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Abstract - Consider a binary baseband vector-valued 

communication channel modeled by a zero-mean CGN 

vector N with a non-singular covariance matrix .  We 

study the maximum loss of system performance using the 

metric of a decrease of PD for a fixed PFA.  Under H0, the 

observed vector is given by x = n, while under H1, x = s + 

n. The optimum receiver compares the statistic xT -1s to a 

threshold  determined by PFA.  However,  the sub-

optimum mismatched receiver assumes a WGN with a 

statistic given by xTs, with its
sub

DP satisfying 

-1 1Q Q ( )sub T opt

D FA DP P Ps s , which is 

equal to 
4 1T T

s s s s s , and is satisfied by 

Schwarz Inequality.  For a given , the solution for 

finding the maximum degraded (i.e., smallest)
sub

DP is

equivalent to finding the signal vector s that attains the 

maxium of 
1T T

s s s s , which uses the convex 

optimization method based on the Karush-Kuhn-Tucker 

conditions.  The mismatched system performance 

degradation is formulated as a margin loss in SNR(dB) 

useful for robust communication system engineering 

analysis and design. Some explicit examples illustrating 

the margin loss are given.

Index Terms - Digital communication system 

performance degradation, mismatched receiver, margin 

loss, convex optimization, KKT condition.  

I. INTRODUCTION 

   In the study of digital communication theory/system, 

one basic problem is the understanding of the maximum 

loss of performance of an optimized system assuming  
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certain    channel    parameters   when   these     assumed 

parameters are invalid.  Practical wireless 

communication systems may encounter complicated 

fading phenomena and various copper wired 

communication systems operating in crowded 

environments (e.g., with transmission cables inside 

wiring bundles in an airplane or on a ship), the 

transmission channels may experience severe cross-talk 

interferences.  In all these scenarios, realistic modeling 

of channel parameters may be difficult.  In order to 

formulate an analytically tractable problem, we start 

with the assumption of the simplest model of a binary 

antipodal digital communication system with an 

additive white Gaussian noise (WGN) transmission 

channel.  In reality, the transmission channel maybe 

quite complicated, but we model it as an arbitrary 

additive colored Gaussian noise (CGN) channel.  Then 

we want to investigate the worst system performance 

degradation, when the receiver is designed for WGN 

disturbance, but in practice it is facing a CGN 

disturbance.  Thus, we are studying the robustness of a 

complex communication system mismatch problem.  A 

potential application of this study is that we can 

formulate the concept of requiring additional margin in 

the signal-to-noise (SNR) operating point of the system 

in order to maintain the original desired system 

performance in the presence of this mismatched receiver 

design.  We will show the explicit use of these SNR 

margins in Ex. 7 considered in Sec. 3.   The use of a 

SNR margin due to propagation path loss, as well as the 

use of a SNR margin due to received mismatch, can all 

be considered to be standard tools in practical radio 

engineering analysis and design [2].    

Consider an uncoded binary baseband 

communication system with an additive CGN channel.  

Specifically, we study the loss of system performance, 

as the decrease of probability of detection (PD) for a 

fixed probability of false alarm (PFA).  We assume 
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under hypothesis H0 there is only the n 1 zero-mean 

CGN vector N with a n n non-singular covariance 

matrix , and under hypothesis H1, there is a n 1

deterministic signal vector s in addition to the noise 

vector N.  Thus, under H0, the observed vector is 

denoted by x = n, while under H1, x = s + n.   However, 

the receiver assumes the noise is a zero-mean white 

Gaussian noise (WGN) with a covariance matrix  = 
2
In. There are various reasons for this possible 

mismatch when the channel is truly CGN, but the 

receiver operates as if it is WGN.  An obvious reason is 

that the receiver is not capable of estimating the 

statistics of the CGN or the low-cost receiver is willing 

to accept the loss of performance.  In any case, it is 

interesting to evaluate the worst case loss of 

performance under any given CGN scenario. 

