
 

Abstract— Multiuser detection is an important 
technology in wireless CDMA systems for improving both 
data rate as well as user capacity. However, the 
computational complexity of multiuser detection prevents 
the widespread use of this technique. Most of the CDMA 
systems today and in the near future will continue to use 
the conventional matched filter with its comparatively low 
user capacity and a slow data rate. However, if we could 
lower the computational complexity of multiuser detectors, 
CDMA systems would offer an increased system capacity 
with a better data rate. In this paper, a new scheme for 
reducing the computational complexity of multiuser 
receivers is proposed. It utilizes the transformation matrix 
algorithm to improve the performance of multiuser 
receivers by effectively reducing the bit error rate (BER). 
In addition to the transformation matrix algorithm, a 
quantitative analysis of the processing gain for a multiuser 
DS-CDMA system is presented. The quantitative analysis 
of the processing gain demonstrates that how the reduced 
BER could be used to achieve reasonable values of 
processing gain by which unwanted signals or interference 
can be suppressed relative to the desired signal at the 
receiving end. We present that the proposed scheme can 
reduce the asymptotic computational complexity of 
multiuser receivers while at the same time effectively 
eliminates the unwanted signals. The proposed algorithms 
not only are shown to substantially improve the 
performance of the multiuser detectors by means of 
reduced BER but also have a much lower multi-access 
interference. The performance measure adopted in this 
paper is the achievable bit rate for a fixed probability of 
error (10-7) and consistent values of SNR.  

Index Terms—Bit error rate, CDMA, DS-CDMA, 
computational complexity, multiuser receiver. 

I. INTRODUCTION

Multiuser direct-sequence code division multiple 
access (DS-CDMA) has received wide attention in the 
field of wireless communications [1]. With the 
emergence of multiple access techniques, there has been 
an increase in the interest in performing simultaneous 
estimation and detection over all users [2, 3]. In CDMA 
communication systems, several users are active on the 
same fringe of the spectrum at the same time. Therefore, 
the received signal results from the sum of all the 
contributions from the active users [4]. In CDMA 
systems, where all users spread their transmission over a 
common transmission bandwidth, a dominant 
impairment is interference between users, referred to as 
multiple access interference (MAI) [5]. Much research 
has been done on the problem of MAI suppression in 
wireless systems, and a wide rage of algorithms has been 
proposed for use in receivers such as [6, 7]. MAI can be 
prevented by selecting mutually orthogonal signature 
waveforms for all active users. However, it is not 
possible to ensure a perfect orthogonality among 
received signature waveforms in a mobile environment, 
and thus MAI arises. 

The optimum multiuser detector was obtained in [8], 
where it was shown that the near-far problem suffered by 
the conventional matched filter receiver can be 
eliminated by a more sophisticated receiver [2]. The 
complexity of this optimum receiver, which is 
exponential in the number of users, has motivated the 
development of various linear and nonlinear sub-optimal 
near-far resistant multiuser detectors, such as the 
decorrelating detector [6, 7], the minimum mean square 
error (MMSE) receiver [9, 10, 11, 12], the multistage 
detector [13] and the decision-feedback detector [14], to 
name a few. 
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Multiuser detection is a technique to improve the 
capacity and coverage in a CDMA system. Being a 
critical component of this technique, the maximum 
likelihood (ML) multiuser receiver has received 
extensive study [15, 16, 17]. However, the computational 
complexity of this receiver prevents the widespread use 
of this technique. Due to the high computational 
complexity, most of the CDMA systems today and in the 
near future will continue to use the conventional 
matched filter with comparatively low user capacity and 
a slow data rate.  

In this paper, a novel approach for reducing the 
asymptotic computational complexity of multiuser 
receivers is proposed that utilizes the transformation 
matrix (TM) technique to improve the performance of 
multiuser detectors. By using the proposed algorithm, 
the computational complexity of multiuser detectors can 
be reduced by several orders of magnitude. This is done 
by realizing that much of the processing performed is 
unnecessary. Since most of the decisions are correct, we 
can reduce the number of computations by using the 
transformation matrices only on those coordinates that 
are most likely lead to an incorrect decision.    

The rest of this paper is organized as follows: Section 
II describes the related work. Section III presents the 
proposed TM algorithm along with the corresponding 
computational complexity. The mathematical derivations 
for generating consistent values of SNR and the standard 
formulas for BER are presented in Section IV. Section V 
presents the quantitative analysis of the processing gain 
(PG) to minimize the MAI. The numerical and 
simulation results of SNR, PG, and BER performance 
are provided in Section VI. Finally, Section VII 
concludes the paper.  

II. RELATED WORK

Multiuser receivers can be categorized in the 
following two forms: optimal maximum likelihood 
sequence estimation (MLSE) receivers [15, 17] and 
suboptimal linear and nonlinear receivers [3, 13]. 
Suboptimal multiuser detection algorithms can be further 
classified into linear and interference cancellation type 
algorithms. The linear detectors are designed to 
eliminate MAI and inter symbol interference (ISI), either 
in synchronous or asynchronous systems. In case of 
synchronous CDMA system, two main criteria are 
employed, namely the zero-forcing (ZF) and the MMSE. 
Both mechanisms can implement in two possible ways. 
In the first option, both of them can be implemented to 
deal simultaneously with ISI and MAI where as in the 
second option, they deal only with ISI [10]. Moreover, 
the MAI can also be suppressed by using multiuser 
detection technique [18], potentially approaching the 
single user performance. One disadvantage of the linear 
detector is that the evaluation of the tap coefficients of 
the filters involves a matrix inversion [19, 20].  

