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Abstract—Cognitive radar is a new framework of radar 
system proposed by Simon Haykin recently. Adaptive 
waveform selection is an important problem of intelligent 
transmitter in cognitive radar. In this paper, the problem of 
adaptive waveform selection is modeled as stochastic 
dynamic programming model. Then backward dynamic 
programming, temporal difference learning and Q-learning 
are used to solve this problem. Optimal waveform selection 
algorithm and approximate solutions are proposed 
respectively. The simulation results demonstrate that the 
two approximate methods approach the optimal waveform 
selection scheme and have lower uncertainty of state 
estimation compared to fixed waveform. The performance 
of temporal difference learning is better than Q-learning, 
but Q-learning is more suitable to use in radar scene. 
Finally, the whole paper is summarized. 
 
Index Terms—waveform selection, backward dynamic 
programming, temporal difference learning, Q-learning 
 

I.  INTRODUCTION 

The word radar is an abbreviation for radio detection 
and ranging which seems to have achieved universal 
acceptance all over the world. The invention of radar is 
inspired by the echolocation animals, such as bats and 
dolphins. The radar’s basic function is intimately related 
to properties and characteristics of electromagnetic waves 
as they interface with physical objects. With the 
improvement of modern technology, radar develops 
rapidly with various needs of people. However, 
traditional radar is lack of flexibility and not suitable for 
different environment. The radar environment is usually 
nonstationary, and adaptive algorithm is the method 
implemented in modern radar systems for dealing with 
nonstationarity. In current designs of radar systems, most 
of the researches have focused on the design of optimal 
receiver. In order to adapt to different environment, the 
transmitter of radar should select different waveforms. 

That means we should consider the design of optimal 
transmitter. 

Cognitive radar, proposed by Simon Haykin in 2006, is 
a new framework of radar system which is viewed as an 
intelligent form of radar system. In [1], it is argued that 
for the radar to be cognitive, adaptivity has to be 
extended to the transmitter too. Radar-scene analysis, 
Bayesian target tracking and adaptive radar illumination 
constitute the basic elements of cognitive radar. In 
cognitive radar, the radar continuously learns about the 
environment through experience gained from interactions 
of the receiver with the environment, the transmitter 
adjusts its illumination of the environment in an 
intelligent manner and the whole radar system constitutes 
a closed-loop dynamic system. 

 Cognitive radar is different from traditional radar 
because it can select appropriate waveforms according to 
different radar environment. So it is an important problem 
to realize the adaptivity of the transmitter. The design of 
adaptive transmitter involves adaptive model and 
adaptive algorithm. The research team of Simon Haykin 
has done much work on cognitive radar. After proposing 
the idea of cognitive radar, Simon Haykin suggests that 
much can be gained by rethinking the design of a radar 
system as a closed-loop feedback control system. The 
novel idea has been demonstrated herein in conceptual 
terms in the context of tracking radar [2]. In [3], a novel 
optimal radar waveform design problem by combining 
the signal-to-noise (SNR) and mutual information criteria 
is formulated. In [4], Arasaratnam develops a square-root 
extension of the quadrature Kalman filter using matrix 
triangularizations. And then he have successfully solved 
the best approximation to the Bayesian filter in the sense 
of completely preserving second-order information, 
which is called cubature Kalman filters [5]. N. A. 
Goodman has also done much work in this field. In [6], 
he summarizes and demonstrates a framework being 
developed at the University of Arizona for 
implementation of closed-loop radar with adaptive 
waveforms which integrates a Bayesian channel 
representation, matched illumination techniques, and 
sequential hypothesis testing. Goodman have proposed 
and simulated a closed-loop active sensor by updating the 
probabilities on an ensemble of target hypotheses while 
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adapting customized waveforms in response to prior 
measurement and compared the performance of two 
different waveform design techniques [7]. In [8], a new 
MIMO waveform is proposed which maximizes the 
mutual information between a Gaussian random target 
and the received data under AWGN. In [9], the authors 
present illumination waveforms matched to stochastic 
targets in the presence of signal-dependent interference. 
In [10], the authors extend the information-based 
approach to the signal-dependent interference problem. In 
[11], an extension to the PDA tracking algorithm to 
include adaptive waveform selection was developed. In 
[12], it is shown that tracking errors are highly dependent 
on the waveforms used and in many situations tracking 
performance using a good heterogeneous waveform is 
improved by an order of magnitude when compared with 
a scheme using a homogeneous pulse with the same 
energy. In [13], several node teaming algorithms have 
been considered for cooperative sensing in a mobile 
scenario. The problem of waveform selection can be 
thought of as a sensor scheduling problem, as each 
possible waveform provides a different means of 
measuring the environment, and related works have been 
examined in [14], [15]. In [16], Incremental Pruning 
method is used to solve the problem of adaptive 
waveform selection for target detection. The problem of 
optimal adaptive waveform selection for target tracking is 
also presented in [17]. In [18], genetic algorithm is used 
to perform waveform selection utilizing the 
autocorrelation and ambiguity functions in the fitness 
evaluation. In [19], radar waveform selection algorithm 
for tracking accelerating targets is considered. In [20], the 
author uses ADP method to solve the problem of adaptive 
waveform selection. 

