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Abstract—Space-frequency (SF) coded orthogonal fre-
quency division multiplexing (OFDM) systems have been
recently proposed for cooperative communications to achieve
both full cooperative and full multipath diversities without
the time synchronization requirement. In this paper, we show
that the full diversity property still holds for a family of SF
codes (rotation-based SF codes) when there are multiple
carrier frequency offsets (CFOs) from relay nodes under
the condition that the absolute values of the normalized
CFOs are less than 0.5. We then prove that this full diversity
property can be preserved if we seek to reduce the receiver
complexity by using a zero forcing (ZF) method to equalize
the multiple CFOs, before applying maximum likelihood
(ML) decoding. Furthermore, by exploiting the properties
of SF codes, we show that a specific permuted version of
this family of SF codes can still achieve full diversity even
when the inter-carrier interference (ICI) matrix is singular.
This is possible as long as the maximum absolute value
of the normalized CFOs is not less than 0.5. However, in
this case the ZF method cannot be directly used to reduce
the decoding complexity. To avoid the necessity of jointly
considering all the subcarriers, two suboptimal detection
methods are proposed in which full diversity is achieved
even for singular ICI matrix. All these imply that the SF
coded OFDM system is robust to both timing errors and
frequency offsets.

Index Terms—Cooperative communications, diversity,
ICI, multiple CFOs, OFDM, space-frequency codes

I. INTRODUCTION

Due to the fact that orthogonal frequency division
multiplexing (OFDM) systems are robust to timing errors,
space-frequency (SF) coded OFDM cooperative systems
have been proposed to achieve full asynchronous coop-
erative diversity, such as in [1]–[4]. However, it is well
known that OFDM is sensitive to carrier frequency offset
(CFO) that may lead to inter-carrier interference (ICI). For
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the conventional OFDM systems, only one CFO between
transmitter and receiver exists. Thus if the CFO is accu-
rately estimated, it can be easily compensated. However,
in an SF coded OFDM cooperative system, since an SF
code matrix is transmitted from various distributed nodes,
there may exist multiple CFOs, which makes it difficult
for the receiver to synchronize the signals from multiple
relays at the same time.

The problem of multiple CFOs in cooperative com-
munications has been studied recently in [5]–[9]. In
[5], a subcarrier-wise Alamouti coded OFDM system is
considered and a simplified zero-forcing (ZF) equalizer
is applied to suppress the ICI. In [6], delay diversity is
considered and a minimum mean square error (MMSE)
decision feedback equalizer (DFE) is employed by the
destination node, where the DFE filter coefficient calcu-
lation requires a matrix inversion per information symbol.
In [9], computationally efficient MMSE and MMSE-DFE
equalizations are proposed for the linear convolutively
coded cooperative systems in the presence of multiple
CFOs, where the linear convolutively space-time codes
[10] can achieve the full asynchronous cooperative diver-
sity under any delay profile. Different from the methods in
[6], the equalization methods proposed in [9] do not need
to inverse a matrix per information symbol. In [7] and
[8], some effective and efficient signal detection methods
are proposed for an SF coded cooperative communication
system in the presence of multiple CFOs, where rotation-
based SF codes [11] are considered. Compared with codes
used in [5], [6], [9], these SF codes are powerful in the
sense that they can achieve both full cooperative diversity
as well as full multipath diversity, and their rate is always
equal to one regardless of the number of transmit antenna.
Generally speaking, all of the above methods adopt the
equalization techniques to deal with the multiple CFOs
problem. However, it is not known if these equalization
techniques can still guarantee full diversity.

In this paper, we consider the SF codes proposed in
[11] for MIMO-OFDM systems. Above all, we show
that the full diversity property still holds for this family
of SF codes when there are multiple CFOs from relay
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nodes under the condition that the absolute values of the
normalized CFOs are less than 0.5. The key idea for the
proof is to treat the ICI terms due to CFOs as a part of an
SF code matrix. It turns out that as long as the original SF
code achieves the full diversity (both spatial and multipath
diversities) and the absolute values of normalized CFOs
are less than 0.5, the new (virtual) code after absorbing
the CFOs/ICI into the original SF code maintains the full
diversity. The above full diversity property is based on
the maximum likelihood (ML) decoding across all the
subcarriers of the OFDM system, which may have a high
complexity. To overcome this difficulty, we further study
an SF coded OFDM system where the ICI matrix is first
equalized by a zero forcing (ZF) method, followed by ML
decoding for the SF codes (we call this method the ZF-
ML method). The complexity of this ZF-ML detection
method is much reduced compared to the complete ML
method described above, and we prove that the ZF-ML
method still achieves the same diversity order as the case
without CFOs.

We also address the more challenging case when the
absolute values of the normalized CFOs are not smaller
than 0.5. In this case we cannot guarantee the ICI matrix
being nonsingular, as well as the full diversity property of
the ML and ZF-ML method described above. To enhance
the robustness of these SF codes to multiple CFOs, we
devise a specific permuted (interleaved) SF codes that
can still achieve full diversity even when the ICI matrix
is singular. This full diversity property is still based on
joint consideration of all the subcarriers of the OFDM
system whose decoding complexity is high. To tackle
this problem, we then propose two suboptimal detection
methods with different tradeoff between efficiency and
complexity, namely the ZF-ML-Zn method and the ZF-
ML-PIC method. Both of these two methods can still
achieve full diversity when the ICI matrix is singular. All
these imply that such an SF coded OFDM cooperative
system is robust to both timing errors and frequency
offsets from the relay nodes.

The remaining of this paper is organized as follows.
In Section II, the system model is described. In Section
III, the structure of the SF codes in [11] is reviewed.
In Section IV, the effect of multiple CFOs on the SF
codes is analyzed. The next section shows that a specific
permutation can improve the robustness of these SF codes
to multiple CFOs. In Section VI, some simulations are
presented to verify the theoretical results, and conclusions
are given in Section VII. Throughout this paper, full
channel knowledge including CFOs at the destination
node, is assumed.

Some Notations: We use A(l, k) to denote the (l, k)th
entry of A, and x(k) to denote the kth entry of vector
x. Superscripts T , ∗, and H stand for transpose, con-
jugate, and Hermitian, respectively. E [x] represents the
expectation of variable x. Integer ceiling and floor are
denoted by ⌈·⌉ and ⌊·⌋, respectively. IN represents the N×N
identity matrix . The N × 1 all zero and all one vectors
are denoted by 0N and 1N , respectively. 0N×M stands

for an N × M all zero matrix. diag(d0, . . . , dN−1) denotes
an N × N diagonal matrix with diagonal scalar entries
d0, . . . , dN−1, and an NQ × NR block diagonal matrix
with diagonal Q × R matrices D0, . . . ,DN−1 is denoted
by diag(D0, . . . ,DN−1). FN is the N × N normalized FFT
matrix. The Kronecker and Hadamard product are denoted
by ⊗ and ⊙, respectively. ( )N means modular operation.
The cardinality of a set A is denoted by |A|.

II. SYSTEM MODEL

A. Cooperative Protocol

Fig. 1 shows the cooperative communication system
we use in this paper, which includes one source node,
one destination node, and a number of relay nodes in
the middle. In the first phase, the source node S broad-
casts the information while the relays receive the same
information. In the second phase, the Mt relays, which
have detected the received information symbols correctly,
will help the source to transmit. The detected symbols are
parsed into blocks of size N and N is also the number of
subcarriers in one OFDM symbol. Then, the bth block,
b = 0, 1, . . ., is encoded to an SF code matrix C in a
distributed fashion [2]. Finally, the mth, 1 ≤ m ≤ Mt, relay
transmits the (m−1)th column of the code matrix, denoted
as cm, by the standard OFDM technology. Hence, this is a
decode-and-forward (DF) protocol. We assume that each
node has only one transmit/receive antenna. Another DF
protocol for these SF codes can be found in [12], to which
our major conclusions obtained in this paper are still
applicable. Although, in a cooperative communication
system, each column of an SF code corresponds to one
relay, to be consistent with the notation used in the SF
coding literature, we will use the term antenna instead of
relay

S

RMtR2R1
D

...
Fig. 1. System structure

B. Channel Model

The channel impulse response from the mth relay to the
destination node is denoted as hm(τ) =

∑Lm−1
l=0 αm(l)δ(τ −

τm(l)), where Lm is the number of multipaths of the
link from the mth relay to the destination node. The
complex amplitude and delay for the lth multipath of the
mth relay are αm(l) and τm(l), respectively, where αm(l)
is a zero mean complex Gaussian variable with power
E[|αm(l)|2] = σ2

m(l). The power of each link is normalized
such that

∑Lm−1
l=0 σ

2
m(l) = 1 for m = 1, 2, . . . ,Mt. We further

assume that the delays for the relays are rounded to the
sampling positions. The channel taps αm(l) are assumed
independent from each other for different m and l. The
frequency response of the link between the mth relay and
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the destination node, Hm = [Hm(0), . . . ,Hm(N − 1)]T , is
given by

Hm = F̂mhm, (1)

where hm = [αm(0), . . . , αm(Lm − 1)]T and
F̂m = [fτm(0), . . . , fτm(Lm−1)]. The column vector
fτm(l) = [1, ζτm(l), . . . , ζ(N−1)τm(l)]T , where ζ = exp(− j 2π

T )
and T is the duration of an OFDM symbol.