Two well known classes of CDMA adaptive multiuser 
detection are trained and blind detectors [21, 22]. The 
trained detector is a robust adaptive detector that does 
not require the knowledge of spreading code of the 
desired user [6, 23]. Results have shown [17] that these 
receivers are robust. The blind detector is a powerful 
adaptive detector that does not require any preliminary 
information about the data sequence [21, 22]. Non-linear 
multiuser receiver involves the estimation and 
reconstruction of MAI [23] seen by each user with the 
objective of canceling it from the received signal.  

In interference cancellation, MAI is first estimated 
and then subtracted from the received signal [3]. On the 
other hand, linear multiuser receivers apply a linear 
transformation to an observation vector, which serves as 
soft decision for the transmitted data. In order to 
mitigate the problem of MAI, Verdu [8] proposed and 
analyzed the optimum multiuser detector for 
asynchronous Gaussian multiple access channels. The 
ML receiver searches all the possible demodulated bits in 
order to find the decision region that maximizes the 
correlation metric given by [24]. The practical 
application of this mechanism is limited by the 
complexity of the receiver [9, 10]. This optimal detector 
outperforms the conventional detector, but unfortunately 
its complexity grows exponentially with a complexity of 
O (2)K , where K represents number of active users.  

Much research has been done to reduce this receiver’s 
computational complexity. Ottosson and Agrell [16] 
proposed a ML receiver that uses the neighboring decent 
(ND) algorithm. They implemented an iterative 
approach using the ND algorithm to locate the region 
where the actual observations belong. To reduce the 
computational complexity of optimum receivers, the 
iterative approach using the ND algorithm performs 
MAI cancellation linearly. The linearity of the iterative 
approach increases noise components at the receiving 
end. Due to the enhancement in the noise components, 
the SNR and BER of the ND algorithm are more affected 
by the MAI.  

III. THE PROPOSED TRANSFORMATION MATRIX (TM)
ALGORITHM

We consider a synchronous DS-CDMA system as a 
linear time invariant (LTI) channel. In a LTI channel, 
the probability of variations in the interference 
parameters, such as the timing of all users, amplitude 
variation, phase shift, and frequency shift, is extremely 
low. This property makes it possible to reduce the overall 
computational complexity at the receiving end. Our TM 
technique utilizes the complex properties of the existing 
inverse matrix algorithms to construct the 
transformation matrices and to determine the location of 
the TPs that may occur in any coordinate of the 
constellation diagram.  

The system may consist of K users. User k can 
transmit a signal at any given time with the power of Wk.

456 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER



 

With the binary phase shift keying (BPSK) modulation 
technique, the transmitted bits belong to either +1 or -1, 

(i.e., { 1}
k

b ∈ ± ). The cross correlation can be reduced 

by neglecting the variable delay spreads, since these 
delays are relatively small as compared to the symbol 
transmission time. In order to detect signals from any 
user, the demodulated output of the low pass filter is 
multiplied by a unique signature waveform assigned by a 
pseudo random number generator. 

The optimum multiuser receiver exists and permits to 
relax the constraints of choosing the spreading sequences 
with good correlation properties at a cost of increased 
receiver complexity. Fig. 1 shows the block diagram of 
an optimum receiver that uses a bank of matched filters 
and a maximum likelihood Viterbi decision algorithm 
[25] for signal detection. It should be noted in Fig. 1 that 
the proposed TM algorithm is implemented in 
conjunction with the Viterbi decision algorithm with the 
feedback mechanism. In order to detect signal from any 
user, the demodulated output of the low pass filter is 
multiplied by a unique signature waveform assigned by a 
pseudo random number generator.  

A. Transformation Matrix (TM) Algorithm Description 

According to original Verdu’s algorithm, the outputs 

of the matched filter 1( )y m and 2( )y m can be 

considered as a single output ( )y m . In order to 

minimize the noise components and to maximize the 
received demodulated bits, we can transform the output 
of the matched filter, and this transformation can be 
expressed as follows: ( )y m Tb η= + where T

represents the TM, { 1}kb ∈ ±  andη represents the noise 

components. In addition, if the vectors are regarded as 
points in K-dimensional space, then the vectors 
constitute a constellation diagram that has K total points. 

The constellation diagram can be mathematically 

expressed as: { }bX = Τ where { }1, 1b ∈ − + and X

represents the collective computational complexity of a 
multiuser receiver. The preceding equation is 
fundamental to the proposed algorithm. According to the 
detection rule, the constellation diagram can be 
partitioned into 2K lines (where the total possible lines in 
the constellation diagram can be represented as ſ) that 
can only intersect each other at the following points: X
= {Tb} b ∈{-1, 1}

K \ ſ .  
Fig. 2 shows the constellation diagram that consists of 

three different vectors (lines) with the original vector 
‘ X ’ that represents the collective complexity of the 
receiver. Q, R, and S represent vectors or TP within the 
coverage area of a cellular network (see Fig. 2). In 
addition, Q¬, R¬, and S¬ represent the computational 
complexity of each individual TP. In order to compute 
the collective computational complexity of the optimum 
receiver, it is essential to determine the complexity of 
each individual TP.  