In this paper, under the assumption of range-Doppler 
resolution cell, stochastic dynamic programming model 
for adaptive transmitter is set up. We use backward 
dynamic programming method to solve this problem, and 
optimal waveform selection algorithm is proposed, where 
two forms of reward function are adopted. Then temporal 
difference learning waveform selection algorithm is 
proposed. Considering that the explicit knowledge of 
state-transition probabilities is unknown, we use Q-
learning algorithm to obtain approximate solution. The 
simulation results demonstrate that these two methods 
approach the optimal waveform selection scheme and has 
lower uncertainty of state estimation compared to fixed 
waveform. The performance of temporal difference 
learning is better than Q-learning, but Q-learning is more 
suitable to use in radar scene. Finally, the whole paper is 
summarized. 

Ⅱ.  MODEL FOR ADAPTIVE WAVEFORM SELECTION 

Generally speaking, for a target, the most important 
parameters that a radar measures are range, Doppler 
frequency, and two orthogonal space angles. If we 
envision a radar resolution cell that contains a certain 
four-dimensional hypervolume, we may assume different 
targets fall in different resolution cells. That means if a 
target measured falls in a resolution cell, then another 

target fall in another resolution cell and does not interfere 
with measurements on the first. So as long as each target 
occupies a resolution cell and the cells are all disjoint, the 
radar can make measurements on each target free of 
interference from others.  

Through the discussion in [21], we can conclude that 
angle resolution can be considered independently from 
range and Doppler resolution in most circumstances. 
When considering this, the resolution properties of the 
radar in angle are independent of the resolution properties 
in range and Doppler frequency. 

In our model, we omit angle resolution. We define 
range-Doppler resolution cell for the waveform selection 
model. 

Radar systems are normally designed to operate 
between a minimum range minR  and maximum 

range maxR . RΔ  is range resolution which is a radar 
metric that describes its ability to detect targets in close 
proximity to each other as distinct objects. Targets 
separated by at least RΔ  will be completely resolved in 
range. The distance between minR  and maxR  is divided 

into N  range bins, each of width is RΔ . The 
relationship between RΔ  and N  is  

max minR RN
R
−

=
Δ

                     （1） 

Radars use Doppler frequency to extract target radial 
velocity (range rate), as well as to distinguish moving and 
stationary targets or objects such as clutter. The Doppler 
phenomenon describes the shift in the center frequency of 
an incident waveform. 

In heavy clutter environments, we need to consider the 
problem of adaptive waveform selection and make a 
trade-off decision between Doppler and range resolution. 
Actually we can not obtain good Doppler and good range 
resolution in waveform tailoring simultaneously. So we 
should define a cost function that describes the cost of 
observing a target in a particular location for each 
individual pulse and select the waveform that optimizes 
this function on a pulse by pulse basis. 