III. STRUCTURE OF SPACE-FREQUENCY CODES

The SF code for the cooperative communication system
we consider is based on the codes in [11], [13], [14] and
[2]. In this section we briefly review the structure and
some properties of this SF code which will be utilized
in the following sections. We adopt the code structure
proposed in [11].

Each SF code C is an N × Mt matrix and is mapped
from an N′ × 1 information symbol vector s, where Mt

is the number of transmit antennas and N′ ≤ N. For the
coding strategy proposed in [11], each SF code matrix C
is a concatenation of some matrices Gp with the form

C =
[
GT1 GT2 . . . GTP 0T(N−N′)×Mt

]T
, (2)

where P = ⌊N/(ΓMt)⌋, N′ = PΓMt, each matrix Gp, 1 ≤
p ≤ P, is of size ΓMt by Mt, and Γ is a coding parameter
related to the achievable diversity order for the code. The
zero padding matrix 0(N−N′)×Mt is used if the number of
subcarriers N is not an integer multiple of ΓMt. In the
remainder of this paper, without loss of generality, we
assume that N is an integer multiple of ΓMt, i.e., N =
PΓMt. Each matrix Gp, 1 ≤ p ≤ P, has the same structure
given by

Gp =
√

Mtdiag(xp
1 , x

p
2 , . . . , x

p
Mt

), (3)

where xp
m = [xp

(m−1)Γ+1, . . . , x
p
mΓ]
T for 1 ≤ m ≤ Mt,

and all xp
k , 1 ≤ k ≤ MtΓ, are mapped from an

information subvector sp = [sp
1 , . . . , s

p
ΓMt

]T by a lin-
ear transform [xp

1
T
, . . . , xp

Mt

T ]T = Θsp, where sp
l is

((p − 1)ΓMt + l − 1)th entry of s for 1 ≤ l ≤ ΓMt and Θ is
the MtΓ×MtΓ linear transformation matrix. The details re-
garding to the construction of Θ can be found in [11]. The
energy constraint is E

[∑ΓMt
k=1 |xk |2

]
= ΓMt. The diversity

order achieved by these SF codes is Mr
∑Mt

m=1 min(Γ, Lm)
[2], [3], [11], where Mr is the number of receive antennas.
So if Γ ≥ maxm(Lm), full diversity order (

∑Mt
m=1 Lm)Mr can

be achieved.
One property of the above SF codes is that each

subcarrier is only used by one transmit antenna. From
(2) and (3), the (m − 1)th, 1 ≤ m ≤ Mt, column of C,
denoted as cm, can be written as

cm = Pmcm. (4)

where Pm is a diagonal selection matrix corresponding to
the (m − 1)th column of C given by

Pm(l, l′) =
{

1, if l = l′ = (t − 1)ΓMt + (m − 1)Γ + i
0, else ,

(5)

where 0 ≤ l, l′ ≤ N − 1, 0 ≤ i ≤ Γ − 1 and 1 ≤ t ≤ P.
Based on (5) we also have

PmPm† =

{
Pm, if m = m†

0N×N , otherwise . (6)

IV. EFFECT OF MULTIPLE CFOS ON THE SF CODES

A. Receive Signal Model

Let b, b = 0, 1, 2, . . ., denote the OFDM symbol index.
Then at the destination node, after standard steps, the bth
received OFDM symbol zb in the frequency domain is
given by

zb =

√
ρ

Mt

Mt∑
m=1

e jθbεm Uεm diag(Hm)cm + w, (7)

where w is an N × 1 noise vector with each entry being
a zero mean unit variance complex Gaussian random
variable and ρ stands for the signal-to-noise ratio (SNR)
at the destination node. Let ∆ fm be the CFO between the
mth relay and the destination node. Then εm = ∆ fmT is
its normalized value by OFDM symbol duration T . In (7),
θbεm
= 2πεm(bN + bLcp + Lcp)/N + θ0,m where Lcp is the

length of cyclic prefix, 2πεm(bN + bLcp + Lcp)/N is the
phase rotation of the bth OFDM symbol transmitted from
the mth relay induced by CFO ∆ fm and θ0,m is the phase
rotation between the phase of the destination node local
oscillator and the carrier phase of the mth relay at the
start of the received signal. Uεm is the N × N ICI matrix
induced by εm and is given by

Uεm = FNΩεm FHN , (8)

where Ωεm = diag(1, e j2πεm/N , . . . , e j2πεm(N−1)/N).
Substituting (4) into (7), we have

zb =

√
ρ

Mt

Mt∑
m=1

e jθbεm Uεm diag(Hm)Pmcm + w

=

√
ρ

Mt

Mt∑
m=1

e jθbεm Uεm Pmdiag(Hm)cm + w, (9)

where the identity diag(Hm)Pm = Pmdiag(Hm) is ap-
plied since diag(Hm) and Pm are diagonal matrices.
Based on (6), Pmdiag(Hm)cm can be expressed by
Pm
∑Mt

l=1 Pldiag(Hl)cl. From (9) we get

zb =

√
ρ

Mt

Mt∑
m=1

e jθbεm Uεm

Pm

Mt∑
l=1

Pldiag(Hl)cl

 + w

=

√
ρ

Mt
Ub

Mt∑
m=1

diag(Hm)cm + w, (10)

where

Ub =

Mt∑
m=1

e jθbεm Uεm Pm. (11)

So we can see that due to the property of the SF codes,
i.e., each subcarrier is only used by one transmit antenna,
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the effect of ICI matrix Uεm , 1 ≤ m ≤ Mt, is incorporated
into the matrix Ub. Substituting (1) into (10), we obtain

zb =

√
ρ

Mt
Ub

Mt∑
m=1

diag(F̂mhm)cm + w

=

√
ρ

Mt
Ub

Mt∑
m=1

[cm ⊙ fτm(0), . . . , cm ⊙ fτm(Lm−1)]hm

+w. (12)

Assuming that L = maxm(Lm), we define N × Mt matrix
Jl as

Jl , [fτ1(l), fτ2(l), . . . , fτMt (l)], (13)

for 0 ≤ l ≤ L − 1, and MtL × 1 vector h ,
[α1(0), . . . , αMt (0), . . . , α1(L − 1), . . . , αMt (L − 1)], where
αm(l) = 0 and τm(l) = 0, if l ≥ Lm for 1 ≤ m ≤ Mt. By
further defining N × MtL matrix X as

X = [J0 ⊙ C, J1 ⊙ C, . . . , JL−1 ⊙ C], (14)

the received signal zb can be written as:

zb =

√
ρ

Mt
UbXh + w. (15)

B. Diversity Analysis of SF Codes with Multiple CFOs

It is not hard to see that this signal model (15) is a
standard SF coded MIMO-OFDM receive signal model
which has been examined in [11], [2] and [3]. According
to the diversity (rank) criterion of SF codes design, clearly
in the presence of multiple CFOs, the achieved diversity
order of SF codes is equal to the minimum rank of the
matrix Ub(X−X̂)Λ(X−X̂)HUbH for any distinct C and Ĉ,
where Λ = E[hhH ]. Furthermore, we have the inequality

rank
(
Ub(X − X̂)Λ(X − X̂)HUbH

)
≤ rank

(
(X − X̂)Λ(X − X̂)H

)
. (16)

From (16) we can conclude that the achieved diversity
order by this SF code with multiple CFOs can only be
less than or equal to that without CFOs. On the other
hand, when rank(Ub) = N, the equality in (16) holds.
This means that the achieved diversity order is the same
as the case without CFOs.

