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Abstract— Orthogonal frequency-division multiplexing
(OFDM) suffers from inter-carrier interference (ICI) if
the channel has the Doppler spread and/or frequency
offset. Polynomial cancellation coding (PCC), symmetric
cancellation coding (SCC), and windowing are simple, but
effective, schemes to mitigate the ICI in the OFDM system
without error-correcting coding. In this two-part paper,
we derive approximations to the signal-to-interference plus
noise power ratio (SINR) attainable by PCC, SCC, and
windowing and compare their performances in terms of
SINR. To this end, in this first part, we review these known
schemes and discuss some of interrelationships between
them.

I. I NTRODUCTION

Main causes of intercarrier interference (ICI) in a
mobile system employing orthogonal frequency-division
multiplexing (OFDM) are the frequency spread due to
Doppler effects and carrier frequency offset (CFO) [1],
both of which severely affect the bit error rate (BER)
behavior of the system. Although equalization with and
without partial response precoding [2], [3] over subcar-
riers and spatial processing [4] can considerably reduce
the effects of ICI, these sophisticated schemes make
the receiver too costly, and we may have recourse to
simpler ICI suppression schemes, including windowing
[5]-[14], polynomial cancellation coding (PCC) [14]-[25],
symmetric cancellation coding (SCC) [26]-[31], and some
related schemes [32]-[34]. There are not, however, enough
guidelines for which one is useful for the given situation.

While time-domain Nyquist windowing is commonly
used at the transmitter to suppress the out-of-band (OOB)
spectral radiation [1], windowing at the receiver or both at
the transmitter and receiver is also known to be effective
to suppress ICI [5],[6]. For this purpose, Nyquist windows
are used since they are ICI-free if no impairments exist in
the channel. A Nyquist window with non-zero roll-off has
a prolonged window length and hence requires a cyclic
prefix (CP) long enough to match the window length.
Then, changing the roll-off, we may realize an OFDM
system with variable robustness to channel impairments.
In [6], such an adaptive windowing system employing the
raised-cosine (RC) window is proposed to mitigate the
ICI caused by CFO or by carrier wave spurious. Efforts
to get better windows have revealed that the RC window,

which is commonly used for OOB spectral suppression,
is not nice for ICI suppression [7]. Window optimization
has been carried out in restricted classes of windows
[7], [8], [9], [10]. From these works, we can notice that
windows with discontinuities or piece-wise linearity [8]
generally work better than the RC window. Especially,
optimization over a class of windows constructed from
quadratic functions in [9] reveals that it tends to give a
triangular window for a sufficiently small Doppler spreads
and a theorem in [10] shows that the triangular window
is exactly optimal when the channel path coefficients
vary linearly. In [11] and [12], more general classes
of windows are considered and the associated SINR is
calculated. However, the derived SINR form is complex
or optimization is carried out only numerically. In [13],
a numerical optimization scheme is proposed to find the
best Nyquist window that has the largest SINR for a given
CFO. However, the scheme is useful only for non-fading,
frequency non-selective channels.

Self-ICI-cancellation is another simple means to sup-
press ICI. The first self-ICI-cancellation scheme was
proposed by Zhaoet al. in [15], where each data is
transmitted over two adjacent subcarriers, say, thenth and
the (n + 1) st subcarriers, with opposite polarities and, at
the receiver, ICI is made “self-canceled” with subtraction
combining. The scheme is subsequently classified as the
first order polynomial cancellation coding (PCC) and
higher order PCC schemes are discussed in [14] (see also
[16]). Although the first-order PCC, or simply PCC, can
send onlyN/2 data overN subcarriers, it is shown in
[18] that, when differential modulation is assumed, PCC is
more robust against Doppler spreads than un-interleaved
convolutionally coded OFDM of the same rate. PCC is
also considered for channels with phase noise in [19] and
[20] and for a multi-antenna system in [21]. In [14], it is
suggested that the scheme is actually a windowing scheme
with square-root RC Nyquist windowing of roll-off one
at the transmitter and receiver. Thus, it is also useful to
reduce out-of-band (OOB) radiation [17], [22].

Recently, in [23] (also see [25]), an exact closed-form
expression of the signal-to-interference-plus-noise power
ratio (SINR) over a multipath Rayleigh fading channel
is given for PCC and the bit error rate (BER) calculated
under Gaussian ICI assumption is shown to match simu-
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lation results well. The above SINR expression, which
is exact and closed-form, is complicated and may be
calculated only numerically. Independently, in [24], a
simple approximation for the ICI power in PCC-OFDM is
derived based on an approximation technique used for the
normal OFDM [35]. However, the derivation has flaws as
shown in Appendix I.

In spite of its good features, PCC has a crucial dis-
advantage that it amplifies the peak-to-average power
ratio (PAPR) substantially. In [25], the complementary
cumulative distribution function of PAPR is derived for
PCC with Gaussian approximation and is shown to have
a prolonged tail.