We adopt stochastic dynamic model. We make no 
assumptions about the number of targets that may be 
present. We divide the area covered by a particular radar 
beam into a grid in range-Doppler space, with the cells in 
range indexed by 1,..., Nτ =  and those in Doppler 
indexed by 1,..., Mυ = . There may be 0 target, 1 target 
or NM  targets. So the number of possible scenes or 
hypotheses about the radar scene is 2NM .  

We roughly describe other variables. The definitions 
are as follows: 

Radar scene: χ ;  

Model state: tX ;  

Measurement variable: tY ;  

Waveform: tu . 
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x xa ′  and x xb ′  are state transition probability and 
measurement probability respectively. 

1( | )x x t ta P x x x x′ + ′= = =                       (2) 

1( ) ( | , )x x t t t tb u P Y x X x u′ + ′= = =                (3) 

,( )x x x xa χ′ ′ ∈=A  is the state transition matrix. 

,( ) ( ( ))t x x t x xu b u χ′ ′ ∈=B  is the measurement probability 

matrix. That means if state of our model is  tX x=  and 

we use the waveform tu , the probability of measurement 

1tY x+ ′=  is ( )x x tb u′ . 

 
Figure 1.  Resolution cell and corresponding parallelogram. 

Figure 1 is resolution cell and corresponding 
parallelogram. We define as a practical resolution cell the 
parallelogram that contains the resolution cell primitive 
so that we can handle the problem that when a combined 
waveform is used. 

We assume the matched filter is adpoted in the receiver. 
( )s t   represents baseband signal and ( )r t  represents the 

received baseband signal. The matched filter is the one 
with an impulse response ( ) ( )h t s t∗= − , so an output 
process of our matched filter is 

( ) ( ) ( )x t s t r dλ λ λ∗= −∫                   (4) 

 
The output is given by 

02 ( )( ) ( ) ( )j tx t s t e r dπν λλ λ λ− −∗= −∫      (5) 

where 0ν  is an expected frequency shift. 
The baseband received signal will be modeled as a 

return from a Swerling target. 
Then we consider two situations: there is no target and 

target is present. 
When there is no target 

0

0 00
( ) ( ) ( )x n s d

τ
τ λ λ τ λ∗= −∫          (6) 

The random variable 0( )x τ  is complex Gaussian, with 
zero mean and variance given by 

{ }2
0 0 0 0( ) ( ) 2E x x Nσ τ τ ξ∗= =        (7) 

where ξ  is the energy of the transmitted pulse. 

When target is present 
0 2

0 00
( ) ( ) ( ) ( )djx As e n s d

τ πν λτ λ τ λ λ τ λ∗⎡ ⎤= − + −⎣ ⎦∫ (8) 

This random variable is still zero mean, with variance 
given by 

{ }
2 2

2 2 A
1 0 0 0 0 02

0

2( ) ( ) (1 ( , ))E x x Aσ ξσ τ τ σ τ τ ν ν
σ

∗= = + − − (9) 

where ( , )A τ ν  is ambiguity function, given by 

( )
2

2
22

1( , ) ( ) ( )
( )

jA s s e d
s d

πνλτ ν λ λ τ λ
λ λ

∗= −∫
∫

(10) 

Finally we can obtain the probability of detection dP  

in the case when a target is present in cell ( , )τ υ . 

2 2
2
0 0 02

0

22 (1 ( , ))

( , )

1 A

a a

D

A

d a aA
P e d d

A

σ ξ
σ τ τ ν ν

σ

τ υ
τ υ

−

+ − −

∈
= ∫ (11) 

where 0ν  is an expected frequency shift, ξ  is the energy 

of the transmitted pulse, 2
0σ is the variance of transmitted 

signal, 2
Aσ  is the variance of magnitude, A  is the 

resolution cell centered on ( , )τ υ  with volume A . 