As multiple CFOs affect the SF codes through the
matrix Ub, let us investigate it in details. Substituting (8)
into (11), we obtain

Ub =

Mt∑
m=1

e jθbεm FNΩεm FHN Pm

= FN

Mt∑
m=1

Ωεm FHN Pm

 Mt∑
i=1

e jθbεi Pi


= N−

1
2 FNVPb, (17)

where V = N
1
2
∑Mt

m=1Ωεm FHN Pm, Pb =
∑Mt

i=1 e jθbεi Pi, and
the second equality follows from (6). Here it is easy to
verify that Pb is a diagonal and unitary matrix. Due to
the fact that FN is a unitary matrix, we have rank(Ub) =
rank(N−

1
2 FNVPb) = rank(V). From the expression of Ωεm ,

we can see that the matrix N
1
2Ωεm FHN , 1 ≤ m ≤ Mt, is a

Vandermonde matrix [15] and its kth column, denoted by
qk
εm

, has the form

qk
εm
= [1, e j2π(εm+k)/N , e j2π(εm+k)2/N , . . . , e j2π(εm+k)(N−1)/N]T .

(18)
As Pm defined in (5) is just a selection matrix, according
to its property shown by (6), it is obvious that the kth
column of V, denoted by vk, is just the kth column of the
matrix N

1
2Ωεmk

FHN . Here we assume that the kth subcarrier
is used by mkth transmit antenna for 0 ≤ k ≤ N − 1 and
1 ≤ mk ≤ Mt. Therefore, we have

vk = qk
εmk
= [1, e j2π(εmk+k)/N , . . . , e j2π(εmk+k)(N−1)/N]T . (19)

It is clear that V is also a Vandermonde matrix. Thus the
determinant of V is calculated by

det(V) =
∏

0≤i<l≤N−1

(
e j2π(εml+l)/N − e j2π(εmi+i)/N

)
=

∏
0≤i<l≤N−1

e j2π(εmi+i)/N
(
e j2π(l−i+εml−εmi )/N − 1

)
.

(20)

From (20), it is noted that det(V) = 0 if and only if we can
find a pair of integers i and l such that e j2π(l−i+εml−εmi )/N −
1 = 0 for 0 ≤ i < l ≤ N −1. Since 2π(l− i+εml −εmi )/N =
2tπ⇔ εml − εmi = tN + i − l for t is an integer, finally we
get

det(V) = 0⇔ εml − εmi = tN + i − l, (21)

where 0 ≤ i < l ≤ N − 1 and all of t, i and l are integers.
We now have the following theorem.

Theorem 1: If the absolute values of normalized CFOs
εm, 1 ≤ m ≤ Mt, are all less than 0.5, then the diversity
order of the SF codes described in Section III is the same
as the case without CFOs.

Proof: If |εm| < 0.5 for all m, we can get −1 <
εml − εmi < 1. On the other hand, from 0 ≤ i < l ≤ N − 1,
we have 1−N ≤ i− l ≤ −1. Thus, for (21) it is found that
εml −εmi can only be integers except the points which are
integer multiple of N. So if |εm| < 0.5 for all m, condition
(21) cannot be satisfied and det(V) , 0, which implies that
the matrix Ub has full rank and therefore the equality in
(16) holds. This means that the achieved diversity is not
affected by CFOs.

C. A Counterexample when εmax ≥ 0.5

On the other hand, if εMax ≥ 0.5, the maximum
achieved diversity order of the SF codes may be less than
MtΓ, although Lm ≥ Γ for 1 ≤ m ≤ Mt. Here εMax is the
maximum value of |εm| for 1 ≤ m ≤ Mt. The following is
a counterexample corresponding to εml − εmi = −1 which
is possible if εMax ≥ 0.5.

We define some additional notations. Denote the Xp,
1 ≤ p ≤ P, as an MtΓ × MtL submatrix of X which
contains all the rows of X in (14) related to Gp given by
(3). According to the structure of X, Xp is just the (p−1)th
MtΓ×MtL submatrix of X. Due to the rows of X contained
by Xp, we also define V̄p, 1 ≤ p ≤ P, as the (p − 1)th
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N×MtΓ submatrix of V and P̄b
p, 1 ≤ p ≤ P, as the (p−1)th

main diagonal MtΓ×MtΓ matrix of Pb, respectively. Then
according to block matrix multiplication, we have

VPbX =
P∑

p=1

V̄pP̄b
pXp. (22)

Suppose that C and Ĉ are two distinct SF code matrices
which are constructed from G1, . . ., GP and Ĝ1, . . ., ĜP,
respectively. Without loss of generality, we can consider
the case that Gp = Ĝp for p > 1. Then the related
difference matrices ∆Xp = Xp − X̂p are all zero matrices
for 2 ≤ p ≤ P. So substituting this fact into (22), we have
VPb(X − X̂) = V̄1P̄b

1∆X1.
From (2) and (5), we obtain mk = ⌊k/Γ⌋+1 for 0 ≤ k ≤

MtΓ − 1. Thus according to (19), V̄1 has the form

V̄1 = [q0
ε1
, . . . ,qΓ−1

ε1
,qΓε2
, . . . , q2Γ−1

ε2
, . . . , q(m†−1)Γ

εm†
, . . . ,

qm†Γ−1
εm†

,qm†Γ
εm†+1
, . . . ,q(m†+1)Γ−1

εm†+1
, . . . , q(Mt−1)Γ

εMt
, . . . ,

qMtΓ−1
εMt

], (23)

where 1 ≤ m† ≤ Mt − 1. If εMax ≥ 0.5, it is possible
that εmm†Γ

− εm(m†Γ−1)
= εm†+1 − εm† = −1. Therefore

condition (21) is satisfied corresponding to the case that
l = i + 1 and t = 0. As a consequence, V is no
longer a nonsingular matrix. Actually, from (19), we have
v(m†Γ−1) = qm†Γ−1

εm†
= vm†Γ = qm†Γ

εm†+1
. As v(m†Γ−1) and vm†Γ are

also two consecutive columns of V̄1 in (23), V̄1 is not of
full column rank MtΓ. For example, the structure of V for
Mt = 2, N = 8 and Γ = 2 is given by (24) at the top of
next page. By substituting ε2 = ε1 − 1 into (24), we can
clearly see that in this case both V̄1, which contains the
first 4 columns of V , and V̄2, which contains the last 4
columns of V, have no full column rank 4. Therefore for
the considered pair of distinct SF code matrices, we have

rank
(
Ub(X − X̂)Λ(X − X̂)HUbH

)
≤ rank

(
Ub(X − X̂)

)
= rank

(
FNV̄1P̄b

1∆X1

)
≤ rank

(
V̄1

)
< MtΓ. (26)

This implies that diversity order MtΓ cannot be achieved.

D. Diversity Analysis with the ZF-ML Detection Method

In the above analysis, by treating the ICI terms due to
CFOs as a part of an SF code matrix, we find that the
achieved diversity order of the SF codes is not decreased
by CFOs under the condition that the absolute values
of normalized CFOs are less than 0.5. This property
is based on the ML decoding where it is required to
jointly consider all the N subcarriers when decoding the
the new (virtual) code after absorbing the CFOs/ICI into
the original SF code. Given a not so small N (true in
practice), the ML decoding complexity will be high even
for efficient ML detection methods such as the sphere
decoding method. We next consider the SF coded system

after we equalize the ICI caused by the CFOs using the
ZF method, i.e., the two-stage ZF aided ML (ZF-ML)
method. The ZF-ML method is described as follows.