The computational complexity of each individual TP is 
represented by X¬ of the TP which is equal to the 
collective complexity of Q¬, R¬, and S¬.  In order to 
derive the value of the original vector X, we need to 
perform the following derivations. We consider the 
original vector with respect to each transmitted symbol 
or bit. 

i j K

i j K

X Q Xi XQ XR XS i

XQ i XR i XS i

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +

i j K

i j K

X R Xj XQ XR XS j

XQ j XR j XS j

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +

i j K

i j K

X S Xk XQ XR XS k

XQ k XR k XS k

¬ ¬ ¬

¬ ¬ ¬

= = + + =

+ +

The following equation can be derived from the above 
system: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

X Q i i i j i k i XQ

X R j i j j j k j XR

i k j k k k XSX S k

¬ ¬ ¬ ¬ ¬

¬ ¬ ¬ ¬ ¬

¬ ¬ ¬¬ ¬

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (1) 

Equation (1) represents the following: QRS with the unit 

vectors ,  ,  and i j k , and , ,  a n d  X Q X R X S¬ ¬ ¬

with the inverse of the unit vectors  and , ,i j k¬ ¬ ¬ . The 

second matrix on the right hand side of (1) represents b, 
where as the first matrix on the right hand side of (1) 
represents the actual TM. The TM from the global 
reference points to a particular local reference point can 
now be derived from (1): 

/L G

X Q i XQ

X R j T XR

XSX S k

¬ ¬

¬ ¬

¬ ¬

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

    (2) 

Equation (2) can also be written as: 

/L G

ii ji ki

T ij jj kj

ik jk kk

¬ ¬ ¬

¬ ¬ ¬

¬ ¬ ¬

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

      (3)

In (3), the dot products of the unit vectors of the two 
reference points are in fact the same as the unit vector of 
the inverse TM of (2). We need to compute the locations 
of the actual TP described in (2) and (3). Let the unit 
vectors for the local reference point be: 
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[ ]
[ ]
[ ]

11 12 13

21 22 23

31 32 33

, ,

, ,

, ,

i T i T j T k

j T i T j T k

k T i T j T k

¬

¬

¬

=

=

=

       (4) 

Since, ( )i i j k i
¬ ¬

+ + = , where ( ) 1i j k+ + = . The 

same argument is true for the rest of the unit vectors. 
Therefore, (4) can be rewritten as:  

[ ]
[ ]
[ ]

11 12 13

21 22 23

31 32 33

, ,

, ,

, ,

i T T T

j T T T

k T T T

¬

¬

¬

=

=

=

        (5) 

By substituting the values of  and , ,i j k¬ ¬ ¬ from (5) 

into (3), we obtain 

11 11 12 13 11 12 13

21 21 22 23 21 22 23

31 31 32 33 31 32 33

/

, , , , , ,12 13
, , , , , ,22 23
, , , , , ,32 33

L G

i T i T j T k j T i T j T k k T i T j T k

i T i T j T k j T i T j T k k T i T j T k

i T i T j T k j T i T j T k k T i T j T k

T
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
Carrier 

Recovery 

Carrier 
Recovery 

C1 (t)  

r2 (t) 

X 

X 

y1(m)  

y2(m)  
X 

Band Pass 
Filter 

Low Pass 
Filter X 

Matched Filter 
∫ [.] dt 

Matched Filter
∫ [.] dt 

C2 (t)  

r1 (t)  rx (t)  

Viterbi 
Decision 

Algorithm 
Low Pass 

Filter 

Feedback 
Path 

Extend the fundamental 
equation for K transformation 

points 

Set up the equation for K points with 
respect to their individual computational 

complexity 

Create transformation matrix 
that consists of K

transformation points 

Transformation Matrix Technique 

Perform transformation 
matrix sum 

Approximation of an average 
asymptotic computational 

complexity 

Figure 1. Implementation of proposed transformation matrix (TM) algorithm with the optimum multiuser receiver 
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11 12 13

21 22 23

31 32 33

/

, ,

, ,

, ,
L G

T T T

T T T

T T T

T
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

        (6) 

Substituting TL/G from (6) into (2), yields 

11 12 13

21 22 23

31 32 33

X Q T T T XQ

X R T T T XR

X S T T T XS

¬

¬

¬

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

             (7)                     

Equation (7) corresponds to the following standard 
equation that used for computing the computational 
complexity at the receiving end: X= Tb where 

{ }b 1, 1
k

∈ − + .  