II.  OPTIMUM AND SUB-OPTIMUM SYSTEM 

PERFORMANCES 

   First, the optimum receiver compares the observed 

statistic CGN = xT -1
s to a threshold determined by the 

PFA.  From  detection theory [1], for a specifed PFA

given by 

1

1

(1/ 2)
= Q  ,

T

FA T
P

s s

s s
             (1) 

it yields   and the optimum PD is then given by  

1

1

(1 / 2)
 Q  , 

T
opt

D T
P

s s

s s
           (2) 

where Q(.) is the complementary Gaussian distribution 

function.  If the PFA is fixed at some acceptable value 

(e.g., set PFA = 10-3, which yields 
-1 -1 3Q ( ) Q (10 ) 3.09FAP ), then the threshold 

constant  can be solved from (1) as  

1 -1 1Q ( ) (1/ 2)  ,T T

FAPs s s s     (3) 

where Q-1(.) is the inverse of complementary Gaussian 

distribution function. This  is then used to obtain the 

optimum PD in (2) to yield 

1 -1 1

1

-1 1

Q ( )
 Q

      Q Q ( )  .

T T
opt FA

D T

T

FA

P
P

P

s s s s

s s

s s

      (4) 

(4) shows the optimum PD (for a fixed PFA) depends 

only on the factor 
1T

s s , which depends on the 

signal vector s and .   From s and ,  they define the 

SNR (in dB) as 

2

10

|| ||
( ) 10 log .

( )
SNR dB

Trace

s
           (5) 

   On the other hand, suppose the observation noise is 

colored with a covariance matrix , but we assume the 

noise is “white” with a covariance matrix  = 2
IM.

Then the suboptimum “white matched filter” receiver 

operating in colored noise using a decision statistic of 

WGN = xT
s, resulting in a PFA of 

0= Q  FA T
P

s s
,             (6) 

where 0 is taken to yield the desired PFA, and the 

suboptimum PD is given by 

           

0Q  .
T

sub

D T
P

s s

s s
             (7) 

If the PFA is fixed at some value, then the threshold 

constant 0 can be solved from (6) as 

      
-1

0 Q ( )T

FAPs s .             (8) 

Substituting 0 from (8) into (7), we obtain 

-1

-1

 Q ( )
Q

     Q Q ( )  . 

T T
sub FA

D T

T

FA T

P
P

P

s s s s

s s

s s

s s

           (9) 

Since the expression in (2) represents the optimum (i.e., 

largest)
opt

DP , we want to show that expression is 
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greater or equal to the suboptimum
sub

DP of (9). Thus, 

we want to show 

-1

-1 1

Q Q ( )

Q Q ( ) .

T
sub

D FA T

T opt

FA D

P P

P P

s s

s s

s s

  (10)

Since Q(.) is a monotonically decreasing function, for 

the inequality in (10) to hold, it is equivalent to show 

that for any s and , the parameters
opt

associated

with 
opt

DP and
sub

associated with 
sub

DP  in (11) must 

satisfy

sub 1
T

T opt

T

s s
s s

s s
,     (11)

or equivalently, 

4 1T Ts s s s s  .             (12) 

However, Schwarz Inequality shows the inequalities in 

(11) - (12) are always valid (Appendix 1).  In 

particular, when  is a WGN covariance matrix 

satisfying  = 2 IM, then -1 = (1/ 2) IM, and equality 

is attained in (12). We also note that any signal vector s

in (12) is invariant to a scalar multiplication factor.   

   Furthermore, from (11) denote the mismatched factor 

  by 

1/ / 1.opt sub T T T
s s s s s s (13)

When  is a WGN covariance matrix, then = 1 for all 

signal vector s. In general,  is a function of the CGN 

 and s.  For a fixed but arbitrary non-singular ,

different s vectors yield values of   1.  Denote  

opt

s

1Ts s  when we use the vector s in the 

optimum system.   Suppose we use s s in the 

suboptimum system.  Then  

2

(14)

/ /

      .                              

sub T T T T

sub opt

s

s s

s s s s s s s s

By using s s in the suboptimum system, which 

represents an increase of its energy by a factor of 2

relative to the energy of ||s||2 in the optimum system, 

(14) is achieved resulting in identical values of 

| | .sub opt

D DP P
s s

 Thus, we can consider the Margin 

Loss in SNR (dB) of performance due to the 

mismatched of the CGN covariance matrix  and the 

signal vector s

2

10
Margin Loss (dB) = 10 log ( ) .         (15) 

   From the above discussions, in practice given an 

arbitrary CGN covariance matrix , how much loss of 

performance may be realized for various possible 

values of the signal vector s?