Let us recall the signal model (15). As we have ana-
lyzed that if εMax < 0.5, the ICI matrix Ub is nonsingular.
Under this condition we can equalize the ICI matrix Ub

by the ZF method. Thus, after multiplying zb by Ub−1,
we obtain the ICI free signal model

z̃b = Ub−1zb =

√
ρ

Mt
Xh + w̃, (27)

where w̃ = Ub−1w. Then define the (p − 1)th, 1 ≤ p ≤ P,
MtΓ × 1 subvector of z̃b as z̃b

p and each z̃b
p is given by

z̃b
p =

√
ρ

Mt
Xph + w̃p, (28)

where Xp is defined in Section IV-C, w̃p = Ûb
pw is the

(p − 1)th MtΓ × 1 subvector of w̃ and Ûb
p is the (p − 1)th

MtΓ × N submatrix of Ub−1. Thus the covariance matrix
of the new noise w̃p is given by Tb,p = E

[
w̃pw̃Hp

]
=

Ûb
p

(
Ûb

p

)H
. As Ûb

p has full row rank MtΓ, it is clear that
Tb,p is nonsingular. So for the signal model (28), if we
decode the SF submatrix Gp by the ML criterion, the
achieved diversity order is still equal to the minimum rank
of the matrix (Xp − X̂p)Λ(Xp − X̂p)H for any distinct Gp

and Ĝp. Now, we are in a position to state the following
theorem.

Theorem 2: For the SF code described in Section III, if
the absolute values of normalized CFOs εm, 1 ≤ m ≤ Mt,
are all less than 0.5, then the ZF-ML detection method can
still achieve the same diversity order as the case without
CFOs.

Proof: It directly follows from the above argument.

V. FULL DIVERSITY BY PERMUTATIONS

We have seen that if εMax < 0.5, the diversity order of
the SF codes C is the same as the case without CFOs.
On the other hand, if εMax ≥ 0.5, it is possible that the
ICI matrix Ub is singular and then full diversity may not
be achieved. Note that in (16) the singularity of Ub may
not necessarily lead to the inequality if the rank of Ub is
not smaller than the rank of (X − X̂)Λ(X − X̂)H . Hence
during the analysis of the counterexample for Theorem 1
in Section IV-C, we need to show that in (22) a submatrix
of V, i.e, V̄1, has no full column rank MtΓ when V is
singular. On the other hand, from the expression of V in
(17), we know that the matrix V depends on the selection
matrix Pm for 1 ≤ m ≤ Mt, which can be changed
by permuting the SF code matrix C. This motivates us
that the full diversity property of the SF codes may be
enhanced by a permutation (interleaving) method. We
explore this possibility in this section and propose a
permutation method to guarantee full diversity even when
Ub is singular. Throughout this section, the superscript (·)′
of a matrix or vector means that the matrix or vector is
defined for the permuted SF code C′ as a counterpart of
it defined for C in Section IV.
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V =


1 1 1 1 1 1 1 1

e
j2πε1

8 e
j2π(ε1+1)

8 e
j2π(ε2+2)

8 e
j2π(ε2+3)

8 e
j2π(ε1+4)

8 e
j2π(ε1+5)

8 e
j2π(ε2+6)

8 e
j2π(ε2+7)

8

...
...

...
...

...
...

...
...

e
j2πε17

8 e
j2π(ε1+1)7

8 e
j2π(ε2+2)7

8 e
j2π(ε2+3)7

8 e
j2π(ε1+4)7

8 e
j2π(ε1+5)7

8 e
j2π(ε2+6)7

8 e
j2π(ε2+7)7

8

 (24)

V′ =


1 1 1 1 1 1 1 1

e
j2πε1

8 e
j2π(ε1+1)

8 e
j2π(ε1+2)

8 e
j2π(ε1+3)

8 e
j2π(ε2+4)

8 e
j2π(ε2+5)

8 e
j2π(ε2+6)

8 e
j2π(ε2+7)

8

...
...

...
...

...
...

...
...

e
j2πε17

8 e
j2π(ε1+1)7

8 e
j2π(ε1+2)7

8 e
j2π(ε1+3)7

8 e
j2π(ε2+4)7

8 e
j2π(ε2+5)7

8 e
j2π(ε2+6)7

8 e
j2π(ε2+7)7

8

 (25)

A. Proposed Permutation Method

At the transmitter, we re-arrange the SF code C con-
structed by (2)-(3) by some row permutations and denote
this row-wisely permuted SF code by C′, which is given
by

C′ =
√

Mtdiag([x1
1
T
, x2

1
T
, · · · , xP

1
T ]T ,

[x1
2
T
, x2

2
T
, · · · , xP

2
T ]T ,

· · · , [x1
Mt

T
, x2

Mt

T
, · · · , xP

Mt

T ]T ), (29)

where xp
m is defined in (3). From (29), we can see that after

row permutations, the nonzero entries of the (m − 1)th,
1 ≤ m ≤ Mt, column of C are grouped and the subcarriers
from PΓ(m − 1) to PΓm − 1 are used by the mth transmit
antenna. We call these subcarriers the mth group. Similar
to the definition of matrix Pm defined in (5), for C′ we also
define the diagonal selection matrix P′m for 1 ≤ m ≤ Mt,
corresponding to the (m−1)th column of C′ with the form

P′m(l, l′) =
{

1, if l = l′ and (m − 1)PΓ ≤ l ≤ mPΓ − 1
0, else ,

(30)
for 0 ≤ l, l′ ≤ N − 1. Different from Pm in (5), due to
the permutation, the nonzero diagonal entries of P′m are
grouped as well as the nonzero entries of (m−1)th column
of C′.

In [11], it has been shown that the diversity order
and coding advantage of this family of SF codes only
depend on the relative positions of the permuted rows
corresponding to the entries of xp

m in (3) with respect to
the position of xp

(m−1)Γ+1. As we do not change the relative
positions for the entries of xp

m for each pair of m and
p, C′ should have the same diversity order and coding
advantage as those of C.

B. Receive Signal Model with Permutation

When applying C′ to the cooperative protocol described
in Section II-A, analogous to the derivation of (15), we
can get the following SF coded receive signal model:

z′b =
√
ρ

Mt
U′bX′h + w, (31)

where X′ = [J0 ⊙ C′, · · · , JL−1 ⊙ C′], U′b =∑Mt
m=1 e jθbεm Uεm P′m. Then U′b can be further rewritten as

U′b = N−
1
2 FNV′P′b, (32)

where V′ = N
1
2
∑Mt

m=1Ωεm FHN P′m and the diagonal unitary
matrix P′b is given by P′b =

∑Mt
m=1 e jθbεm P′m. Considering

the expressions of Ωεm in (8) and P′m defined in (30), we
can derive that the kth, 0 ≤ k ≤ N − 1, column of V′
(denoted by v′k) is the kth column of N

1
2Ωεmk

FHN and has
the same expression as that of vk by

v′k = qk
εmk
= [1, e j2π(εmk+k)/N , · · · , e j2π(εmk+k)(N−1)/N]T . (33)

Here mk still denotes the kth subcarrier used by the mkth
transmit antenna. For C′, mk is different from that of C
and is given by

mk = ⌈(k + 1)/(PΓ)⌉ for 0 ≤ k ≤ N − 1. (34)

Following the way from (19) to (20), we can see that V′
is also a Vandermonde matrix. Then the sufficient and
necessary condition for V′ to be singular is given by

det(V′) = 0⇔ ∃ i, l, k that εml−εmi = tN+i−l⇔ v′i = v′l,
(35)

for 0 ≤ i < l ≤ N − 1 and t, l and i are all integers.

C. Motivation of Proposed Permutation Method

Due to the proposed permutation method, the selection
matrix P′m in (30) is different from Pm in (5) defined for
C, which leads to the difference between V and V′. From
(5), (17) and (19), V has the form as (36) at the top of
next page. Clearly, all the columns of V are divided into
PMt groups and the lth, 1 ≤ l ≤ PMt, group is just the
(l− 1)th N ×Γ submatrix of N

1
2Ωε(l−1)Mt +1 FHN . On the other

hand, from (30), (32) and (33), V′ has the form as (37)
where due to the permutation, all of its N columns are
divided into Mt big groups and the lth, 1 ≤ l ≤ Mt, group
is just the (l − 1)th N × PΓ submatrix of N

1
2Ωεl FHN .