Symmetric cancellation coding (SCC) is introduced in
[26] and [27] as another self-ICI-cancellation scheme
where each data symbol is transmitted over two sub-
carriers at the symmetric positions, say, then th and
(N −1−n) th subcarriers, with opposite polarities forN
subcarriers. It is shown by simulation in these works that
SCC generally performs better than PCC. We need to be
careful on this point, however. It is shown in [30] that the
ICI power of SCC is quit small when fading is frequency-
flat but that the ICI power increase considerably at
the increase of frequency-selectivity. Given a complete
channel state information (CSI) at the receiver, however,
the frequency-selectivity of the channel then allows SCC
to realize frequency diversity with the use of maximal
ratio combining (MRC) at the receiver. Thus, SCC is a
self-ICI-cancellation scheme for flat fading and, at the
same time, a frequency diversity scheme for frequency-
selective fading as well. In this respect, we should note
the similarity between SCC-OFDM and OFDM based on
discrete-cosine transform (DCT-OFDM) [28], [29] (and
the reference therein). Conjugate cancellation discussed
in [33] has a similar flavor as SCC and may be considered
not as a specific coding scheme but a basic principle
behind SCC. The self-ICI-cancellation capability of con-
jugate cancellation over flat fading channels is further
enhanced with the introduction of phase rotation in [34].
Interestingly, it is shown in [30] and [31] that, when
differential modulation in frequency domain is used, SCC
without MRC still performs better than PCC for a wide
range of SNRs. However, we are not going to discuss
differential modulation in this paper.

In the light of the diversity effects of SCC, cyclic
cancellation coding (CCC) [32] is proposed as an its
enhancement, where the same data symbol is transmitted
over subcarriers in cyclically opposite positions. The
transmit diversity scheme in [36] may be another en-
hancement. The vector OFDM (V-OFDM) [37] may be
considered as a further enhancement of CCC, although
it was not proposed as a scheme to mitigate ICI. The
diversity attainment with V-OFDM is not perfect and the
constellation-rotated V-OFDM (CRV-OFDM) is proposed
in [38] as a full-diversity extension.

As we have seen, there are many ICI mitigation
schemes which are simple, effective, and mutually re-
lated. They are self-ICI-cancellation schemes, diversity

schemes, or both. However, there are almost no com-
prehensive discussions nor comparisons of all of these
schemes.

In the first part of this two-part paper, we review
PCC and SCC as self-ICI-cancellation schemes as well
as windowing and consider their inter-relationships. Addi-
tionally, we also study, with memoryless Gaussian process
assumption, PAPR characteristics of PCC-OFDM and
SCC-OFDM signals. We then proceed to review SCC and
CCC as diversity schemes and discuss relationships to
DCT-OFDM and to (CR)V-OFDM. Performance analysis
based on the Gaussian ICI assumption is given in the
second part, where we consider signal-to-interference plus
noise power ratio (SINR) and BER expressions for these
schemes.

The rest of this first part of the two-part paper is as
follows. In Section II, we give some background for
ICI and performance analysis and also give some history
of ICI analysis for the normal OFDM. In Section III,
we review self-ICI-cancellation schemes and windowing
schemes. In Section IV, we discuss the effect of PCC and
SCC on the PAPR of the transmitted signals. In Section V,
we consider SCC and CCC as diversity schemes and give
approximate expressions for error probability using Gaus-
sian approximation. Section VI is the conclusion. In the
second part of the two-part paper, we give approximate
analysis of the performance of these schemes discussed
in this first part.

II. BACK GROUND

With appropriate zero-valued guard subcarriers and the
finite bandwidth assumption [1], an OFDM signal of
symbol periodT (sec) with cyclic prefix (CP) of period
TG (sec) may be expressed in a discrete-time, complex-
valued baseband form, with sampling periodTs = T

N ,

xk =
N−1∑
m=0

amej 2πmk
N , for −NG ≤ n ≤ N − 1, (1)

whereN is the number of subcarriers,an, n = 0, 1, · · · ,
N−1, are the subcarrier values, andNG = TG

Ts
is the length

of the guard interval in samples. The expression (1) is
nothing but anN -point inverse discrete Fourier transform
(IDFT). We always suppose thatN is an even integer.

In the same manner, the channel is represented as
a discrete-time, time-variant multipath Rayleigh fading
channel

yk =
L−1∑

`=0

hk,`xk−` + wk, (2)

where wk is the discrete-time, complex-valued white
Gaussian noise with varianceσ2

n = NNo. We suppose
L− 1 ≤ NG.

Discrete Fourier transform (DFT) ofyk at the receiver
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gives

Rn =
1
N

N−1∑

k=0

yke−j 2πnk
N

=
1
N

N−1∑

k=0

L−1∑

`=0

hk,`xk−`e
−j 2πnk

N + Wn

= A(n)an + I(n) + Wn,

whereWn = 1
N

∑N−1
k=0 wke−j 2πnk

N is a white Gaussian
noise with mean-zero and varianceNo and, with the
convention

Am,n
∆=

1
N

N−1∑

k=0

L−1∑

`=0

hk,`e
j

2π(m−n)k
N e−j 2πm`

N , (3)