Define 0 1{ , ,..., }Tu u uπ =  where 1T +  is the 
maximum number of dwells that can be used to detect 
and confirm targets for a given beam. So π  is a sequence 
of waveforms that could be used for that decision process. 
We can obtain different π  according to different 
environment in cognitive radar. That means we should 
transmit different waveforms according to different radar 
working conditions. We define ( , )t t tR X u  is the reward 

earned when the scene tX  is observed using waveform 

tu  and γ  is discount factor. ( , )t t tR X u  is called 
reward function and in it we can consider the importance 
of detecting a scatter in a cell. Maybe some targets are 
away from the radar and some targets are approaching the 
radar. So the importance of their corresponding cells is 
different. It leads to the different forms of ( , )t t tR X u . 

Different ( , )t t tR X u  according to different π ∗  with 

different ( )t tV X  can be accumulated to form discounted 

reward. We denote it as ( )t tV X . That is 

0
( ) [ ( , )]

T
t

t t t t t
t

V X E R X uγ
=

= ∑               (12) 

Then the aim of our problem is to find the sequence 
that maximize 

0
( ) max [ ( , )]

T
t

t t t t
t

V X E R X u
π

γ∗

=

= ∑          (13) 

However, the knowledge of the actual state is not 
available in radar scene. Using the method of [22], we 
can use another variable to substitute tX  which should 
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be a sufficient statistic of tX . Then we can obtain that 

the optimal control policy π ∗  that is the solution of (13) 
is also the solution of 

0
( (0)) max [ ( , )]

T
t

t t t
t

V E R u
π

γ∗

=

= ∑p p        (14) 

where tp  is the conditional density of the state given the 

measurements and the controls and 0p  is a priori 
probability density of the scene. p  is a sufficient statistic 

for the true state tX . 
So our problem converts to 

0

max [ ( , )]
T

t
t t t

t

E R u
π

γ
=
∑ p                  (15) 

The refreshment formula of tp  is given by 

1 '
t

t
t

+ =
BApp

1 BAp
                        (16) 

where B  is the diagonal matrix with the vector 
( ( ))x x tb u′  the non-zero elements and 1  is a column 

vector of ones. A  is state transition matrix. 
This is the waveform selection model that can be used 

in cognitive radar. If we use some adaptive algorithm, 
then we can realize the adaptivity of waveform selection. 

Ⅲ.  THE OPTIMAL WAVEFORM SELECTION ALGORITHM 

If we want to solve this problem using classical 
dynamic programming, we could have to find the value 
function ( )t tV p  using 

1 1( ) max( ( , ) { ( ) | })
t

t t t t t t t tu
V R u E Vγ + += +p p p p (17) 

It can also be written in probability form 

1( ) max( ( , ) ( , ) ( ))
t

t t t t t t t tu
V R u P u Vγ +

′∈

′ ′= + ∑
p P

p p p p p (18) 

With backward dynamic programming, we step 
forward in time. 

Our problem is a finite horizon problem. Solving a 
finite horizon problem is straightforward. We simply 
have to compute the value function for each possible state 

t ∈p P  which start at the last time period and then step 
back another time period. So at time period t  we have 
already computed 1 1( )t tV + +p . The critical element that 
attracts so much attention is the requirement that we 
compute the value function ( )t tV p  for all states t ∈p P . 
Theoretically, it is the optimal algorithm for waveform 
selection. 

We describe the optimal algorithm as follows. 
First, we should initialize the terminal contribution 
( )T TV p . In most circumstances, we can let 

( ) 0T TV =p . Then set 1t T= − . 

Second, we should calculate ( )t tV p . The formula of 

( )t tV p  is 

1( ) max( ( , ) ( , ) ( ))
t

t t t t t t t tu
V R u P u Vγ +

′∈

′ ′= + ∑
p P

p p p p p

 for all           t ∈p P                      (19) 
where 

1 '
t

t
t

+ =
BApp

1 BAp
                        (20) 

Third, if 0t > , decrement t  and return to the first 
step. Else, stop. 

Generally speaking, reward function represents the 
value that we stand in certain place and take some certain 
action and it can be different forms according to different 
problems. In the problem of adaptive waveform selection, 
linear reward function and entropy reward function are 
usually used.  

Linear reward function is usually used in the 
circumstance that ( , )R up  is required to be a piecewise 
linear function. The form of this function is simple and 
easy to calculate. However, it can not reflect the whole 
value sometimes. Entropy reward function comes from 
information theory which is usually used in the 
circumstance that ( , )R up  is not required to be a 
piecewise linear function. It can reflect the whole value 
accurately. But it is more complex than linear reward 
function. 