Similar to the definition of Xp, V̄p and P̄b
p in (22), for

the permuted SF code C′, we also define X′p, V̄′p and P̄′bp
for 1 ≤ p ≤ P. X′p is an MtΓ × MtL submatrix of X′ in
(31) and contains all the rows of X′ related to Gp given
by (3). V̄′p contains MtΓ columns of V′ whose column
indexes are equal to the row indexes of the rows of X′
contained by X′p. From (29) and the expression of X′, it
is easy to see that the (m− 1)th N × Γ submatrix of V̄′p is
just the (p− 1)th N ×Γ submatrix of the mth group of V′
in (37). For example, V̄′1 has the form as (38) at the top
of next page. P̄b

p is an MtΓ × MtΓ diagonal matrix which
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V = [q0
ε1
, · · · ,qΓ−1

ε1︸          ︷︷          ︸
1st Γ columns

,qΓε2
, · · · ,q2Γ−1

ε2︸           ︷︷           ︸
2nd Γ columns

, · · · , q(Mt−1)Γ
εMt

, · · · ,qMtΓ−1
εMt︸                   ︷︷                   ︸

Mt th Γ columns

,qMtΓ
ε1
, · · · ,q(Mt+1)Γ−1

ε1︸                   ︷︷                   ︸
(Mt+1)th Γ columns

, · · · ,q(PMt−1)Γ
εMt

, · · · ,qPMtΓ−1
εMt︸                      ︷︷                      ︸

PMt th Γ columns

] (36)

V′ = [q0
ε1
,q1
ε1
, · · · ,qPΓ−1

ε1︸                 ︷︷                 ︸
1st PΓ columns

, · · · ,q(m†−1)PΓ
εm†

, · · · ,qm†PΓ−1
εm†︸                      ︷︷                      ︸

m†th PΓ columns

,qm†PΓ
ε(m†+1)
, · · · ,q(m†+1)PΓ−1

ε(m†+1)︸                       ︷︷                       ︸
(m†+1)th PΓ columns

, · · · ,q(Mt−1)PΓ
εMt

, · · · ,qMt PΓ−1
εMt︸                      ︷︷                      ︸

Mt th PΓ columns

] (37)

V̄′1 = [q0
ε1
, · · · ,qΓ−1

ε1︸          ︷︷          ︸
1st Γ columns

, · · · ,q(m†−1)PΓ
εm†

, · · · ,q(m†−1)PΓ+Γ−1
εm†︸                             ︷︷                             ︸

m†th Γ columns

,qm†PΓ
εm†+1
, · · · ,qm†PΓ+Γ−1

εm†+1︸                     ︷︷                     ︸
(m†+1)th Γ columns

, · · · ,q(Mt−1)PΓ
εMt

, · · · ,q(Mt−1)PΓ+Γ−1
εMt

]︸                               ︷︷                               ︸
Mt th Γ columns

(38)

contains MtΓ diagonal entries of Pb′ corresponding to the
rows of X′ contained by X′p. As a consequence, we have

V′Pb′X′ =
P∑

p=1

V̄′pP̄′bpX′p. (39)

Let us recall the counter example illustrated in Section
IV-C. For C′, we also consider the case that Gp = Ĝp for
2 ≤ p ≤ P and εm†+1−εm† = −1. In this case the achieved
diversity order of C′ is upper bounded by the rank of
V̄′1. Therefore, if V̄′1 does not have full column rank MtΓ,
full diversity cannot be achieved. However, different from
V̄1 in this case, although V′ is singular, V̄′1 still has full
column rank MtΓ. By checking (35), we can see that when
εm†+1 − εm† = −1, in (37) the first column of (m† + 1)th
group of V′ , i.e., qm†PΓ

εm†+1
is equal to the last column of

m†th group of V′ , i.e., qm†PΓ−1
εm†

. Hence V′ is singular.
However, due to the permutation, V̄′1 does not contain
the column qm†PΓ−1

εm†
as shown in (38). Therefore, V̄′1 still

has full column rank. Corresponding to (24), we also give
the structure of V′ for Mt = 2, N = 8 and Γ = 2 as (25) at
the top of previous page. By substituting ε2 = ε1 − 1 into
(25), we can clearly see that although V′ is singular, both
V̄′1, which contains 0th, 1st, 4th, and 5th columns of V′,
and V̄′2, which contains 2nd 3rd, 6th, and 7th columns of
V′, still have full column rank 4. Therefore the counter
example illustrated in Section IV-C does not hold for C′.

The above discussions only show us the possibility
that the permuted SF codes C′ may still achieve full
diversity even when the ICI matrix is singular, since
rank(V̄′p) = MtΓ for 1 ≤ p ≤ P is not sufficient
to derive rank(

∑P
p=1 V̄′pP̄′bpX′p) = MtΓ. Fortunately, by

utilizing the properties of V′ and C′, we find a sufficient
condition under which the permuted SF codes can obtain
full diversity even when the ICI matrix U′b is singular.

D. Properties of V′ When |εm| < (P−1)Γ+1
2

Before illustrating our major result, let us first see some
properties of V′ when |εm| < (P−1)Γ+1

2 and P ≥ 2, which
will be utilized in the remainder of this section. Here, we
define some additional notations. Define the (m − 1)th,
1 ≤ m ≤ Mt, N × PΓ submatrix of V′ as V′m, i.e.,
V′ = [V′1,V

′
2, · · · ,V′Mt

]. The (p − 1)th, 1 ≤ p ≤ P,
N × Γ submatrix of V′m is further denoted by V′pm, i.e.,
V′m = [V′1m,V′

2
m, · · · ,V′Pm].

To derive the properties of V′, we need to utilize the
following proposition, the proof of which can be found
in Appendix A.

Proposition 1: For the matrix V′ defined in (32), pro-
vided |εm| < (P−1)Γ+1

2 for 1 ≤ m ≤ Mt and P > 1, V′ is
singular if and only if there exist at least a pair of integers
i and l for 0 ≤ i < l ≤ N − 1 and mi , ml that satisfy
either one of the following two cases:
• Case 1: εml−εmi = i−l for εml−εmi ∈ {−(P−1)Γ,−(P−

1)Γ + 1, · · · ,−1} and ml − mi = 1.
• Case 2: εml − εmi = N + i − l for εml − εmi ∈
{1, 2, · · · , (P − 1)Γ}, mi = 1 and ml = Mt.

In both of these two cases, v′i = v′l . Here, εm is the
normalized CFO, mk denotes kth, 0 ≤ k ≤ N−1, subcarrier
is used by mkth transmit antenna and v′k is the kth column
of V′.

As all the columns of Vm, 1 ≤ m ≤ Mt, are related to
εm, according to Proposition 1, some columns of Vm may
be repeated in V′(m)Mt+1 or V′(m−2)Mt+1. So we can define a
set Bm for V′m as

Bm = {tm,1, tm,2, · · · , tm,Tm } for tm,1 < tm,2 < · · · < tm,Tm ,
(40)

where Tm = |Bm|, so that Bm contains all the indices of
the columns of V′ which belong to V′m and are equal to
some columns of V′(m)Mt+1. Thus, if Bm is not null, the
columns v′tm,l for 1 ≤ l ≤ Tm, which are contained by V′m,
are repeated in V′(m)Mt+1. Similarly, we also define a set
B̄m containing all of the indices of the columns of V′
which belong to V′m and are repeated in V′(m−2)Mt+1. B̄m is
given by

B̄m = {t̄m,1, t̄m,2, · · · , t̄m,T̄m
} for t̄m,1 < t̄m,2 < · · · < t̄m,T̄m

,
(41)

where T̄m = |B̄m|. We further define a function fm(t) for
t ∈ Bm, which is used to calculate the index of the column
of V′ contained by V′(m)Mt+1 so that v′t = v′fm(t). According
to Proposition 1, fm(t) has the following form

fm(t) =
{

t − εm+1 + εm for 1 ≤ m ≤ Mt − 1
t − N + εMt − ε1 for m = Mt

.

(42)
Thus B̄m is the image of B(m−2)Mt+1 under the injective
function f(m−2)Mt+1, when B(m−2)Mt+1 is not null.