If the target of one transformation ( ):U Q R→ is the 

same as the source of other transformation ( ):T R S→ , 

then we can combine two or more transformations and 
form the following composition: TU: Q�S, 
TU(Q)=T[U(Q)].This composition can be used to derive 
the collective computational complexity at the receiving 
end using (7). Since we assumed that the transmitted 
signals are modulated using BPSK which can at most 

use 1 bit out of two bits (i.e., { 1}bk ∈ ± ), consider the 

following set of TP to approximate the number of 
demodulated received bits that need to search out by 
decision algorithm: 

( ) (0) ( 1) 0 0 ( )
( 1) (1) (0) ( 1) 0 ( 1)

0 (1) (0) 0

( )0 (1) (0)( )

y m Tb Tb m
y m Tb Tb Tb m

Tb Tb

m kTb Tby K

η

η

η

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ −⎢ ⎥ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

�

�

�

� � �
�

�

� � � �

… …

 (8) 

Equation (8) is derived using our fundamental 
equation of TM (i.e., y Tb η= + ). Our approach is to 

assume terms ( )mη and ( )m kη + in (7) not equal to 

zero. This condition is fulfilled by periodically inserting 
a nonzero-energy bit in the information bit sequence. 
Therefore, the interference due to the cross-correlation of 
the actual symbols with the past and future symbols in 
the asynchronous channels can be accounted.

Using (7), a simple matrix addition of the received 
demodulated bits can be used to approximate the number 
of most correlated TP. The entire procedure for 
computing the number of demodulated bits that need to 
be searched out by the decision algorithm can be used to 
approximate the number of most correlated signals for 
any given set of TP.  This is because we need to check 
whether or not the TP are closest to either (+1, +1) or (-
1, -1). The decision regions or the coordinates where the 
TP lie for (+1, +1) and (-1, -1) are simply the 
corresponding transformation matrices that store the 
patterns of their occurrences. If the TP do not exist in the 
region of either (+1, +1) or (-1, -1), then it is just a 
matter of checking whether the TP are closest to (+1, -1) 
or to (-1, +1).  

The minimum search performed by the decision 
algorithm is conducted if the TP exist within the 
incorrect region. Since the minimum search saves 
computation by one degree, the decision algorithm has to 
search at least 4k demodulated bits. This implies that the 
total number of demodulated bits that need to be 
searched out by the decision algorithm can not exceed by 
5K - 4K. Thus, the total number of most correlated pairs 
has an upper bound of 5K - 4K.  

The computational complexity of any multiuser 
receiver can be quantified by its time complexity per bit 
[6]. The collective computational complexity of the 
proposed algorithm is achieved after performing the TM 
sum. This implies that both quantities T and b from our 
fundamental equation can be computed together and the 
generation of all the values of the demodulated received 

X
S

Q 

R¬

R

S¬

Q¬

X
S

Q 

R¬

R

S¬

Q¬

Figure 2.  A constellation diagram consisting of three different vectors 
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bits b can be done through the sum of the actual TM T
that approximately takes О (5/4)k operations with an 
asymptotic constant. Using the Newton approximation 
method given in MATLAB, we can directly come to an 
approximation of О (5/4)k. 

IV. QUANTIFICATION OF SIGNAL-TO-NOISE RATIO (SNR)
AND BIT ERROR RATE (BER) 

In this section, we derive a closed form expression for 
both SNR and BER. In all subsequent derivations, we 
use different properties and mathematical expressions of 
the proposed TM algorithm. 

A. Quantifying SNR for the TM Algorithm 

Consider the following points: 
a) ℵ  is a computational complexity that belongs 

to a certain coverage area. 
b) If SNR (we represent SNR byγ ) is uniformly 

distributed among all the active user’s signals 
with respect to computational complexity.  

c) A certain cellular coverage area has K users.   
Based on the above points, we can give the following 
mathematical hypothesis: 

{ }1 2 3 , , ,.................,i Kℵ ℵ ℵ ℵ ℵ∈
where  1, 2, 3, .................... Kℵ ℵ ℵ ℵ indicates the 

computational complexity-domain and 
  

{ }1 2 3 , , ,................,i Kh h h h h∈

where 1 2 3, , ,................, Kh h h h  indicates the user-

domain.  
The collective computational complexity can be 
expressed as: 

1

K

i
i=

ℵ = ℵ∑ where 1, 2,3,..............,i K=

Since each user has thh  part of the computational 

complexity such as: 

1 1 2 2 1 1, ,...., ,K K K Kh h h h− −ℵ ℵ ℵ ℵ∈ ∈ ∈ ∈ . This 

implies that each active user in a certain area of a 

cellular network has an average of Kℵ  computational 

complexity. Since SNR is uniformly distributed among 
all the user’s signals at the receiving end, each user 

experiences an average of Kγ SNR. In order to 

achieve maximum positive values of SNR for most of the 
values of K, we propose that the inverse of the 
computational complexity should equal the difference 
between the inverse-normalization factor and the product 
of inverse-normalization factor and SNR with respect to 
the collective computational complexity of the system. 
This hypothesis leads us to the following equation:
  

    1 1 1
1

K
C C

C

γ γ− − ⎡ ⎤
= − = −⎢ ⎥ℵ ℵ ℵ⎣ ⎦

                (9) 

where C  in (9) represents the normalization factor, 

K ℵ  is the inverse of the computational complexity, 

and γ ℵ  represents the SNR with respect to the 

collective computational complexity.  
The main objective of (9) is to ensure that we achieve 

maximum positive values of SNR for most of the values 
of K. Using the complexity and the user-domain, we can 
make an argument that the inverse of an average SNR
should at least greater than zero. This argument 
guarantees that the system does not work with a non-
positive value of SNR.  