The form of linear reward function is 

1( , ) ' 1R u = −p p p                     (21) 
The form of entropy reward function is 

2 ( , ) ( ) log( ( ))x x
x

R u p k p k
χ∈

= ∑p          (22) 

We can choose different form of reward function 
according to different problems. 

Ⅳ.  APPROXIMATE SOLUTION FOR WAVEFORM 
SELECTION ALGORITHM 

Backward dynamic programming can be viewed as an 
optimal adaptive algorithm for waveform selection. When 
state space and action space are large, it is hard to use this 
method. That means we hardly find optimal solution for 
waveform selection. So we need to research on 
approximate solutions. 

We use temporal difference method to find 
approximate solutions first. 

Assume v  is an unbiased sample estimate of the value 
of being in state tp  and the policy is π . The definition 
of v  is 

1 1 1( , ) ( , ) ... ( , )n n n n
t t t t t t t T T Tv C u C u C uπ π π

+ + += + + +p p p (23) 

where  tC  is the contribution when in state tp  and 

using waveform tu . 
We use standard stochastic gradient algorithm to 

estimate the value of being in state tX  
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1 1( ) ( ) [ ( ) ]n n n n
t t t t n t t tV V V vα− −= − −p p p      (24) 

where α  is discount factor. 
The temporal differences is 

1 1
1 1( , ) ( ) ( )n nD C u V Vτ τ τ τ τ τ τ τ
− −

+ += + −p p p    (25) 
So 

1( )
T

n n
t t t

t
v V Dτ

τ

−

=

= + ∑p                   (26) 

Substituting (26) into (24), we can obtain 

1
1( ) ( )

T
n n

t t t t n
t

V V Dτ
τ

α−
−

=

= − ∑p p         (27) 

The temporal differences are the errors in our estimates 
of the value of being in state τp . These errors are 
stochastic gradients for the problem of minimizing 
estimation error. Assume λ  is artificial discount. The 
discount form is 

1
1( ) ( ) ( )

T
n n t

t t t t n
t

V V Dτ
τ

τ

α γλ− −
−

=

= − ∑p p     (28) 

Through this formula, we can use this method to 
update the value of V . 

Actually, temporal difference learning is a general 
class of methods of approximate dynamic programming. 
Q-learning is a special case of temporal difference 
learning. In radar scene, explicit knowledge of target 
state-transition probabilities is unknown. So directly 
using Bellman’s dynamic programming is very hard. The 
Q-leaning algorithm is a direct approximation of 
Bellman’s dynamic programming, and it can solve the 
problem that we do not know explicit knowledge of state-
transition probabilities. For this reason, Q-learning is very 
suitable to be used in the problem of adaptive waveform 
selection in cognitive radar. 

We define a Q-factor in our problem. For a state-action 
pair ( , )t tup  

1( , ) ( , )[ ( , ) ]t t t t t t t tQ u P u R u Vγ +
′∈

′ ′= +∑
p P

p p p p p (29) 

According to (18), (25) we can derive 
* max ( , )

t
t t tu

V Q u= p                  (30) 

The above establishes the relationship between the 
value function of a state and the Q-factors associated with 
a state. Then it should be clear that, if the Q-factors are 
known, one can obtain the value function of a given state 
from above formula. 

So Q form of Bellman equation is 

1
1 1( , ) ( , )[ ( , ) max ( , )]

t
t t t t t t t t tu

Q u P u R u Q uγ
+

+ +
′∈

′ ′= +∑
p P

p p p p p p (31) 

Let us denote the i th independent sample of a random 
variable X  by is  and the expected value by ( )E X . 

nX  represents the estimate of X  in the n th iteration. 
( )E X  can be viewed a limitation form of average 

sample 

1( ) lim

n
i

i

n

s
E X

n
=

→∞
=

∑
                       (32) 

1

n
i

n i
s

X
n

==
∑

                             (33) 