As an example, Fig. 2 shows a part of the structure of
V′ when Bm is not null, where each pair of equal columns
are connected by a line. To gain an insight into V′, from

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2010 323

© 2010 ACADEMY PUBLISHER



,',,',,',,',',',,',',,',,','
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'Vm 'V 1m

Fig. 2. Structure of V′ when Bm† is not null.

Proposition 1, we can obtain the following Properties of
V′ in (32), when P ≥ 1 and Bm or B̄m is not null.

1) mPΓ − (P − 1)Γ ≤ tm,1
2) fm(tm,1) = (m)Mt PΓ, which means that v′tm,1 is equal

to the first column of V′(m)Mt
.

3) Bm has the form Bm = {tm,1, tm,1 + 1, · · · ,mPΓ − 1}.
4) t̄m,T̄m

≤ mPΓ − Γ − 1.
5) B̄m has the form

B̄m = {(m − 1)PΓ, (m − 1)PΓ + 1, · · · ,
(m − 1)PΓ + T̄m − 1}

= { fm† (tm†,1), fm† (tm†,2), · · · , fm† (tm†,Tm†
)},
(43)

where m† = (m − 2)Mt + 1.
6) If both B̄m and Bm are not null sets, we must have

tm,1 − t̄m,T̄m
≥ Γ + 1.

From Property 6 of V′, we know that the inter-
section of B̄m and Bm is always a null set, which
implies that in V′ we cannot find more than two
equal columns. Otherwise, there must exist m so
that B̄m∩Bm , ϕ, which is contradictory to Property
6 of V′.

7) There must exist m† so that Bm† = ϕ.
8) There must exist m† so that B̄m† = ϕ

The proofs of these properties can be found in Appendix
A.

E. Diversity Analysis of Permuted SF Codes

The sufficient condition, under which multiple CFOs do
not affect the diversity order of the permuted SF Codes
C′, is given by the following theorem:

Theorem 3: Let εm be the normalized CFO. If |εm| are
all less than (P−1)Γ+1

2 for 1 ≤ m ≤ Mt and P is larger than
1 , the permuted SF code described in (29) can achieve
the same diversity order as the case without CFOs.

Property of SF Codes: To prove Theorem 3, besides
the properties of V′ derived in Section V-D, we need to
utilize one property of the SF code as shown below.

From (13), we know that the (m − 1)th, 1 ≤ m ≤ Mt,
column of Jl ⊙ C′ for 0 ≤ l ≤ L − 1 is fτm(l) ⊙ c′m, where
c′m is the (m − 1)th column of C′ in (29). Define yp

m,l =√
Mt

(
fτm(l)
(m−1)P+p−1 ⊙ xp

m

)
, where fτm(l)

k , 0 ≤ k ≤ MtP − 1,
denotes kth Γ×1 subvector of fτm(l). Then we can express
Jl ⊙ C′ as (44) at the top of next page. Observing (44),
we can see that for the (m − 1)th, 1 ≤ m ≤ Mt, PΓ ×
Mt submatrix of Jl ⊙ C′, only its (m − 1)th column, i.e.,
[y1

m,l
T
, · · · , yP

m,l
T ]T , has nonzero entries. For each m, by

collecting all these nonzero PΓ× 1 columns from Jl ⊙C′

for 0 ≤ l ≤ L − 1, we define the PΓ × L matrix Ym,
1 ≤ m ≤ Mt, by

Ym =


y1

m,0 y1
m,1 · · · y1

m,L−1
y2

m,0 y2
m,1 · · · y2

m,L−1
...

...
. . .

...
yP

m,0 yP
m,1 · · · yP

m,L−1

 , (45)

and denote the (p−1)th, 1 ≤ p ≤ P, Γ×L submatrix of Ym

by Yp
m. Further define Ȳm and Ȳp

m as submatrices of Ym

and Yp
m, which contain the first min(Γ, Lm) columns of Ym

and Yp
m, respectively. Let ∆Ȳm be the difference matrix

between Ȳm and ˆ̄Ym which are constructed from C′ and Ĉ′
according to (45), respectively. Then one property of this
SF code [11] can be stated in the following proposition.

Proposition 2: If Gp0 , Ĝp0 with 1 ≤ p0 ≤ P, the
difference matrix ∆Ȳp0

m has full column rank min(Γ, Lm).
Proof: It directly comes from the full diversity prop-

erty of this family of SF codes [2], [11].
From the properties of V′ and SF codes, we can obtain

the following lemma:
Lemma 1: For integers n1, n2 with 0 ≤ n1 < n2 ≤ Mt

and min(Γ, Lm)×1 vectors am, if either n2 ≥ n1+2 or B̄n2 =

ϕ where B̄n2 is defined in (41), then
∑n1

m=1 V′m∆Ȳmam +∑Mt
m=n2

V′m∆Ȳmam = 0N , only if an2 = 0min(Γ,Ln2 ) where the
difference matrices ∆Ȳm, 1 ≤ m ≤ Mt, are obtained from
two distinct SF code matrices according to (45) and the
definition of Ȳm. Here

∑n1
m=1 V′m∆Ȳmam+

∑Mt
m=n2

V′m∆Ȳmam

turns to
∑Mt

m=n2
V′m∆Ȳmam when n1 = 0.

Proof: See Appendix B.
With the aid of Lemma 1, we can prove Theorem 3 as

follows:
Proof of Theorem 3: From (16), we know that CFOs

cannot increase diversity order of SF codes. Hence to
prove Theorem 3, it is sufficient to show that there
exist

∑Mt
m=1 min(Γ, Lm) linearly independent columns of

U′b∆X′Λ 1
2 over all pairs of distinct SF code matrices C′

and Ĉ′ given εMax <
(P−1)Γ+1

2 , where ∆X′ = X′ − X̂′
in (31), εMax = max1≤m≤Mt (|εm|) and Λ = E[hhH ].
Obviously, if U′b is nonsingular, Theorem 3 holds simi-
larly to Theorem 1. Therefore, we only need to consider
the case when U′b is singular. Furthermore, because of
U′ = N−

1
2 FNV′P′b in (32), we have rank(U′∆X′Λ 1

2 ) =
rank(V′P′b∆X′Λ 1

2 ), since the normalized FFT matrix FN

is nonsingular. Hence, it is equivalent to prove that
V′P′b∆X′Λ 1

2 has
∑Mt

m=1 min(Γ, Lm) linearly independent
columns. Note as P′b is a diagonal matrix with full
rank N, if we regard P′bX′ as X′, we can still get the
Proposition 2. To simplify the notation, we just set P′b as
an identity matrix.

Due to the definition of Ȳm and the fact that for X′
in (31), each Jl ⊙ C′ given by (44) is a block diagonal
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Jl ⊙ C′ =


y1

1,l
T · · · yP

1,l
T 0T

Γ
· · · 0T

Γ
· · · 0T

Γ
· · · 0T

Γ

0T
Γ

· · · 0T
Γ

y1
2,l
T · · · yP

2,l
T · · · 0T

Γ
· · · 0T

Γ

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0T
Γ

· · · 0T
Γ

0T
Γ

· · · 0T
Γ

· · · y1
Mt ,l
T · · · yP

Mt ,l
T



T

(44)

matrix, V′m multiplying the lth column of Ȳm, 0 ≤ l ≤
min(Γ, Lm)−1, is just the (lMt+m−1)th column of V′X′.
From the definition of the channel vector h in Section
IV-A, the (lMt+m−1)th diagonal entry of Λ is nonzero for
0 ≤ l ≤ Lm−1. Hence the (lMt+m−1)th column of V′X′Λ 1

2

is only a scaled version of the (lMt +m − 1)th column of
V′X′. As a consequence, in order to prove Theorem 3, it
is sufficient to show that the

∑Mt
m=1 min(Γ, Lm) columns of

[V′1∆Ȳ1,V′2∆Ȳ2, · · · ,V′Mt
∆ȲMt ] are linearly independent.

Let am be an min(Γ, Lm)×1 vector. In order to achieve our
goal, we only need to show that

∑Mt
m=1 V′m∆Ȳmam = 0N ,

only if am = 0min(Γ,Lm) for 1 ≤ m ≤ Mt.
From Property 8 of V′, we know that there exists an in-

teger m† with 1 ≤ m† ≤ Mt, so that B̄m† = ϕ. Without loss
of generality, we assume B̄1 = ϕ. According to Lemma
1, we have

∑Mt
m=1 V′m∆Ȳmam = 0N , only if a1 = 0min(Γ,L1).