Proof forγ ℵ :   

In order to prove γ ℵ , consider the following points: 

a)The coverage area of a cellular network has ℵ
computational complexity. 

b)Each user has an average of 
thk  part of the 

computational complexity from the complexity domain 

(that is, Kℵ ).  

c) The average γ  is uniformly distributed among K

active users (that is, Kγ )  

If the above points are valid, the following equation 
must be true not only for the complexity-domain but also 

for the user-domain: C
K K

γℵ
= + .   

We present our hypothesis that the difference between 
the average computational complexity and the average 
SNR should equal to the normalization factor. The main 
objective of the above equation is to get maximum 
positive values of SNR for most of the values of K. We 
can write the following equation:   

       1
K

C
γ ⎛ ⎞

= − ⎜ ⎟
ℵ ℵ⎝ ⎠

     (10) 

Since the right hand side of (10) represents the inverse 
of the average computational complexity with the 
normalization factor, the number of required operations 
can not be less than zero. It should be noted that the 
right hand side of (10) always gives us a positive value 
of SNR for any value of K which is greater than 10.

Using the complexity and the user domain, we can 
make an argument that the inverse of an average SNR 
should be at least greater than zero. This argument
guarantees that the system does not work with a non 
positive value of SNR. This is essential, since a negative 
SNR significantly degrades the BER performance. Recall 

(9): [ ] ( )1 1 1K C Cγ γℵ = − ℵ = ℵ− ℵ⎡ ⎤⎣ ⎦
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                                    CKγ = ℵ −       (11)          

Equation (11) represents SNR by determining the 
difference between the power of the transmitted signal 
from the computational complexity-domain and the 
number of users from the user-domain. Equation (11) 
can also be used to compute the values of SNR in an 
ideal situation only if MAI does not affect the received 
signals by K-1 users. However, in a practical DS-CDMA 
system, this assumption does not exist. Therefore, we 
should consider that the variations in the network load 
for an additive white Gaussian noise (AWGN) channel 
introduces the presence of variance (we represent 

variance by 2σ ) that represents MAI. The selection of 
variance is entirely dependent on the network load.  

In order to compute the values of SNR in decibels 
(dB), we need to change linear quantity into decibels 
(dB) by multiplying it to the base-10 logarithmic 
function as well as with the variance.   

( )2
1010 log CKγ σ= ℵ−     (12) 

We consider the precomputed values of variance given 
in [23]. Furthermore, the normalization factor represents 
a varying quantity that can be used to approximate the 
different values of SNR with respect to the difference 
between the average complexity and the average SNR.  

B. A Closed Form Expression for BER 

The use of DS-CDMA technology in communication 
system causes interference to other signals present on the 
channel. The occurrence of MAI substantially increases 
as more signals simultaneously access the channel. Since 
different signals are slightly correlated to each other, the 
increase in the occurrence of MAI reduces the BER 
performance. This fact makes the BER performance as 
one of the important measures that determines the 
maximum number of simultaneously transmitting 
signals. 

We modeled the cellular network as a LTI 
synchronous DS-CDMA system in which users utilize an 
AWGN multipath channel. Due to an AWGN channel 
and the linearity property, the different signal 
components do not experience deep fades. If the signal 
changes during the transition, the receiver receives the 
following signal: 

( ) ( ) ( )j
t e s t t

θ
η

−
ℜ = Α + +

where A  is an attenuation factor, θ  is a phase shift, 

( )s t  is the desired signal, and ( )tη  is the additive 

Gaussian noise.  
Due to LTI characteristics, the proposed algorithm is 

independent of the phase shift, which permits us to 
ignore it by simply setting the value of θ to zero. 
Therefore, the receiver receives the following signal: 

( ) ( ) ( )t s t t Aηℜ = + +

Since the attenuation factor A  is uncorrelated with 

( )tη , we can use the value of SNR directly in the BER 

formula. Consider (13) that can be used to determine the 
BER in an AWGN channel for a system where the 
transmitted bits are modulated using the BPSK 
modulation technique.  

                   BER 1 1Q SNR⎡ ⎤= ⎣ ⎦       (13) 

Since the attenuation factor and the white noise are 
uncorrelated, the SNR can be directly placed in (13) as 
follows: 

BER ( ) 2
1

2
1 10Q SNR σ

−

+⎡ ⎤= ⎣ ⎦      (14) 

where ( )Q x is the Gaussian Q function [4]. For 

simplicity, (14) can also be written as: 

BER = 210 1 10Q SNR SNRσ⎡ ⎤+
⎣ ⎦

   (15) 

The second term in (15) represents the SNR 
degradation due to MAI. This term depends on the cross-
correlation between the spreading code as well as the 
number of users.  