   Now, considered an explicit example to illustrate the 

advantage of using the colored matched filter over a 

white matched filter in the presence of a colored noise.   

Ex. 1.  Consider a Markov covariance matrix 

1

1

1

1
=  , 

1

n

n

r r

r r

r

r r

           (16) 

Suppose we select 5 pseudo-randomly generated n 1

signal vector s for n = 2, 3, and 50, with r = 0.1 and 0.9, 

with the constraint of
-1Q ( ) 3.09 .FAP   Now, we 

tabulate 30 simulation results (i.e., 5 signal vectors  3 

values of n  2 values of r) in terms of the  mismatched 

factor /opt sub
of (16). Table 1 shows one set 

of such 30 simulation results for the five realizations. 

n =     2 

SNR(dB)  -1.96 -9.93    -1.76     -9.60    -1.51 

/opt sub

      r         #1 #2         #3         #4         #5 

 0.1000  1.0006  1.0021  1.0002  1.0006 1.0000 

 0.9000  1.2139  1.6591  1.0826  1.2158 1.0108 

n =     3 

SNR(dB)  -2.66   -10.58    -1.48    -7.66     -3.16 

/opt sub

       r    #1  #2        #3         #4        #5 

 0.1000   1.0021    1.0047 1.0022 1.0047 1.0015 

 0.9000   1.2834   1.8340 1.1951 1.7868 1.8814 
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n =    50 

SNR(dB)   -5.00     -5.42  -3.50    -5.58   -6.31 

/opt sub

       r     #1   #2        #3         #4         #5 

 0.1000  1.0047   1.0094  1.0037 1.0050 1.0067 

 0.9000   4.5241  6.2867  3.9924 4.8558 5.2242 

Table 1. Values of SNR(dB) and /opt sub
 for a Markov 

covariance matrix with r = 0.1 and 0.9 of dimensions n = 2, 3, and 50 

for five rand uniform pseudo-random generated signal vectors s with

the PFA = 10-3 constraint.   

   From (11) - (12), we note if r = 0, then the CGN 

problem reduces to the WGN problem.  Thus, for the 

small value of r = 0.1,  all the /opt sub
values 

are only slightly greater than unit value for all n = 2, 3, 

and 50 cases.  However, as r increases to r = 0.9, we 

note the ratios of /opt sub
 increase greatly as 

the dimension increases to n = 50 for all five 

realizations, showing the system performance 

degradations due to the mismatch.  

III. CONVEX OPTIMIZATION FOR EVALUATING 

THE MAXIMUM LOSS OF PERFORMANCES 

   The results shown in Table1 of Ex. 1 were obtained 

from specific realizations in the simulations. An 

interesting question is for any given n n colored non-

singular covariance matrix , what n 1 signal vector s

of unit norm (i.e., ||s||2 = 1) will theoretically yield the 

smallest (worst performing)
sub

DP  in (10)?  This is 

asking what signal vector s provides the largest 

advantage in using the colored matched detector over a 

white detector.  Equivalently, what s will yield the 

largest ratio /opt sub
 in (11)? Or equivalently, 

what s will attain the maximum of the product of the 

two factors 
1T T

s s s s  in (12)?  We already 

know Schwarz Inequality was able to provide readily a 

lower bound on 
1T T

s s s s  in (12).   As we 

will show below, finding the maximum of 
1T T

s s s s  is more complicated.  