As
∑Mt

m=1 V′m∆Ȳmam = 0N holds, only if a1 = 0min(Γ,L1), we
can substitute a1 = 0min(Γ,L1) into

∑Mt
m=1 V′m∆Ȳmam = 0N

and then obtain
∑Mt

m=2 V′m∆Ȳmam = 0N , which corresponds
to the case of n1 = 0 and n2 = 2 in Lemma 1. By applying
Lemma 1 once more, we show that

∑Mt
m=2 V′m∆Ȳmam = 0N ,

only if a2 = 0min(Γ,L2).
Actually, for each m with 2 ≤ m ≤ Mt, by substituting

an = 0min(Γ,Ln) for 1 ≤ n ≤ m− 1 into
∑Mt

m=1 V′m∆Ȳmam and
then applying Lemma 1, we can obtain am = 0min(Γ,Lm).
So by repeating this strategy for additional Mt − 2 times,
we finally get that if C′ , Ĉ′ and εMax <

(P−1)Γ+1
2 , then∑Mt

m=1 V′m∆Ȳmam = 0N , only if am = 0min(Γ,Lm) for 1 ≤ m ≤
Mt in turn. This implies the desired result.

On the other hand, by following the similar strategy
used in Section IV-C, it can be shown that if εmax ≥
(P−1)Γ+1

2 , the maximum achieved diversity order of SF
codes may be less than MtΓ, although Lm ≥ Γ for
1 ≤ m ≤ Mt.

F. Signal Detection when the ICI Matrix U′ is Singular

In Section V-E, we show that the permuted SF codes C′
can achieve full diversity even when the ICI matrix U′ is
singular. This property is based on the joint consideration
of all the N subcarriers. However, in this case the ZF-
ML detection method cannot be directly applied to reduce
the decoding complexity. To overcome this problem, we
propose two suboptimal detection methods, namely ZF-
ML-Zn and ZF-ML-PIC, both of which can achieve the
same diversity order as the case without CFOs even when
U′ is singular.

1) ZF-ML-Zn Method:
From Property 3 and Property 5 of V′, we know that

if V′ is singular, there must exist an integer m̃ with

1 ≤ m̃ ≤ Mt so that v′t̄m̃,k = v′tm† ,k for 1 ≤ k ≤ T̄m† , where
m† = (m̃ − 2)Mt + 1, t̄m̃,k and tm†,k are defined in (41)
and (40), respectively. As v′t̄m̃,k and v′tm† ,k are respectively
the left and right boundary columns of V′m̃ and V′m† , to
make the ZF-ML method still applicable, we may not
use the last n subcarriers of each group at the cost of
some efficiency loss. We denote this detection method as
the ZF-ML-Zn method, where n is the number of unused
subcarriers of each group. So, total Mtn subcarriers are
not used. Fig. 3 illustrates the structure of V′ for the ZF-

...

Related to 

...

columnsst1 P

...

Related to n

 unused 

subcarriers

... ...

Related to 

...

columnsth P

...

Related to n

 unused 

subcarriers

...

Related to 

...

columnsth P

...

Related to n

 unused 

subcarriers

...V'

Fig. 3. Structure of V′ for the ZF-ML-Zn method when T̄m̃ = n

ML-Zn method when T̄m̃ = n, where the equal columns
are connected by lines. In the figure, the last n marked
squares in each group stands for the columns related to
unused subcarriers. Therefore, if T̄m̃ ≤ n, all the N −Mtn
active columns of V′, i.e., the columns related to used
subcarriers, are still linearly independent. Accordingly,
the ZF-ML method can be directly used. For this method,
we have the following theorem:

Theorem 4: Let εm be the normalized CFO. If |εm|, 1 ≤
m ≤ Mt, are all less than n+1

2 , for the permuted SF codes
described in (29), the ZF-ML-Zn detection method can
still achieve the same diversity order as the case without
CFOs.

Proof: Similar to the derivation of Property 1 of V′
under the condition |εm| < (P−1)Γ+1

2 , provided |εm| < n+1
2 ,

we can get that mPΓ − n ≤ tm,1 for 1 ≤ m ≤ Mt. From
tm,Tm = mPΓ − 1 (Property 3 of V′), we can get Tm =

tm,Tm − tm,1 + 1 ≤ n for 1 ≤ m ≤ Mt. Therefore, just as the
example illustrated in Fig. 3, the ZF-ML detection method
can be directly used to achieve the same diversity order
as the case without CFOs.

2) ZF-ML-PIC Detection Method:
To describe the ZF-ML-PIC method, by substituting

(32) and (39) into (31), we rewrite z′b as

z′b =
√
ρ

Mt
N−

1
2 FN

P∑
p=1

V̄′pP̄′bpX′ph + w. (46)

We then define a set P̄ which contains all the indices p
with 1 ≤ p ≤ P so that the columns of V̄′p are unique in
V′, i.e., Bp = B̄p = ϕ. When P̄ is not null, the ZF-ML-
PIC method is described as follows:
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1) Decode total |P̄| SF submatrices Gp for p ∈ P̄ by
the ZF-ML method.
Note that because V′ is a Vandermonde matrix, all
the distinct columns of V′ are linearly independent.
So it is not hard to see that we can get ICI free
signal models for Gp with p ∈ P̄ by multiplying
z′b by the pseudo-inverse of the matrix N−

1
2 FNV̂′,

where V̂′ contains all the distinct columns of V′.
2) Jointly decode the rest P − |P̄| SF submatrices by

first canceling all of the power from z′b in (46),
which comes from decoded Gp for p ∈ P̄.

Examining the ZF-ML-PIC method, we can see that
when U′b is singular, only (P − |P̄|) SF submatrices need
to be jointly decoded. So when |P̄| is larger, the ZF-ML-
PIC method has much lower computational complexity
than that of jointly decoding Gp for 1 ≤ p ≤ P. For the
ZF-ML-PIC method, we have the following theorem.

Theorem 5: When P̄ is not null, for the permuted SF
code C′ described by (29), the ZF-ML-PIC detection
method can still achieve the same diversity order as the
case without CFOs.

Proof: Assume that without CFOs C′ can achieve
diversity order d. According to Theorem 2, we can
express the SER/BER of decoding Gp for p ∈ P̄ as
Pa =

1
c1

SNR−d, where c1 is the coding gain. Then define
two Bernoulli random variables Ia and Ib with probability
mass functions given by

Ia =


0, if bits/symbols in Gp, p ∈ P̄ are not all

correctly decoded
1, otherwise

,

(47)
and

Ib =


0, if bits/symbols in Gp, p < P̄, are not all

correctly decoded
1, otherwise

,

(48)
respectively. Denoting Pb as the BER/SER for decoding
Gp for p < P̄, we can express Pb as

Pb = P{Ib = 0|Ia = 1}(1 − P{Ia = 0})
+P{Ib = 0|Ia = 0}P{Ia = 0}. (49)

In (49), P{Ib = 0|Ia = 1} is the BER/SER for jointly
decoding Gp for p < P̄ in the case that Gp, p ∈ P̄, are
all correctly decoded. From Theorem 3, we know that in
this case jointly decoding Gp for p < P̄ can still achieve
diversity order d. Thus P{Ib = 0|Ia = 1} can be expressed
by 1

c2
SNR−d, where c2 is the coding gain. From the

definition of Ia, we also get P{Ia = 0} = Pa =
1
c1

SNR−d.
Substituting the expressions of P{Ib = 0|Ia = 1} and
P{Ia = 0} into (49), we obtain

Pb =
1
c2

SNR−d − 1
c1c2

SNR−2d

+P{Ib = 0|Ia = 0} 1
c1

SNR−d

< (
1
c1
+

1
c2

)SNR−d, (50)

where we have utilized the fact P{Ib = 0|Ia = 0} ≤ 1. From
(50), we see that the ZF-ML-PIC method can achieve the
same diversity order as the case without CFOs for each
Gp for 1 ≤ p ≤ P.