V. PROCESSING GAIN (PG) FOR TM ALGORITHM

It is observed that the PG has no effect on wideband 
thermal noise. In addition, a spread system requires the 
same transmitter power as an un-spread system on the 
AWGN when MAI is absent. However, we consider an 
AWGN channel where the MAI can severally affect the 
BER performance.     

A. Quantitative Analysis of Processing Gain (PG) 

For a DS-CDMA system, the PG can be viewed as 
ratio between the signal power and the interference 
power at the receiver. In a DS-CDMA based cell 
communication system, the interference is caused due to 
the cross-correlation between the spreading code as well 
as the number of users. Based on the above discussion, 
we can give the following mathematical hypothesis: 

  P PPG S I=        (16) 

where PS and PI represents signal and interference 

power respectively.  
As we know that the signal to noise ration (SNR) can 

be defined as a ration between signal power and noise 
power. By taking this into account, one can infer that an 
increase in the noise power causes an increase in the bit 
error rate. This relationship can be expressed as: 
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PN BER∝         (17) 

where PN represent the noise power  

Based on (17), we can say that the effect caused on the 

SNR due to the values of PN  is the same as the effect 

caused by the BER values. Therefore, (17) can also be 
written as: 

PN BER�         (18) 

where “� ” represents the estimated value of a quantity 
for some large number ‘n’. By using (17) and (18), we 
can rewrite (16) as:  

( )( ) PPG SNR BER I=      (19) 

   
The BER in (19) satisfies the characteristics of (17) 

and (18) for high values of BER. On the other hand, the 
higher values of SNR represent the reduction in the 
noise power as well as yield better values for PG. Recall 
(13) that can be used to determine the BER in an AWGN 

channel: BER 1 1Q SNR⎡ ⎤= ⎣ ⎦

BER ( ) 2
1

2
1 10Q SNR σ

−

+⎡ ⎤= ⎣ ⎦   (20) 

Recall (20) for an AWGN channel with the BPSK 
modulation technique, (19) can also be modified as:

  

( )
( )

1
2

21
10

P

SNR Q
SNR

PG
I

σ

−
⎡ ⎤

+⎢ ⎥
⎣ ⎦=  (21) 

The second term of (21), 2σ , represents MAI that 
caused due to the cross corelation between the spreading 
code and the number of users and can vary due to the 
variations in the network load for an AWGN channel. 
Thus the selection of variance is entirely dependent on 
the network load. For simplicity, this can also be written 
as: 

( )
2

10

1 10

P

SNR
SNR Q

SNR
PG

I
σ

⎡ ⎤
⎢ ⎥

+⎣ ⎦=     (22) 

B. Counter Proof for the Proposed Model 

In this section, we provide a proof for analyzing the 
correctness of (22) by considering the same set of 
derivations for computing the PG on an AWGN channel 
in the absence of MAI. We expect that the absence of 
MAI leads us to an equivalent mathematical equation 
like (22) that should not contain the parameters for a 
variance.   

In a spread-spectrum system, PG can be defined as a 
ratio of a SNR of a processed signal to the SNR of the 

unprocessed signal. This relationship can be expressed 
as: 

PR

UP

SNR
PG

SNR
=         (23) 

where the subscripts PR  and UP stand for processed and 
unprocessed signals, respectively. 

According to our initial assumption, the cellular 
network is modeled as a LTI system that permits us to 
clearly distinguish the unprocessed input signal to the 
processed output signal This allows us to ignore the 
possibility of noise at the input signal. The leads us to 
the following mathematical expression: 

1
P P

SNR
PG N S

= =      (24) 

We use the same hypothesis that we presented to derive 
(17) and (18) in order to derive (25). 

( ) ( )1
PS PG SNR BERBER ⇒ =�    (25) 

Recall our previous derivations of BER for an AWGN 
channel, (25) can be written as: 

( )
2

10

1 10

SNR
PG SNR Q

SNRσ

⎡ ⎤
= ⎢ ⎥

+⎣ ⎦
   (26) 

Equation (26) gives the value of PG where the MAI is 
not caused due to the variation in the network load. By 
comparing (26) with (22), we can observe that the values 
of PG in (26) is much higher than the values we can get 
from (22) because of the absence of MAI. According to 
our initial assumption, if kth signal changes during the 
transition, the output of the corelater is given as: 

k k k
je s Nθ

η
−

ℜ = Α + +           (27) 

In (27), the first, second, and third term represent the 
MAI component, the desired signal component, and the 
noise component, respectively. Our model is not affected 
by a phase shift and frequency shift. Therefore, this 
simplifies (27) as: 

k k ks N Aηℜ = + +        (28) 

where N is usefully interpreted as the PG. The second 
term in (28) is a zero mean Gaussian random variable 
with variance. The third term of (28) is a MAI 
component that can be defined as: 

( )
2

cos
K

k k k
k

A A U φ
=

=∑      (29) 
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where kA represents the envelop of a complex Gaussian 

process with unit variance in each quadrature component 

and kU represents a non-faded amplitude of the thk

signal. In (29), kφ is a uniform random variable that 

represents the phase difference of the thk  user. Even 

though, the right hand side of (29) is independent and 
represents a Gaussian distribution process over a range 
of 0 to 2π , the left hand side is not a pure Gaussian 
function. Thus, to approximate the presence of 
processing gain and MAI in the received signal, (28) and 
(29) can be used as follows:   
          

