID
frame to assign Node-ID 1 to the slave node s1, and s1
confirms the assignment. Similarly, the slave node s2, s3,
s4 and s5 can be configured.

We disable slave nodes s2 and s4 to emulate the scene
that s2 and s4 are failed. In discovery and binding phase,
after the preparation step, the R_SN and isOnline fields
of rows 2 and 4 are cleared. We change the LSS
addresses of slave nodes s2 and s4. Now, the R_SN of s2
is 0x0000000000000015, and s4 is 0x0000000000000018.
After the LSS addresses are modified, the slave nodes s2
and s4 are enabled again, and this process emulate that
slave nodes are replaced by well working devices. In
discovery and binding phase, after discovery step is
completed, the two new LSS addresses are collected. In
the binding step, the new collected LSS addresses are
filled into Node_Table and the slave nodes s2 and s4 are
configured Node-ID again.

Ⅴ CONCLUSION

772 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

CANopen is an application protocol conceived for
distributed control systems that adopts CAN system to
carry out frame exchanges. Currently, Node-ID
assignment can be accomplished by means of LSS
services, which only provide a mechanism to configure
the Node-ID for a slave node, but are not competent for
configuring Node-ID for all slaves automatically.
Additionally, the LSS address of the slave node must be
known to the master before the Node_IDs been
configured. We applied the LSS physical address
structure to the AND protocol and made some necessary
corresponding modifications. The revision of the AND
protocol is proved to be able to detect LSS address of all
slaves efficiently. In our proposed protocol, the Node_ID
assignment is divided into two phases. First, node types
are mapped to Node-ID clusters. This is done in the
master node before slave nodes are physically connected
to the network. Then, LSS addresses of all slave nodes
are collected by the master node, and Node-IDs are
assigned to slaves with the same rule as slave nodes
connected to the network. In fact, a Node-ID can also
reflect the logic position of a physical slave node. Finally,
the performance of the protocol is evaluated both from a
theoretical point of view and by means of a network
emulator. The latter approach also verified the
correctness of the protocol under actual conditions.

ACKNOWLEDGMENT

This study was supported by National Natural Science
Foundation of China (No. 60674081 and No.61074145),
Independent Innovation Research Foundation of
Huazhong University of Science and Technology,
China(No. 2011TS029).

REFERENCES

[1] ISO 11898, "Road Vehicles-Interchange of Digital
Information -Controller Area Network (CAN) for High-
Speed Communication," 1993.

[2] G. Zheng-Nan, C. Qing-Wei, H. Wei-Li, "A new
experimental platform for networked control systems based
on CAN and switched-Ethernet," Information Technology
Journal, vol. 10, no. 1, 2011, pp. 219-230.

[3] X. Yu, H. Gao, Z.Deng, "The research on control of lunar
rover with rocker bogie based on bus network driving,"
Information Technology Journal, vol. 7, no. 7, 2008, pp.
1001-1008.

[4] CiA, "DS301, Version 4.02, CANopen Application Layer
and Communication Profile," 2002.

[5] CANopen, 50325-4, "Industrial Communications
Subsystem Based on ISO 11898 (CAN) for Controller-
Device Interfaces Part 4," 2002.

[6] CiA, "DSP 305, Version 1.1," Layer Setting Services and
Protocol (LSS), 2002.

[7] K. W. Tindell, H. Hansson, A. J. Wellings, "Analysing
real-time communications: Controller Area Network
(CAN)," Proc. Real-Time Systems Symp., 1994, pp. 259-
263.

[8] K. W. Tindell, A. Burns, A. J. Wellings, "Calculating
Controller Area Network (CAN) messages response
times," Control Eng. Practice, vol. 3, no. 8, 1995, pp. 1163-
1169.

[9] CiA, "DS204-1, CAN Application Layer for Industrial
Applications: DBT Service Specification," 1996.

[10] CiA, "DS204-2, CAN Application Layer for Industrial
Applications: DBT Protocol Specification," 1996.

[11] S. Cavalieri, "A protocol for dynamic assignment of
identifiers in CAN application layer," in Proc. 4th IFAC Int.
Conf. Fieldbus Systems and Their Applications, Nancy,
France, 2001, pp. 119-126.

[12] R. Droms, "Dynamic Host Configuration Protocol,"
RFC1541," Bucknell University, 1993.

[13] G. Cena, A. Valenzano, "A protocol for automatic node
discovery in CANopen networks," IEEE Trans. on
Industrial Electronics, vol. 50, no. 3, 2003, pp. 419-430.

Guangcan Yu was born in Hubei, China, in 1976. He is a
postdoctor in the Department of Control Science & Engineering
at the Huazhong University of Science and Technology. He
received the Ph.D. degrees in the College of Computer Science
& Technology from Huazhong University of Science and
Technology, Wuhan, China, in 2008.

He research interests include network protocol design,
artificial intelligent and industrial communication. He current
research focuses on safty and security for industrial control
system.. Contact he at Email:ygcan@QQ.com.

Chunjie Zhou was born in Hubei, China, in 1965. He
received the M.S. and Ph.D. degrees in control theory and
control engineering from. Huazhong University of Science and
Technology, Wuhan, China, in 1991 and 2001, respectively. He
is currently a doctoral tutor professor in the department of
control science and engineering at Huazhong University of
Science and Technology. His research interests include fault
detection and diagnosis, fault-tolerant control, artificial
intelligent, industrial communication.

Shuang Huang was born in Hubei, China, in 1986. He received
the BS degree in Automation from Huazhong University of
Science & Technology of Control Science and Engineering,
Wuhan, China, in 2009, He is currently working toward the
PhD degree in Control Science and Engineering from Huazhong
University of Science and Technology. His research interests
include industrial communication and theory& security for
industrial control system.

TABLE II.
THE CONTENTS OF NODE_TABLE AFTER THE BINDING STEP

Node_ID Type_Code R_SN isOnline
1 0x0100000100000001 0x000000000000000A (s1) 1

2 0x0000000100000001
0x0000000000000005 (s2)

0x0000000000000015 (replace)
1

3 0x0000000100000005 0x0000000000000008 (s3) 1

4 0x0000000100000001
0x0000000000000008 (s4)

0x0000000000000018 (replace)
1

5 0x0000000100000001 0x000000000000000D (s5) 1

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2012 773

© 2012 ACADEMY PUBLISHER