   We first note, in a matrix eigenvalue problem, a non-

zero constant c times each eigenvector is still an 

eigenvector. Thus, there is no loss of generality, if we 

constrain all the vectors s under consideration in (11) or 

(12) to have unit norms (i.e., ||s||2 = 1).  Given any n n

non-singular covariance matrix , perform an 

eigenvalue decomposition resulting in U = UD, where 

U is an orthogonal matrix defined by U = [u1,…, un], 

where ui, i = 1,..., n, are the orthonormal eigenvectors 

of , and D is a diagonal matrix of the eigenvalues of 

with  

                   diag(D) = [ 1, …, n] = T ,             (17) 

where we order the positive-valued eigenvalues to be in 

an descending manner satisfying 

           1 > 2 > … n > 0 .             (18) 

Thus,

                = UDU
T ,                           (19) 

and

-1 = UD
-1

U
T.                          (20) 

We note, U is an orthogonal matrix.   Define a new n 1

vector

      z = U
T
 s .                           (21) 

In particular,  

2

2

,

     , 1 . 

T T T

T

z z z z z s UU s

s s s s s
             (22) 

In other words, the vector z has the same norm as that 

of s which was earlier set equal to 1.  From (20), we 

have

   s = U z                           (23)

or

    sT = u
T
 U

T .                          (24) 

   Now, substitute (23) and (24) into (11) and use  of 

(19) and -1 of (20).  Thus, (11) becomes 
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1

1

1

M M
2 2

i=1 i=1

=

= / 1.

T T

T T T T T T

T T

i i i iz z

s s s s

z U UD U Uz z U UDU Uz

z D z z Dz

                                                                     (25) 

From (25), we can define n new variables 

2 =   0 , 1,..., .i iy z i n               (26) 

Then (25) becomes 

M M

i=1 i=1

/ 1 ,  i i i iy y          (27) 

where

           

n n
2

i=1 i=1

 =  = 1 . i iy z              (28) 

   The optimization problem is to maximize the left-

hand-side (lhs) of the expression of (27) with respect to 

the {yi, i = 1,…, M} subject to the two constraints that 

they are non-negative-valued (i.e., (26)) whose sum is 

equal to 1 (i.e., (28)).  In other words, we want the lhs 

of (27) to be as large as possible subject to the 

constraints of that they are negative-valued whose sum 

is equal to 1.   If the equality in (27) is attained, this 

means the performance of the sub-optimum WGN 

sufficient statistic detector (when the noise is CGN) is 

equal to the performance of the optimum CGN 

sufficient statistic detector.  That is, equality in (27) is 

equivalent to equality in (10) or equivalently equality in 

(9) is attained.   Now, consider three new simple 

examples.  

Ex. 2.  Consider the case when  is a WGN 

autocorrelation matrix,  where all the eigenvalues i =

, i = 1, …, n.  From (26), the lhs of (25) is equal to one 

since it is the product of two terms each equal to one.  

No maximization of the lhs of (25) is possible. Thus, 

the lhs of (25) attains the equality on the rhs of (25), 

and and 
sub

DP =
opt

DP .

Ex. 3.  Take y1 = 1 and all the other yi = 0,  i = 2,…,n.

Then (25) reduces to 

                  (1/ 1) ( 1) = 1.                           (29) 

Then equality in (25) is attained.   However , this is not 

an optimum choice for {yi, i = 1,…, n} to maximizes 

the lhs of (25).  

Ex. 4. Take yM = 1 and all the other yi = 0, i = 1,…, n-

1.  Then (25) reduces to 

                 (1/ n) ( n) = 1.                           (30) 

Then equality in (25) is attained.   However, this is also 

not an optimum choice for {yi, i = 1,…, n} to 

maximizes the lhs of (25).  

Lemma.  Consider the case of n = 2.  Then 

1 2
ˆ ˆ 1/ 2 y y is the optimum choice of the {yi, i = 1,

2} that maximizes the lhs of (25).  

Proof:  

From (26), we can express y2 = 1 – y1.  Then the lhs of 

(25) can be expressed as 

1 1 1 1 2

1 1 1 2

2 2

1 1 1 2 1 1 2

2 2

1 1 1 2 1 1 2 1

2

1 1 2 2 1

1 1 2 2 1

( ) / (1 ) /

(1 )

= ( / ) ( / ) 1

2 ( / ) ( / )

= (2 ( / ) ( / ))

(2 ( / ) ( / )) 1 .  

G y y y

y y

y y y

y y y y

y

y

   (31) 

We note G(y1) is a quadratic function of y1. Then by 

setting its first derivative to zero,  

'

1 1 1 2 2 1

1 2 2 1

( ) = 2 (2 ( / ) ( / ))

(2 ( / ) ( / )) 0 ,  

G y y
    (32) 

we find  

1 2 2 1
1

1 2 2 1

(2 ( / ) ( / )) 1
ˆ .