A(n) = An,n is the (complex) amplitude of thenth
subcarrier andI(n) =

∑
m 6=n amAm,n is the intercarrier

interference (ICI).
We assume the wide-sense stationary and uncorrelated

scattering (WSSUS) model for the fading processes [39],
[40], [41]. In practice, however, there is a CFO between
the transmitter and receiver local oscillators, and we
assume that the channel coefficientshk,` are circularly
symmetric (CS) Gaussian random processes [42] satisfy-
ing

E[hk,`h
∗
k′,`′ ] = p`e

jωOTs[k−k′]J0(ωDTs[k − k′])δ`−`′ ,

where p` is the power of thè th path, ωD
∆= 2πfD

(rad/sec) is the (maximum) Doppler frequency,ωO
∆=

2πfO (rad/sec) is the CFO,J0(x) is the zeroth-order
Bessel function of the first kind, andδk is Kronecker’s
delta function. Without loss of generality, we assume∑L−1

`=0 p` = 1.
If an are mutually independent random variables with

zero mean and variance E
[|an|2

]
= Es, then SINR is

given as

Γ(n) =
Es · E

[|A(n)|2]

E [|I(n)|2] + E [|Wn|2] . (4)

We employ, in the following discussions, the Gaussian
interference assumption that the interferenceI(n) is well
approximated by a CS Gaussian random variable indepen-
dent ofA(n). Moreover, different schemes are compared
on the basis of the fixed total transmit power for the same
bandwidth.

It is known that, in the case of an additive white
Gaussian noise (AWGN) channel, the bit error rates
(BERs) Pb of BPSK and QPSK are given, respectively,
by Q(

√
2γ) and byQ(

√
γ) for signal-to-noise power ratio

(SNR) per symbolγ with the use of the Gaussian Q-
function Q( · ). In the case of a Rayleigh fading channel,
the average BER̄Pb is known to be given by, for both
BPSK and QPSK,

P̄b =
1
2

[
1−

√
γb,av

1 + γb,av

]
≈ 1

4γb,av
, (5)

whereγb,av is the average SNR per bit [43].

Then, for a multipath fading channel with Doppler
spread and CFO, the average BERP̄b in thenth subcarrier
is approximated by 1

4Γ(n) and by 1
2Γ(n) , respectively, for

BPSK and QPSK.
A brief review of performance analysis for the normal

OFDM may be helpful for the subsequent discussions.
In [44], ICI power is calculated for a channel with CFO

and a simple approximation to the signal-to-interference
power ratio (SIR) is given. In [45], the exact BER is
calculated and is compared with the Gaussian approx-
imation. For frequency-selective (or frequency-flat) fast
fading channels, in [46], approximate BER is calculated
by Gaussian approximation and is compared with simu-
lation results. These results are contrasting: the Gaussian
approximation shows a good match for the fast fading
channel while it does not for the Gaussian channel with
CFO only. This may be because the ICI due to CFO has a
probability distribution quite different from the Gaussian
distribution. According to a more thorough analysis in
[47], Gaussian approximation gives slightly different BER
from the true value by about one or more dBs for channels
with Doppler spreads. ICI power is also calculated in [48]
under the assumption of infinitely many subcarriers and
in [49] under a more general condition.

In the following discussions, we do not use the infinite
subcarrier approximation but directly approximate the ICI
power.

III. C ANCELLATION CODING SCHEMES

We review cancellation coding schemes and the behav-
ior of the generated OFDM signals.

A. Polynomial cancellation coding (PCC)

The dth-order PCC is a mapping scheme where each
data symbol is mapped over contiguous(d+1) subcarriers
with weighting coefficients determined from thedth-order
polynomial(1−D)d in D. In the first-order (d = 1) PCC,
(1 − D)d = (1 − D) and themth data symbola′m of
E

[|a′m|2
]

= E′
s (m = 0, 1, · · · , N

2 −1) is located both at
the 2mth and(2m + 1)st subcarriers as1

an =

{
1√
2
a′m, if n = 2m,

− 1√
2
a′m, if n = 2m + 1.

At the receiver, decision is made for the result of subtrac-
tion combining

RP(n) =
1√
2
R2n − 1√

2
R2n+1. (6)

Although there are higher-order PCC schemes, we only
consider the above first-order PCC because of spectral
efficiency and call the first-order PCC just PCC in the
following discussions.

When PCC is used, the discrete-time baseband OFDM
signal (1) has the form

xk =
1√
2

N
2 −1∑
m=0

a′m
{

ej
2π(2m)k

N − ej
2π(2m+1)k

N

}
(7)

1The factor 1√
2

is used for normalization.
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and the FFT output at the receiver is expressed, with the
use of (3), as

Rn =
1√
2

N
2 −1∑
m=0

a′m(A2m,n −A2m+1,n) + Wn.

Then, subtraction combining (6) gives, for0 ≤ n < N
2 ,

RP(n) = AP(n)an + IP(n) + W P(n),

where we letW P(n) ∆= 1√
2
W2n − 1√

2
W2n+1 and, for

the convention

AP
m,n

∆=
1
2
(A2m,2n −A2m+1,2n)

−1
2
(A2m,2n+1 −A2m+1,2n+1),

the complex signal coefficient and the interference are
given, respectively, as

AP(n) ∆= AP
n,n and IP(n) ∆=

N
2 −1∑

m = 0
m 6= n

a′mAP
m,n.