( )
2

2

10

1 10
k k

K

k k k
k

SNR
s SNR Q

SNR

A U

σ

η
=

⎡ ⎤⎛ ⎞
ℜ = +⎢ ⎥⎜ ⎟⎜ ⎟

+⎢ ⎥⎝ ⎠⎣ ⎦

+∑

 (30) 

The first two terms of (30) can be used to approximate 
the PG and the MAI for a user k. It should be noted that 
the second term gives an average variance of the MAI 
over all possible operating conditions that can be used to 
compute the required SNR for a desirable BER 
performance. We use (30) in conducting the simulation 
result and performing the experimental verification by 

giving the non-folded amplitude of the thk  signal and 

computing the corresponding MAI as a Gaussian 
random variable with zero mean and conditional 

variance that represents by 2σ . Similarly, first terms of 
(30) can be used to approximate the values of achievable 
PG with respect to the required SNR for a desirable BER 
performance.   

VI. PERFORMANCE ANALYSIS OF THE PROPOSED TM
ALGORITHM

In this section, we use the results in [16, 24] to 
compare the computational complexity, SNR, and the 
BER performance of the proposed TM algorithm with 
the ND and the ML multiuser detection algorithms. The 
system is modeled in MATLAB and the results are 
presented in the subsequent sections.  

A. Complexity Analysis for the TM Algorithm 

The numerical results show the asymptotic 
computational complexities with respect to the number 
of users as shown in Fig. 3 and Fig. 4 for 100 and 500 
users, respectively. As the number of users increases in 
the system, the computational complexity differences 
among the three approaches will be obvious.   

The computational complexity for a network that 
consists of 100 users is shown in Fig. 3. The complexity 
curve for the proposed algorithm is growing in a linear 
order rather than in an exponential order. The 

computational linearity of the proposed algorithm comes 
by employing the TM technique that avoids considering 
all the decision variables and thus provides much better 
performance over the ND and the ML algorithms. Fig. 4 
shows the computational complexities of three different 
algorithms for a network consisting of 500 users. As we 
increase the number of users in the system, more 
transformation matrixes will be used to determine that 
which coordinate(s) or decision region(s) within the 
constellation diagram is most likely to produce errors. 
Only the selected coordinate(s) or decision region(s) will 
be considered and thus reduce the amount of 
computations performed by the receiver.    

B. Performance Analysis of SNR 

MAI causes SNR degradation for a particular value of 
Eb/No.  SNR degradation depends on the number of user. 
An increase in K would degrade the performance 
because it would increase the cross correlation between 
the received signals from all the users. Mathematically, 
we can express this as: K ∝  MAI ∝  high BER 
∝ 1/SNR. However, a large increase in value of K
causes MAI to reach its peak value which in turns limits 
the divergence of SNR for the proposed algorithm.  

Recall that the first two terms of (30) which can be 
used to approximate SNR for a desirable BER 
performance for k users. Specifically, we use the first 
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Figure 3.  The asymptotic computational complexities versus intermediate 
number of users 
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Figure 4.  The asymptotic computational complexities versus large 
number of users 
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term of (30) to approximate the SNR values with respect 
to k users for a desirable BER performance. Moreover, 
we use the second term of (30) to achieve an average 
variance of the MAI over all possible operating 
conditions. In our simulation for both scenarios, we use 
one (i.e., C = 1) as a normalization factor that remains 
same for all the investigated algorithms. The choice of a 

small value of 2σ is entirely based on the load of the 
coverage area and it is selected through a random 
process for a certain range of users.  
Lightly-Loaded Network: When system has K = 52 
users, the divergence rate for the proposed algorithm 
increases (see Fig. 5). It can be clearly observed from 
Fig. 5 that the linear increase in SNR for the proposed 
TM algorithm is more uniform and smoother over the 
ND and the ML algorithms. Furthermore, the 
importance of variance can not be ignored since Fig. 5 
clearly depicts that a random amount of variance is more 
affected on the ND and the ML algorithms than on the 
proposed algorithm. This is because both ML and the 
ND algorithms have comparatively larger complexity-
domains which take more time to perform required 
iterations to detect the received signals and thus give 
more time to variance to effect comprehensively on the 
received SNR. Moreover, for a lightly-loaded network, it 
can be expected that the selection of variance within the 
specified range does not meet the threshold value. The 
random amount of variance is more likely unstable for a 
lightly-loaded network than in a heavily-loaded network 
and thus may cause a serious degradation in the values 
of SNR.
Heavily-Loaded Network: In Fig. 6, it can be seen that 
the ND algorithm comparatively gets high values of SNR 
than the ML algorithm for a heavily-loaded network 
(typically when K > 55) when compare to a lightly-
loaded network. This is because the computational 
complexity for a heavily-loaded case is much greater 
than for a lightly-loaded case. This forces both ML and 
the ND algorithms to minimize the factor of divergence 
and hence maximize the convergence. Since we assume 
that the selection of variance is random within the 
specified range, it remains stable after a certain value of 

K that limits the divergence of SNR. Another important 
point that can be observed from Fig. 6 is that the graph 
for the proposed algorithm converges to approximately 
45 dB after 100 users and only a slight increase in the 
value of SNR can be expected for very large values of K.