2(2 ( / ) ( / )) 2
y     (33) 

Furthermore, since the second derivative of G(y1) is 

negative 

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 6, JUNE 2010 487

© 2010 ACADEMY PUBLISHER



''

1 1 2 2 1

2 2

1 2 1 2

1 2

2

1 2

1 2

( ) =2(2 ( / ) ( / ))

2( 2 )

2( )
0 , 

G y

      (34)

then the local maximum solution of (31) for 

1 2
ˆ ˆ 1/ 2 y y is a global maximum of the quadratic 

function on the lhs of (25).  

Theorem.  The maximum of the lhs of (35) given by 

n n

i=1 i=1

/ 1 ,  i i i iy y             (35) 

subject to 

n

i=1

 = 1 ,   0 , 1,..., ,  i iy y i n          (36) 

1 2 >  > ...  > 0,n

1
ˆ ˆ ˆ =  = 1/2,   = 0 , 2,..., 1 .  n iy y y i n  (37) 

Proof:  The proof is given in Appendix 2.  

Ex. 5.  Consider the n = 2 case where the CGN 

covariance matrix spectral decomposition yields an 

orthogonal matrix U and diagonal  given by 

21 1 100 01
,  = 

1 1 0 0.01100.012
.U     (38) 

For PFA  = 10-3 at SNR(dB) = 10 dB, using the optimum 

ŝ  of

1
ˆ ( ) / 2ns ,            (39) 

we obtain 
opt

DP = 1 and 
sub

DP = 0.9165.

Ex. 6.  Consider the n = 3 case where the CGN 

covariance matrix spectral decomposition yields an 

orthogonal matrix U and diagonal  given by 

2

1 0 1
1

0 2 0 ,  
2

1 0 1

100 0 0

= 0 1 0  . 
101.01

0 0 0.01

U

         (40) 

For PFA  = 10-3 at SNR(dB) = 10 dB, using the optimum 

ŝ  of (39), we obtain 
opt

DP = 1 and 
sub

DP = 0.9199.

Ex. 7. Consider the problem using the Markov 

covariance matrix  of (13) in Ex. 1.   By using the 

optimum ŝ  of (23), (26), and (37) to evaluate the ratio 

of ˆ ˆ| |/opt sub

s s s s
, we obtained the following 

results:

n =     2 

ˆ ˆ| |/opt sub

s s s s      Margin Loss (dB) 

r =  0.10  1.0050  0.043 

r =  0.90    2.2942  7.213 

n =     3 

ˆ ˆ| |/opt sub

s s s s

r =  0.10  1.0101  0.087 

r =  0.90    3.2233              10.16 

n =    50 

ˆ ˆ| |/opt sub

s s s s

r =  0.10  1.0196     0.169 

r =  0.90    8.7236                18.81 

Table 2. Values of ˆ ˆ| |/opt sub

s s s s  for n = 2, 3, and 

50 for r = 0.10 and r = 0.90 .   

We note while the values of 
opt

and
sub

 depend on 

the value of the SNR, ˆ ˆ| |/opt sub

s s s s is

independent of the SNR value.   We also note that for 

any given n and r, all the ˆ ˆ| |/opt sub

s s s s  in 

Table 2 are greater than all five of the pseudo-randomly 

generated corresponding values of /opt sub
in

Table 1 of Ex. 1.  The results in Table 2 also show the 

corresponding margin loss as a function of n and r.

Specifically, for n = 50 and r = 0.9,  for this Markov 

covariance matrix, by using the worst signal vector ŝ
(obtained from the “optimum” solution of the 
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Theorem), there is a margin loss of 18.81 dB.  In other 

words, by using this signal vector ŝ , we need to 

increase its energy by a factor of (8.7236)2 or 18.21 dB 

in order to achieve the same 
opt

DP as in the optimum 

colored matched filter receiver.   