1) PCC and Nyquist windowing:The PCC-OFDM
signal (7) is also written as

xk = −jej πk
N

√
2 sin

(
πk

N

) N
2 −1∑
m=0

a′mej 2πmk
N/2 =

√
2gkx̃k,

(8)
where x̃k = −jej πk

N

∑N
2 −1

m=0 a′mej 2πmk
N/2 is the phase ro-

tatedN/2-point IDFT of{a′m} andgk =
1+cos(2π[ k

N− 1
2 ])

2 .
Then, we can see that PCC is nothing but a windowing
method using the square-root raised-cosine (RC) window
{√gk} of roll-off ρ = 1 both at the transmitter and the
receiver.2

The square-root RC shaping explains the small OOB
radiation of PCC [17], [22] and some robustness against
Doppler spreads. However, this kind of transmitter win-
dowing intensifies signal peak powers at the center of
each OFDM symbol and hence yields a large peak-to-
average power ratio (PAPR) [30] as discussed in Sec-
tion IV. Moreover, windowing based on the RC function
is considerably suboptimal when ICI reduction is con-
sidered [7] as discussed for the intersymbol-interference
(ISI) problem due to timing jitter for pulse amplitude
modulation (PAM) [50]. It is generally known that, for a
relatively small Doppler spread or CFO, piece-wise linear
window functions give better results [8], [9], [10], which
has been also known for PAM [51].

2) On higher-order PCC: It may be instructive to
compare higher-order PCC and windowing. Thedth or-
der PCC-OFDM signal can written, with an appropriate
normalization, as

xk =

(
−jej πk

N

)d

√
d + 1

·
√

(2gk)d

N
d+1−1∑
m=0

a′mej 2πmk
N/(d+1)

2Since the cyclic prefix creates a sharp edge, zero-padding may be
more suitable as a guard in order to suppress the OOB spectral radiation.

The window{gd
k} is not a Nyquist window ford > 1.

Thus, we need guard subcarriers to avoid ICI introduced
by windowing, which explain that thedth order PCC
requiresd + 1 subcarriers for eacha′m. Moreover, the
window peak value(2gN

2
)d = 2d certainly increase the

PAPR of PCC-OFDM. Thus, there is practically no merit
in considering a higher-order PCC-OFDM.

B. Symmetric cancellation coding (SCC)

In SCC [26], [27], for given data symbolsa′n of
E

[|a′n|2
]

= E′
s, n = 0, 1, · · · , N

2 − 1, subcarrier values
an are determined as

an =

{
1√
2
a′n, for 0 ≤ n < N

2 ,

− 1√
2
a′N−n−1, for N

2 ≤ n < N .

Thus, the SCC-OFDM signal is given, for−NG ≤ k <
N − 1, as

xk =
1√
2

N
2 −1∑
m=0

a′m
{

ej 2πmk
N − e−j

2π(m+1)k
N

}
. (9)

The FFT output at the receiver is written as

Rn =
1√
2

N
2 −1∑
m=0

a′m(Am,n −A−1−m,n) + Wn. (10)

The subcarrier values at the symmetric positions are
combined as

RS(n) = φ(1)
n Rn + φ(2)

n RN−n−1,

whereφ
(1)
n andφ

(2)
n are combining coefficients satisfying

|φ(1)
n |2 + |φ(2)

n |2 = 1.
In [26] and [27], it is discussed that, for a flat fading

channel, the ICI due to CFO is efficiently suppressed at
the receiver if subtraction combiningφ(1)

n = −φ
(2)
n is

used. For frequency selective fading channels, however,
ICI cancellation by subtraction combining is not effective
since the pair of subcarriers subject different fading, and
the frequency diversity effects obtained with maximal
ratio combining (MRC) become more important [26],
[27].

The combiner output is given as

RS(n) = AS(n)a′n + IS(n) + W S(n),

where we letW S(n) ∆= φ
(1)
n Wn + φ

(2)
n WN−1−n and,

for3

AS
m,n

∆= φ(1)
n (Am,n −A−1−m,n)

+φ(2)
n (Am,−1−n −A−1−m,−1−n),

the complex signal coefficient and and the interference
are given, respectively, as

AS(n) ∆= AS
n,n and IS(n) ∆=

N−1∑

m = 0
m 6= n

a′mAS
m,n

3Because of periodicity,Am,N−n = Am,−n.
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Figure 1. Nyquist windowing at the transmitter

There is a certain relationship between SCC and OFDM
with discrete-cosine transform (DCT) [28], that is, DCT-
OFDM [29]. In fact, if we leta′′m =

√
2eπma′m, then we

can also write the SCC-OFDM signal (9) as

xk−N
2

= −e−j πk
N ·

N
2 −1∑
n=0

a′′n cos
π(2n + 1)k

N
. (11)

This shows that SCC-OFDM is a special case of the
time- and frequency-shifted version of DCT-OFDM. The
relationships to DCT-OFDM is discussed in Section V
further.