C. Analysis of PG  for the Proposed Algorithm 

In (30), we present an approximation of PG and the 
MAI for the characteristic function involving both the Q
function and the SNR. MAI has a Gaussian-like shape 
that decays exponentially with respect to the non-faded 

amplitude of the thk  signal as shown in Fig. 7. The 

results of Fig.7 shows that the second term of (30) are 
extremely well behaved in the sense that they are 
smooth, strictly non negative, and decay exponentially 
due to the higher values of PG. In harmony with our 
expectations, as the number of users, K, increased, the 
PG of the system degraded as shown in Fig.8. This 
degradation in the PG is caused due to the decrease in 
SNR which consequently degrades the rate at which 
MAI diverges with respect to the PG. However, the 
performance degradation of the MAI was small 
compared to the increase in K.        

D. Performance Analysis of BER 

The standard performance criterion in digital 
communications is the probability of BER. Some voice-
band modem applications, such as the transfer of 
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Figure 5. Approximate value of SNR (dB) versus number of users (K 
=52) with a random amount of variance. 
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=102) with a random amount of variance 
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financial data, permit error rates no greater than 10-5, 
whereas other applications such as digitized voice in 
cellular networks tolerates error rates as high as 10-2 to 
10-3.  
Lightly-Loaded Network: Fig. 9 and Fig. 10 show a plot 
of three BER versus SNR curves. These curves were 
plotted in an AWGN channel for a small range of users 
using (15). For the first few values of SNR, the ND 
algorithm almost approaches the ML algorithm whereas 
the proposed algorithm still maintains a reasonable 
performance difference. This can be seen in Fig. 9 that 
the proposed algorithm achieves less than 10-2 BER for 
SNR = 8 dB which is quite closed to the required 
reasonable BER performance for a voice communication 

system. The BER curve in Fig. 10 is calculated using the 
precomputed-values of SNR. Fig. 10 shows a slight 
improvement over the BER performance of Fig. 9 for all 
SNR values above 9 dB. Even for small values of SNR, 
the proposed algorithm gives better performance than 
the ML and the ND algorithms. As the value of SNR 
increases, the BER performance of the proposed 
algorithm over the ND and the ML algorithms becomes 
more and more substantial because the probability of 
having more divergent values of SNR increases.    
Heavily-Loaded Network: For a heavily-loaded 
network, the BER performance of the proposed 
algorithm in an AWGN channel is shown in Fig. 11 and 
Fig. 12. In harmony with our expectations, as the 
number of users, K, increased, the BER performance of 
the proposed algorithm degraded. The BER performance 
of the proposed algorithm below 10 dB is almost similar 
to that of the ND and the ML algorithms as shown in 
Fig. 11. Fig. 12 shows the plot of BER versus SNR 
curves for synchronous DS-CDMA system for large 
values of K. We can see that as the number of users 
increases in the system, the BER advantage of the 
proposed algorithm over the ND and the ML algorithms 
decreases as shown in Fig. 12. The BER performance 
analysis for a heavily-loaded case corresponds to the fact 
that as the BER increases, the range of the precomputed 
desire values of an average SNR decreases and hence the 
BER performance of the proposed algorithm slightly 
deteriorates.
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computed using the first term of (30) 
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Figure 9. Comparison of BER versus SNR (dB) curves for a synchronous
BPSK/DS CDMA system in a Gaussian channel for a small value of K.
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Figure 10. Comparison of BER versus SNR (dB) curves for a synchronous 
BPSK/DS CDMA system in a Gaussian channel for a small value of K. 
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Figure 11. Comparison of BER versus SNR (dB) curves for a synchronous 
BPSK/DS CDMA system in a Gaussian channel for a large value of K.
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Figure 12. Comparison of BER versus SNR (dB) curves for a synchronous 
BPSK/DS CDMA system in a Gaussian channel for a large value of K.  
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VII. CONCLUSION

In this paper, a novel approach for reducing the 
computational complexity of multiuser receivers is 
proposed, which utilizes the Transformation Matrix 
technique to improve the performance of multiuser 
detectors. Furthermore, we present a new mathematical 
model for computing the values of SNR. The main 
advantage of the proposed mathematical model for SNR 
is that it guarantees that the receiver does not process the 
signals that have non-positive values of SNR. In order to 
show the consistency and the correctness of the proposed 
approach, we presented simulation results for computing 
SNR with different ranges of users. The simulation 
results for SNR demonstrate the consistency of the 
desired values required to achieve an optimal BER 
performance. Furthermore, we presented a quantitative 
analysis of PG for DS-CDMA systems. The simulation 
results of PG demonstrate that the unwanted signals or 
interference can be effectively reduced relative to the 
desired signal at the receiving end. In addition, we 
present BER results for both lightly and heavily loaded 
networks. The simulation results for the BER suggest 
that the proposed algorithm achieves better BER 
performance for all values of SNR than the other well-
known multiuser detection algorithms.
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