According (32) and (33), we can derive 
1 1 1 1(1 )n n n n nX X sα α+ + + += − +          (34) 

where 
1 1

1
n

n
α + =

+
                           (35) 

So we can use the following formula to obtain Q  

1
1 1( , ) [ ( , ) max ( , )]

t
t t t t t t tu

Q u E R u Q uγ
+

+ +′= +p p p p (36) 

where E  is the expectation operator. We could use this 
scheme in a simulator to estimate the same Q-factor. 
Using this algorithm, Equation (31) becomes 

1

1 1 1
1 1( , ) (1 ) ( , ) [ ( , ) max ( , )]

t

n n n n n
t t t t t t t t tu

Q u Q u R u Q uα α γ
+

+ + +
+ +′← − + +p p p p p (37) 

Obviously, we do not have the transition probabilities 
in it. 

Our Q-learning algorithm is as follows: 
Step 1. Initialize the Q-factors to 0 and set 1n = . 

Then for 0,1,...,t T= , do step 2-step 5. 

Step 2. Simulation action tu . Let the current state be tp , 

and the next state be 1t+p . 
Step 3. Find the decision using the current Q-factors 

1arg max ( , )
t

n n
t t t t

u
u Q u−= p           (38) 

Step 4. Update ( , )t tQ up  using the following formula: 

1

1 1 1
1 1( , ) (1 ) ( , ) [ ( , ) max ( , )]

t

n n n n n
t t t t t t t t tu

Q u Q u R u Q uα α γ
+

+ + +
+ +′← − + +p p p p p (39) 

Step 5. Update the state using the following equation: 

1 '
t

t
t

+ =
BApp

1 BAp
                          (40) 

Step 6. Increment n  till n N≥ . Otherwise, go to step 2 
and do step 2-step 5 again. 

Step 7. For each t ∈p P , select 

1 1( ) arg max ( , )
t

t t t
u

d Q u+ +∈p p             (41) 

The policy generated by the algorithm is d̂ . Stop. 

Ⅴ.  SIMULATION 

We adopt linear frequency modulation (LFM) signal in 
the transmitter. The formula of LFM is 

22 ( )
2( ) ( ) c
Kj f t tts t rect

T e π +=        (42) 
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where cf  is carrier frequency and rect  is rectangular 
signal. The specific form of rectangular signal is as 
follows, and then we will simulate the linear frequency 
modulation signal. 

1 1
( )

0 ,

t
trect T
T

elsewise

⎧
    ,      ≤⎪= ⎨

⎪          ⎩

           (43)
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Figure 2.  Real part of chirp signal. 
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Figure 3.  Magnitude spectrum of chirp signal. 

Figure 2 is real part of chirp signal and figure 3 is 
magnitude spectrum of chirp signal. 

Actually, the optimal waveforms don’t depend on the 
form of reward function. So we can use the two reward 
functions as what we need. After a comparison of curve 
of uncertainty of state estimation using formula (21) and 
(22), we will use linear reward function as the basis for 
our reward function in the following experiment. The 
formula (1 ' )E − p p  can be considered as the 
uncertainty in the state estimation. In other words, it can 
represent tracking errors. This parameter can reflect the 
performance of our algorithm. 

We consider a simple scenario. The state space is 
4 4× . We consider 5 different waveforms where for 
each waveform u . 

Each hypotheses for the target x , the distribution of 
x′ is given in table 1. 

The discount factor 0.9γ = . The matrix A  is given 
by equation (44). 