C. Nyquist windowing

For a givenρ such that0 ≤ ρ ≤ 1, the window
{gk} of roll-off ρ and an OFDM symbol are related
as shown in Fig. 1, where the window has the total
lengthN and the effective lengthNS = (1− ρ

2 )N . This
window is multiplied with aNS-point IDFT output and its
cyclic prefix/postfix of total lengthρ2N . Moreover, a guard
interval is also necessary to protect the current OFDM
symbol from the previous one.

We suppose that the window weights satisfy the non-
negativity and symmetry{

gk ≥ 0, for 0 ≤ k < N,
gk = gN−k, for 0 ≤ k < N

2 .

Then, the window is a Nyquist window if it satisfies the
condition{

g ρ
4 N = 1

2 ,

gk + g(1− ρ
2 )N+k = 1, for 0 ≤ k < ρ

2N.
(12)

From the second condition in (12), we have the identity,

2

ρ
2 N−1∑

k=0

gkgNS+k = NS−
N−1∑

k=0

.g2
k (13)

For the Nyquist window, we have identitiesρ4N =
1
2 (N − NS), ρ

2N = N − NS, (1 − ρ
2 )N = NS, and

(1 − ρ
4 )N = 1

2 (N + NS), which are assumed in the
following discussions.

For the choice ofρ, there is much freedom [6]-[9]. We
frequently considerρ = 1 in the later discussions and
comparisons since it allows the simplest implementation,
provides the best result [9], [10], and allows direct com-
parison with PCC.

Windowing may be applied at the transmitter as well
as at the receiver.

1) Windowing at the receiver only:In this windowing
scheme, theNS-point IDFT output of lengthN + NG,

xk =
NS−1∑
m=0

ame
j 2πmk

NS , for −NG ≤ k ≤ N − 1,

is transmitted over the channel (2). At the receiver, the
part corresponding to the guard is omitted from the
received signal and the resultant signal of lengthN is
multiplied with wk and is applied withNS-point DFT.
The result is expressed, for0 ≤ n ≤ NS− 1, as

RW(n) =
1
N

N−1∑

k=0

gkyke
−j 2πkn

NS

= AW(n)an + IW(n) + W W(n),

where the signal coefficient, interference, and noise are,
respectively,

AW(n) ∆=
1
N

N−1∑

k=0

L−1∑

`=0

gkhk,`e
j−2π`n

NS , (14)

W W(n) ∆=
1
N

N−1∑

k=0

gkwke
−j 2πkn

NS , (15)

IW(n) ∆=
1
N

NS−1∑

m = 0
m 6= n

am

N−1∑

k=0

L−1∑

`=0

gkhk,`

×e
j 2π`m

NS e
−j

2πk(n−m)
NS . (16)

2) Matched windowing: The receiver windowing
scheme is against the principle of matched receiver (or
filtering) [42] and yields a certain power loss since the
receiver is not “matched” to the transmitted signal. A
remedy for the SNR loss is to use a square-root Nyquist
window at both transmitter and receiver. That is, for a
Nyquist windowgk satisfyinggk ≥ 0 and 1

N

∑N−1
k=0 gk =

1, the transmitted signal is shaped as

xk = g
1
2
k

N
2 −1∑
m=0

amej 2πmk
N/2 , for 0 ≤ k ≤ N − 1,

and, at the receiver, the channel output is also shaped as

RMW(n) =
1
N

N−1∑

k=0

g
1
2
k yke−j 2πkn

N/2

= AMW(n)an + IMW(n) + W MW(n)

where, for

AMW
m,n

∆=
1
N

N−1∑

k=0

L−1∑

`=0

hk,`g
1
2
k g

1
2
k−`e

j
2π(m−n)k

N/2 e−j 2πm`
N/2 ,

the signal amplitude and interference are, respectively,

AMW(n) = AMW
n,n , (17)

IMW(n) =
N/2∑

m=0,m6=n

AMW
m,nam, (18)

W MW(n) =
1
N

N−1∑

k=0

g
1
2
k wke−j 2πkn

N/2 . (19)
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As previously discussed, PCC can be considered as a
matched windowing scheme based on the RC window.

IV. PAPR CHARACTERISTICS OFPCCAND SCC

PAPR is, although it is not the main topic of this
paper, an important characteristic which may determine
the applicability of ICI mitigation schemes. Since CCC
has the same behavior except that half the samples are
zero, we briefly consider the peak behavior of PCC and
SCC employing Gaussian approximation.

Given a continuous time signalx(t), 0 ≤ t ≤ T , we
let xA

k = x(k∆), 0 ≤ k ≤ AN , for ∆ = T
NA and

for a positive integerA and consider the PAPR with
oversampling factorA given by

PAPR=
maxk| x(A)

k |2
1

NA

∑
k | x(A)

k |2
.

Although oversampling factorA = 4 is used to evaluate
accurate PAPR [1], we letA = 1 and hence letxk = x

(1)
k

to make discussions simple. Then, the complementary
cumulative distribution function (CCDF) of PAPR for the
normal OFDM is known to be given as [1]

Pr(PAPR≥ z) = 1− (
1− e−z

)κN
, (20)

whereκ is a parameter generally determined by computer
simulation. If {xk} is a series of mutually independent
Gaussian random variables, thenκ = 1.