Ex. 8. Consider again the problem using the 50 50

Markov covariance matrix  of (15) in Ex. 1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
Plot of 

Opt
 and 

Sub
 versus a

a

c
h
iO

p
t  (

-*
-)

 a
n
d

 c
h
iS

u
b
 (

..
.+

..
.)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
Plot of 

Opt
/

Sub
 versus a

a

c
h
iO

p
t /c

h
iS

u
b

Fig. 1a.  Plots of 
opt

(solid curve) and 
sub

(dotted curve) versus 

a.  Fig. 1b.  Plot of   
opt

/
sub

 versus a.  Fig. 1a shows the plots 

of
opt

(solid curve) and 
sub

 (dotted curve) versus a, where the 

signal vector 1-a a
50 1

s = + , 0  a  1.  As expected 

opt
 is greater than

sub
, except when they have equal values for 

a = 0 and a = 1.  Fig. 1b shows the plot of 
opt

/
sub

 versus a.  

Also for a = ½, ( ) / 2
50 1

s = +  equal ŝ  of (47).  This 

shows that
opt

/
sub

 achieves its maximum 

ˆ( / ) |opt sub

s s
 using the optimum ŝ  as expected from theory.

IV.  CONCLUSIONS 

In this paper, we considered the loss of performance of 

a binary baseband communication system operating in 

the presence of a given CGN covariance matrix, when 

the receiver assumes the noise to have a WGN 

covariance matrix.  Modern convex optimization 

method based on the Karush-Kuhn-Tucker condition is 

used to solve this problem.   Various  examples using 

simulation and analysis illustrate various aspects of 

mismatched system performance degradation.  The 

concept of margin loss was also introduced for the 

analysis and design of robust system in the presence of 

mismatched parameters in the system.  

Appendix 1.  Use  Schwarz Inequality to obtain the 

lower bound of 
1T T

s s s s  in (12). For any 

column vectors a and b, Schwarz Inequality states that 

         

``
2( ) ( )( ) . T T T

a b a a b b            (A1) 

Now, pick
1/2 1/2

1/2 1/2

(or ),  

(or ) .

T T

T T

a s a s

b = s b  = s
       (A2) 

Then

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2 1

(or ),  

(or ) .

,

,

.

T T

T T

T T T

T T T

T T T

a s a s

b = s b  = s

a b s s s s

a a s s s s

b b s s s s

(A3)

Using (A3) in (A1), yields 

4 2 1( )T T T
s s s s s s s ,       (A4) 

which is identical to (12) or equivalently 

1/ 2 1/ 22 1T T T
s s s s s s s ,       (A5) 

or equivalently 

            
1

T
T

T

s s
s s

s s
 ,                 (A6) 

which is identical to (11).

Appendix 2.   Proof of Theorem.   

Consider the nonlinear minimization problem of  

                   Min y f(y) ,                        (A7) 

subject to 

         gi(y)  0 , i= 1,…, M,                        (A8) 

                     h(y) = 0 .                        (A9) 
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The celebrated Karush-Kuhn-Tucker (KKT) [3] 

necessary conditions for 
1

ˆ ˆ ˆ[ , ..., ]
T

M
y yy y  to be a 

local minimum solution of (A7) subject to (A8) and 

(A9), are such that there exist constants I, i = 1,…, M,

and  satisfying 

1

ˆ ˆ ˆ1. ( ) ( ) ( ) 0,
M

i i

i

f g hy y y        (A10) 

ˆ2. ( ) 0,  1,..., ,ig i My                                 (A11) 

ˆ3. ( ) 0,  1,..., ,h i My                        (A12) 

4. 0,  1,..., ,i i M                         (A13) 

ˆ5. ( ) 0,  1,..., .i ig i My                        (A14) 

In order to use the KKT method for our maximization 

of (A7) with the constraints of (A8) and (A9), denote 

ˆ( ) ( ) ( ),f A i B iy                       (A15) 

ˆ( )  ,  1,..., ,i ig y i My              (A16) 

     

1

ˆ( )  1,
M

i

i

h yy                       (A17) 

    1 > 2 > … M > 0 ,                            (A18) 

where we define 

1 1

( ) / , ( ) .
M M

i i i i

i i

A i y B i y     (A19) 