TABLE I.   
MEASUREMENT PROBABILITIES FOR THE EXAMPLE SCENARIO  

 
x=1 

x’=1,2 
3,4 

x=2 
x’=1,2 

3,4 

x=3 
x’=1,2 

3,4 

x=4 
x’=1,2 

3,4 

U=1 0.97,0.01
0.01,0.01

0.96,0.01 
0.01,0.02 

0.01,0.01 
0.96,0.02 

0.01,0.95
0.02,0.02

U=2 0.96,0.01
0.02,0.01

0.02,0.95 
0.01,0.02 

0.01,0.01 
0.01,0.97 

0.02,0.96
0.01,0.01

U=3 0.02,0.95
0.02,0.01

0.02,0.02 
0.01,0.95 

0.02,0.96 
0.01,0.01 

0.01,0.02
0.02,0.95

U=4 0.96,0.01
0.01,0.02

0.01,0.96 
0.02,0.01 

0.97,0.01 
0.01,0.01 

0.03,0.95
0.01,0.01

U=5 0.01,0.02
0.04,0.03

0.01,0.97 
0.01,0.01 

0.02,0.01 
0.96,0.01 

0.04,0.94
0.01,0.01

 
0.96 0.02 0.01 0.01
0.01 0.93 0.03 0.02
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Figure 4.  Curve of uncertainty of state estimation using formula (21). 
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Figure 5.  Curve of uncertainty of state estimation using formula (22). 
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Figure 4 is curve of uncertainty of state estimation 
using formula (21) and figure 5 is curve of uncertainty of 
state estimation using formula (22). In fact, the optimal 
adaptive waveform selection can be viewed as 
minimizing the uncertainty in the state estimation or 
target tracking errors. We can see the tracking errors are 
becoming lower with the increase of time. The tracking 
errors using BDP method are lower than fixed waveform. 
Moreover, the advantages of BDP method do not depend 
on the form of reward function we use. 
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Figure 6.  Measure probability versus SNR with three different 

waveforms. 

Figure 6 is curve of measurement probability versus 
SNR with three different waveforms. From this figure we 
can see measurement probability is becoming large with 
the increase of SNR. Under the same SNR, using 
different waveform corresponds to different measurement 
probability. So measurement probability can be improved 
through appropriately scheduling waveform. 
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Figure 7.  Measurement probability versus SNR with different targets. 

Figure 7 is curve of measurement probability versus 
SNR with different targets. From this figure we can see 
that under the same SNR, measurement probability is 
different to different targets. So according to different 
targets we should select different waveforms. In actuality, 
path of target is so complex. We should change 
waveform according to different environment. 

Figure 8 is curve of uncertainty of state estimation. 
From this curve we can see that for all the cases, the 
uncertainty of state estimation is decreasing with time, no 

matter how the state is changing with time. Compared to 
a fixed waveform, temporal difference learning and Q-
learning algorithm we proposed has lower uncertainty of 
state estimation. That means our algorithm will reduce 
uncertainty in locating targets. Meanwhile our algorithm 
approaches the optimal waveform selection scheme even 
though explicit knowledge of state-transition probabilities 
are unknown. The performance of temporal difference 
learning is better than Q-learning, but Q-learning is more 
suitable to use in radar scene. 
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Figure 8.  Curve of uncertainty of state estimation. 
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Figure 9.  Q value space versus state and waveform. 

Figure 9 is the figure of Q value space versus state and 
waveform. Q value of different state-waveform pair can 
be obtained in this figure. We can see that the proposed 
algorithm has lower computational cost. 

Ⅵ.  CONCLUSIONS 

Adaptive waveform selection is an important problem 
in cognitive radar and the problem of adaptive waveform 
selection can be viewed as a stochastic dynamic 
programming problem. In this paper, under the 
assumption of range-Doppler resolution cell, stochastic 
dynamic programming model for adaptive transmitter is 
set up. Then backward dynamic programming, temporal 
difference learning and Q-learning are used to solve this 
problem. Backward dynamic programming can be viewed 
as optimal algorithm for waveform selection. Temporal 
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difference learning and Q-learning are approximate 
solutions. The advantages of temporal difference learning 
and Q-learning over fixed waveform have been shown 
with simulations. The two approximate algorithms can 
minimize the uncertainty of state estimation compared to 
fixed waveform and approaches the optimal waveform 
selection scheme. The performance of temporal 
difference learning is better than Q-learning, but Q-
learning is more suitable to use in radar scene. Q-learning 
can solve the problems in which explicit knowledge of 
state-transition probabilities are unknown. Research on 
algorithms which approach the optimal waveform 
selection scheme and has lower computational cost is an 
important problem. 
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