To calculate the CCDF for the PCC-OFDM, we rewrite
(8) as

xk = −jej πk
N sin

(
πk

N

)√
2

N
2 −1∑
n=0

a′nej 2πnk
N/2

= −jej πk
N sin

(
πk

N

)
x̂k,

where x̂k is a normal OFDM signal withN/2 period
and with average power2Es. Assuming thatx̂k are
mutually independent, circularly symmetric (SC) and have
Gaussian distributions, we have, for a given real number
z,

Pr
{
|xk|2 ≤ zEs

2
for k = 0, 1, · · · , N − 1

}

= Pr
{

sin2

(
πk

N

)
|x̂k|2 ≤ zEs

2

for k = 0, 1, · · · , N − 1
}

= Pr
{(

1 + sin
2πk

N

)
|x̂k+ N

4
|2 ≤ zEs

for k = 0, 1, · · · , N
2 − 1

}
,

where we used the fact that̂xk has periodN
2 . Thus, we

have

Pr(PAPR≥ z)

= 1− Pr
{(

1 + sin
2πk

N

)
|x̂k+ N

4
|2 ≤ zEs

for k = 0, 1, · · · , N
2 − 1

}

= 1−
N
2 −1∏

k=0

[
1− exp

(
− z

1 + sin 2πk
N

)]
. (21)

The SCC-OFDM signal (9) is, on the other hand,
written, for k = 0, 1, · · · , N

2 − 1, as

xk =
1√
2

N
2 −1∑
n=0

a′n
{

ej 2πnk
N − e−j

2π(n+1)k
N

}

= j
√

2e−j πk
N

N
2 −1∑
n=0

a′n sin
(

2π(n + 1
2 )k

N

)
(22)

and

xN−k = −e−j 2πnk
N xk. (23)

Thus, we have

Pr(PAPR≥ z)
= 1− Pr

{|xk|2 ≤ zEs for k = 0, 1, · · · , N
2 − 1

}

= 1− (
1− e−z

)κN
2 , (24)

where we put the coefficientκ to modified the result
appropriately.

In Fig. 2, we show the CCDFs of the normal OFDM,
PCC-OFDM, and SCC-OFDM obtained by simulation for
N = 512 and QPSK modulation. From the figure, we can
see that SCC-OFDM has gained1 dB compared to the
normal OFDM and11 dB compared to PCC-OFDM at
CCDF= 0.001. The figure also show the approximations
(20) for κ = 1.2 in the case of normal OFDM,4 (21) in
the case of PCC-OFDM, and (24) forκ = 1.2 in the case
of SCC-OFDM. Suboptimality of PCC-OFDM in terms
of PAPR is clearly seen. We can consider the PAPR of
an OFDM system with transmitter windowing in a similar
manner.

V. D IVERSITY SCHEMES

In [29], it is shown, by analysis, that the DCT-OFDM
is more robust against CFO than the conventional OFDM
and, by simulation, that the DCT-OFDM with frequency-
domain equalization outperforms the conventional OFDM
over a frequency selective fast fading channel. These
results show good agreements with the results observed
for SCC-OFDM in [26] and [27].

It is claimed in [29] that the good performance of
DCT-OFDM for a flat fading channel explains its good
performance for a frequency-selective fading channel.

4It is generally conceived, for the normal OFDM, thatκ = 2.8 gives
the best match [1]. However, as discussed in [52],κ = 2.8 does not
give a good approximation for a largeN . For N = 512 and for this
range ofz, κ = 1.2 seems to give good match.
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Figure 2. CCDF versus PAPR threshold for the normal OFDM, PCC-
OFDM, and SCC-OFDM, (N = 512, κ = 1.2, QPSK)

Contrary to this assertion, however, its good performance
for a flat fading channel is ascribed to its characteristic
as a self-ICI-cancellation coding scheme and that for
a frequency-selective fading channel is ascribed to its
characteristic as a frequency-diversity scheme. To see this
analytically, we consider SCC-OFDM in conjunction with
optimal detection under the assumption that the receiver
know the channel completely.

A. SCC-OFDM with optimized combining

1) Basic formulation:Let n be such that0 ≤ n < N
2 .

Then, for ξ which is eithern or N − 1 − n, the DFT
output is written, from (10), as

Rξ = ÃS(ξ)a′n + ĨS(ξ) + Wξ,

where we let

ÃS(ξ) ∆=
1√
2

(An,ξ −A−1−n,ξ) (25)

ĨS(ξ) ∆=

N
2 −1∑

m=0, m 6=n

a′m (Am,ξ −A−1−m,ξ) (26)

Let

rn
∆=

[
Rn

RN−1−n

]
, hn

∆=
[

ÃS(n)
ÃS(−1−n)

]
, and

vn
∆=

[
ĨS(n) + Wn

ĨS(−1−n) + WN−1−n

]
.