Now, we show the conditions of (1)- (5) of (A10) – 

(A14) are satisfied for the expressions of (A15) - 

(A18).  From Condition 1, by taking its partial 

derivative wrt to yi, i = 1, …, M, we have

( ) ( )
1

0.i i

i

B j A j        (A20) 

Multiply (A20) by yi yields 

( ) ( ) 0.i
i i i i i

i

y
B j y A j y y     (A21) 

From Condition 4 and 0iy , then 0.i iy  Thus, 

(A21) becomes 

( ) ( ) 0.i
i i i

i

y
B j y A j y         (A22) 

Summing (A22) over all i = 1, …, M, yields 

1

( ) ( ) ( ) ( ) ,
M

i

i

y A i B j B i A j

and from (A8),  we have 

( ) ( ) ( ) ( ) 2 ( ) ( ).A i B j B i A j A j B j    (A23) 

Substitute (A23) into (A22) yields 

( ) ( ) 2 ( ) ( ) 0,i
i i i

i

y
B j y A j y B j A j

or  

1
( ) ( ) 2 ( ) ( ) 0,i i

i

y B j A j B j A j

             (A24) 

Thus, (A24) shows either yi = 0 or

1
( ) ( ) 2 ( ) ( ) 0.i

i

B j A j B j A j (A25)

Multiply (A25) by i , to obtain 

2 ( ) 2 ( ) ( ) ( ) 0.i iA j B j A j B j   (A26) 

The quadratic equation of (A26) in i, has two non-zero 

solutions given by 

2 22 ( ) ( ) 4 ( ) ( ) 4 ( ) ( )
.

2 ( )
i

B j A j B j A j B j A j

A j

                         (A27) 

The rest of the (M -2) number of yi = 0 .  Denote the 

indices of the two non-zero yi by a and b.   Then the 

maximization of ( ) ( )A i B i  in (A7)) reduces to the 

maximization of 
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2 2

2 2

2

=

= 2 .

a b
a a b b

a b

a b
a a b b a b

b a

a b
a b a b

b a

a b
a b a b

b a

y y
y y

y y y y y y

y y y y

y y y y

(A28)

By denoting yb = 1 – ya in (A28), we obtain 

1 2 (1 )

( , , ).

a b
a a b b

a b

a b
a a

b a

a a b

y y
y y

y y

H y

      (A29) 

Thus, the maximization in (A7)) reduces to the 

maximization of ( , , )a a bH y  in (A29).  We note 

( , , )a a bH y  is a quadratic function of ya.  Taking 

the partial derivative of ( , , )a a bH y  wrt to ya yields 

( , , )
2

          2 (1 ) 0,

a a b a b
a

a b a

a b
a

b a

H y
y

y

y

or

2 2 2 ,a b a b
a

b a b a

y

or

                1 / 2,a by y                    (A30) 

since

2 0,  a b

b a

with .a b The second partial derivative of 

( , , )a a bH y shows

2

2

2

( , , )
2 2

( )
2 0,

a a b a b

a b a

a b

a b

H y

y

since 0 and 0.a b  Thus, the local maximum 

solution of 1 / 2a by y in (A30) is a global 

maximum solution of ( , , )a a bH y . By using 

1 / 2a by y and denoting / 1,a b with

the assumption of 0,a b then ( , , )a a bH y

of (A29) can be expressed as 

2

( ) 1 (1 / 4)( 2 1 / )

( 1)( 1)
1 (1 / 4) 0.

H

(A31)

This shows ( )H  is a positive monotonically 

increasing function of .  Since /a b and

0,a b the maximum of ( )H  is attained by 

using max 1 / M .  This means 

1
ˆ ˆ ˆ1 / 2, 0, 2,..., 1.M iy y y i M     (A32) 

Thus, the solution given by (A32) is the only solution 

that satisfies the KKT Condition 1 of (A15) that 

provides the local minimum of  

1 1

ˆ( ) /
M M

i i i i

i i

f y yy  or the local 

maximum of 

1 1

/
M M

i i i i

i i

y y .

But ( , , )a a bH y  of (A29) is a quadratic function, 

thus the solution given by (A32) yields the global 

maximum of (35).  
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