(27)
Then the above SCC-OFDM channel model is written as

rn = hn a′n + vn

We assume that subcarrier valuesa′m are mutually in-
dependent and CS, that is, QPSK- or 16QAM-modulated
signals. Sincehk,` are CS too,̃IS(n) and ĨS(−1−n) are
CS random variables uncorrelated tõAS(n) andÃS(−1−
n). We assume, for a sufficiently largeN , that vn is a
CS Gaussian random vector independent ofhn, and let

Hn = E
[
hnhH

n

]
andN̂oV n = E

[
vnvH

n

]
, (28)

whereN̂o andV n are determined so that|V n| = 1. We
assume that bothHn andV n are non-singular.

For a unitary matrixQn such thatQnV nQH
n = I, we

let ηn = Qnhn andwn = Qnvn. Then, we have

r′n
∆= Qnrn = ηn an + wn,

where components ofwn are mutually independent ran-
dom variables with variancêNo and the coefficient vec-
tor ηn has the covariance matrix̂Hn = E

[
ηnηH

n

]
=

QnHnQH
n . Then, for a givenηn, the optimal decision

is made based on the matched filter output

yn = ηH
n r′n = ηH

n ηna′n + ηH
n wn

and the (instantaneous) SNR per symbol at the decision
is

γn =
E′

s

N̂o

ηH
n ηn =

2Es

N̂o

ηH
n ηn

where we letE′
s = E

[|a′n|2
]

= 2Es.
2) BER expression:We restrict our attention to QPSK

signals. For a givenηn, the BER isPb(γn) = Q(
√

γn) for

the Gaussian Q-functionQ(x) =
∫∞

x
1√
2π

e−
t2
2 dt [43].

The CS Gaussian random variableηn has a pdf given
by

p(η) =
1

π2|Ĥn|
exp

(
−ηHĤ

−1

n η
)

Thus, employing Craig’s expression for the Gaussian Q-
function [53]

Q(x) =
1
π

∫ π
2

0

exp
(
− x2

2 sin2 θ

)
dθ,

we can calculate the average ofPb(γn) with respect to
γn as

Pb(n) = E

[
Q

(√
2Es

N̂o

ηH
n ηn

)]

=
1
π

∫ π
2

0

∣∣∣∣I +
Es

N̂o sin2 θ
HnV −1

n

∣∣∣∣
−1

dθ

If Es
N̂o

is sufficiently large, the right-hand side is ap-
proximated as

Pb(n) ≈ ≈ 1
π

∫ π
2

0

4 sin4 θ dθ ·
∣∣∣∣
2Es

N̂o

HnV −1
n

∣∣∣∣
−1

=
3
4

∣∣∣∣∣
N̂o

2Es
H−1

n Vn

∣∣∣∣∣ (29)

The above expressions hold under the assumption that
Hn andV n are nonsingular, which holds, from (27) and
(28), only when the channel is frequency selective. Thus,
SCC acts as a ICI cancellation scheme over a flat fading
channel while it acts as a diversity scheme only over a
multipath fading channel. We note, however, that the BER
performance of SCC-OFDM is position-dependent.
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3) Relationships to DCT-OFDM:In [29], the follow-
ing DCT-OFDM signal representation is considered.

xk =

√
2
N

N−1∑
n=0

dnan cos
π(2n + 1)k

2N
,

where dn = 1
sqrt2 for n = 0 and dn = 1 otherwise.

Ignoring terms irrespective of DCT transform (anddn),
the SCC-OFDM signal (11) is a DCT-OFDM signal with a
doubled subcarrier space. This is because SCC halves the
symbol rate. Thus, except for this difference, SCC-OFDM
and DCT-OFDM are basically the same modulation and
results obtained for one are also expected to hold for the
other.

B. CCC-OFDM: another diversity scheme

1) Basic formulation: Motivated by SCC, we intro-
duced cyclic cancellation coding (CCC) in [32] as a
scheme where each of theN2 data symbolsa′n is assigned
to a pair of subcarriers at cyclically symmetric positions
as

an =

{ 1√
2
a′n, if 0 ≤ n < N

2 ,

− 1√
2
a′

n−N
2
, if N

2 ≤ n < N .

The CCC-OFDM signal is then given by

xk =
1√
2

N
2 −1∑
m=0

a′m

{
ej 2πmk

N − ej
2π(m+ N

2 )k

N

}
.

The merit of CCC is that it is more effective in realizing
frequency diversity effects than SCC since every data
symbol is transmitted over a subcarrier pair separated by
N
2 . If we let a′′m = a′mej

2π(m−N/8)
N , then the CCC-OFDM

signal is also written as the up-sampledN
2 -IDFT

xk =

{ ∑N
2 −1

m=0 a′′mej 2πmk
N/2 , for k odd,

0, for k even.
(30)

Since a half the samples are zero, the average peak power
is increased by3 dB.

Actually, CCC is not “cancellation coding” and is rather
a special case of a frequency-diversity scheme called the
single-antenna vector OFDM (V-OFDM) first introduced
in [37]. In V-OFDM, samples from anotherN2 -point
DFT are transmitted at even-numbered time epochs too.5

Nevertheless, we use the term CCC in the sense that it is
a cyclic version of SCC.

For CCC-OFDM, we have the following expression for
the DFT output, for0 ≤ n < N

2 and forξ = n, n + N
2 ,

Rξ = ÃC(ξ)a′n + ĨC(ξ) + Wξ,

where we let

ÃC(ξ) ∆=
1√
2

(
An,ξ −An+ N

2 ,ξ

)
(31)

ĨC(ξ) ∆=

N
2 −1∑

m=0, m 6=n

a′m
(
Am,ξ −Am+ N

2 ,ξ

)
(32)

5Since the signals at odd-numbered time epochs and at even-
numbered time epochs interfere to each other, however, constellation
rotation is required to attain full diversity as shown in [38].

The BER expression is obtained as in the same manner
as SCC-OFDM and is omitted.

2) Relationships to V-OFDM:Let us insert anotherN2 -
IDFT outputs to the place of zero-valued samples in (30)
and modify the result expression a little bit as

{
x2k =

∑N
2 −1

m=0 a2mej 2πmk
N/2 ,

x2k+1 =
∑N

2 −1
m=0 a2m+1e

j 2πmk
N/2 ,

for given N symbolsan, n = 0, 1, · · · , N − 1. We can
show that{xk} is an ordinary OFDM signal for a set of
subcarrier values{bn} with a special structure. In fact,
applying DFT, we have




bn = 1
2

(
a2n + a2n+1e

−j 2πn
N

)

bn+ N
2

= 1
2

(
a2n − a2n+1e

−j 2πn
N

)

for n = 0, 1, · · · , N
2 −1, or, lettinga′2n = a2n anda′2n+1

= a2n+1e
−j 2πn

N , we have
{

bn = a′2n+a′an+1
2

bn+ N
2

= a′2n−a′an+1
2

This signaling method is nothing but the (single-carrier)
vector OFDM (V-OFDM) [37] with vector length2.
Although, contrary to the the case of SCC-OFDM and
DCT-OFDM, the relationship between CCC-OFDM and
V-OFDM (of vector length2) is not straightforward since
V-OFDM yields artificial ICI between thenth andn+N

2 th
subcarriers, we may expect the same robustness against
the Doppler spread and CFO in both schemes.

VI. CONCLUSION

We have reviewed PCC-OFDM, SCC-OFDM, and win-
dowing for uncoded OFDM systems and showed that
PCC is nothing but a matched windowing scheme which
uses windowing both at the transmitter and receiver and
that SCC-OFDM is DCT-OFDM with double subcarrier
space. We considered PAPR properties of PCC-OFDM
and SCC-OFDM signals and showed that the PCC-OFDM
signal has a relatively high PAPR due to its characteristic
as a matched windowing scheme. We next discussed
SCC-OFDM and CCC-OFDM as diversity schemes and
discussed relationships between SCC-OFDM and DCT-
OFDM and between CCC-OFDM and (CR)V-OFDM. In
the second part of this two-part paper, we theoretically
analyze SINR and BER of these schemes based on the
Gaussian ICI assumption and compare these scheme in
terms of SINR and BER.
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APPENDIX I
THE FLAWS IN [24]

A general time-domain correlation functionr(fDTsx)
in [24], we only consider the specific correlation function
r(fDTsx) = J(fDTsx). Then, the authors’ claim below
Expression (6) in [24] is written as

J(fDTsx)
∞∑

n = −∞
n = even
n 6= 0

e−j2πnx = 1− J

(
fDTsx

2

)
,

but this equality is not correct.
To show it, we first note the identity

∞∑

`=−∞
e−j4π`x =

1
2

∞∑
m=−∞

δ
(
x− m

2

)
. (33)

The identity can be derived in the following manner. We
first note, for an arbitrary continuous functionf(x), the
formal integration

∫ ∞

−∞

∞∑

`=−∞
e−j4π`xf(x) dx =

∞∑

`=−∞
F

(
j

2π`

(1/2)

)
,

whereF (jω) is the Fourier transform off(x). Since the
last summation is the aliased sum ofF (jω) at ω = 0 and
since the aliased sum represents the discrete-time Fourier
transform of samples off(x), that is, fors > 0, [42]

1
2

∞∑

`=−∞
F

(
j

[
ω +

2π`

s

])
=

∞∑
n=−∞

f(ns)e−jωns,

we have, for an arbitrary continuous functionf(x),
∫ ∞

−∞

∞∑

`=−∞
e−j4π`xf(x) dx =

1
2

∞∑
n=−∞

f
(n

2

)
.

This proves the desired identity.
Thus, from the identity (33), the correct expression for

x ∈ (−1, 1) is

J(fDTsx)
∞∑

n = −∞
n = even
n 6= 0

e−j2πnx

=
1
2
J(fDTsx)

∑
n=−1,0,1

δ
(
x +

n

2

)
− J

(
fDTsx

2

)
.(34)

Thus the expression (7) in [24] must be
∞∑

n = −∞
n = even
n 6= 0

E
[
|hn|2

]

=
1
2

+
1
2
J

(
fDTs

2

)
−

∫ 1

−1

(1− |x|)J(fDTsx) dx.

According to the same reasoning, the equalities below
Expression (8) in [24] are incorrect and hence Expression
(9) in [24] is.
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