For C′ given by (29), both the ZF-ML-Zn and the ZF-
ML-PIC methods can achieve the same diversity order as
the case without CFOs and their computational complex-
ities are much reduced than jointly considering all the N
subcarriers. Compared to the ZF-ML-PIC method, the ZF-
ML-Zn approach has a lower computational complexity
at the cost of a bandwidth efficiency loss Mtn

N .

VI. SIMULATION RESULTS

In this section, we present some simulation results to
verify our analysis on the diversity order achieved by
the SF codes C and C′ with multiple CFOs. Firstly, an
Mt = 2 system with 8 OFDM subcarriers is simulated.
The bandwidth is 20 MHz and BPSK modulation is
employed. The channels from relays to the destination
node are frequency-selective with two equal power rays
[τm(0), τm(1)] = [0, 0.1]µs for 1 ≤ m ≤ Mt. We also
assume that the destination node has only one receive an-
tenna. For each channel realization, each εm is uniformly
selected from [−εMax, εMax]. The SF codes proposed in
[11] are applied. Coding parameter Γ is set as 2. Thus
without CFOs, diversity order 4 can be achieved.

Fig. 4 shows the SER performance of the non-permuted
SF codes C in the presence of multiple CFOs. We can
see that when εMax = 0.4, as diversity order 4 can still be
achieved, the same slope of SER curve as that of the case
without CFOs is observed. We also note that multiple
CFOs cause only a very small coding gain loss, since
as εMax is increased, some nonzero eigenvalues of the
difference matrix Ub(X−X̂)Λ(X−X̂)HUbH may approach
zero. When εMax = 0.8, as full diversity cannot always
be achieved for each realization of CFOs, the slope is
no longer parallel with the curve without CFOs at the
high SNR range. Finally, we simulated a special case,
i.e., ε1 = 0.6 and ε2 = −0.4. From the analysis in Section
IV-C, we know that for this special case full diversity
cannot be achieved. The simulation result confirms our
analysis. In Fig. 4, the slope of its SER curve is obvious
less than that of the SER curve without CFOs.

Fig. 5 shows the SER performance of the permuted SF
codes C′ in the presence of multiple CFOs. According
to Theorem 3, we know that for P = 2 and Γ = 2,
the achieved diversity order of C′ is not decreased when
εMax < 1.5. This is confirmed by the simulation results.
The SER curve in the case of εMax = 1.4 has the same
slope as that of the case without CFOs. Even in the special
case of ε1 = 0.6 and ε2 = −0.4, although the ICI matrix
U′ is singular, C′ still achieves the same slope of SER
curve as that of the case without CFOs. However, when
εMax = 1.9 and εMax = 2.1, the SER curves are no longer
parallel with that of the case without CFOs at the high
SNR range, since when εMax > 1.5 full diversity cannot
always be achieved for each realization of CFOs. Finally,
we simulated a special case, i.e., ε1 = 1.6 and ε2 = −1.4.
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By similar analysis as given in Section IV-C, it can be
shown that in this special case C′ cannot achieve full
diversity. The simulation result confirms our analysis. In
Fig.5, the slope of its SER curve is obviously less than
that of the SER curve without CFOs.

To investigate the SER performance of the two-stage
methods, we consider an Mt = 2 system with 64 subcar-
riers. The channels from relays to the destination node
are all frequency-selective fading with two equal power
rays and [τm(0), τm(1)] = [0, 0.5]µs for 1 ≤ m ≤ 2. The
data symbol is QPSK modulated. To achieve full diversity
order 4 we set Γ as 2. Fig.6 shows the simulation results.
We can see that with multiple CFOs as SNR increases,
the OFDM system will quickly suffer from an error floor
if we directly decode (referred to as DD) the SF codes
by only ignoring all the ICI terms due to CFOs. When
εMax = 0.2, for the ZF-ML method, the performance loss
is very small and the same slope of SER curve as that of
the case without CFOs is observed. As εMax is increased
from 0.2 to 0.4, the performance of the ZF-ML method is
degraded. Since εMax is still less than 0.5, from Theorem
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2, we see that when εMax = 0.4 the ZF-ML method can
still achieve full diversity. This is confirmed by simulation
results. Note that ML decoding of all the subcarriers
simultaneously is the optimal method to achieving full
diversity. However, when N is 64 and QPSK modulation
is employed, it leads to a great burden to the system even
for efficient ML detection methods such as the sphere
decoding method.

Finally, we consider the permuted SF code C′ in the
case of ε1 = 0.6 and ε2 = −0.4, which is possible when
εMax ≥ 0.5. As illustrated, the non-permuted SF code C
in this case cannot achieve full diversity any more. Since
the ICI matrix U′ is singular, the ZF-ML method cannot
be directly applied. To still achieve full diversity, we use
the ZF-ML-Z2 and ZF-ML-PIC methods. For the ZF-ML-
Z2 method, the 30th, 31st, 62nd and 63rd subcarriers are
not used. According to Theorem 4, full diversity can be
achieved as long as both |ε1| and |ε2| are smaller than
1.5. For the ZF-ML-PIC method, G1 and G16 need to be
jointly decoded. The simulation results are consistent with
our previous analysis. In Fig. 6, it is apparent that both
of these two detection methods achieve the same diversity
order as that without CFOs.

VII. CONCLUSION

In this paper, we investigate the effect of multiple CFOs
in a cooperative OFDM based system on a family of
SF codes proposed in [11]. By treating the CFOs as a
part of the SF code matrix, we showed that if εMax is
less than 0.5, the full diversity order for the SF codes
are not affected by the multiple CFOs in the SF coded
OFDM cooperative system. We further prove that this
full diversity property can still be preserved if the zero
forcing (ZF) method is used to equalize the multiple
CFOs. In order to improve the robustness of the SF codes
to multiple CFOs, we proposed a permutation method to
enable the SF codes to achieve full diversity even when
εmax ≥ 0.5. Furthermore, two full diversity achievable
detection methods, namely the ZF-ML-Zn and ZF-ML-
PIC, have been introduced, both of which are applicable
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to cases when ICI matrix is singular. All these imply that
the SF codes proposed in [11] for MIMO-OFDM systems
are robust to both timing errors and CFOs in a cooperative
system.

APPENDIX A
PROOFS OF PROPOSITION 1 AND PROPERTIES OF V′

A. Proof of Proposition 1

From (35), we know that V′ is singular, if and only if
there exist at least three integers t, i and l which satisfy

εml − εmi = tN + i − l, (I1)

for 0 ≤ i < l ≤ N − 1. As 0 ≤ i < l ≤ N − 1, it follows that
−N + 1 ≤ i − l ≤ −1. Consequently, we have

tN − N + 1 ≤ tN + i − l ≤ tN − 1. (I2)

When (I1) holds, substituting (I1) into (I2), we obtain

tN − N + 1 ≤ εml − εmi ≤ tN − 1. (I3)

On the other hand, provided |εm| < (P−1)Γ+1
2 and P > 1,

we have

−N < −(P− 1)Γ− 1 < εml − εmi < (P− 1)Γ+ 1 < N. (I4)

Then let us examine (I1) in great detail when it holds.
Firstly, if εml −εmi = 0, from (I1) we have tN+ i− l = 0

and then t = l−i
N . On the other hand, since −N+1 ≤ i− l ≤

−1, we can get 1
N ≤

l−i
N ≤ 1 − 1

N . Therefore, we obtain
1
N ≤ t ≤ 1− 1

N , which is contradictory to the fact that t is
an integer. Thus εml − εmi cannot be equal to zero.

Secondly, if εml−εmi < 0, given (I4), εml−εmi must be in
the set {−(P−1)Γ, · · · ,−1}, since when (I1) holds, εml−εmi

should be an integer. To let both (I3) and (I4) hold, it is
required that tN −N +1 < 0 and tN −1 > −N, which lead
to t < 1 − 1

N and t > −1 + 1
N , respectively. Considering

the fact that t is an integer, we can derive that t can only
be equal to 0. Thus we have εml − εmi = i − l. From (34),
we know that all the columns of V′m are related to εm.
In conjunction with i < l and εmi , εml , we can obtain
1 ≤ mi < ml ≤ Mt and then ml − mi ≥ 1. On the other
hand, since εml − εmi is in the set {−(P− 1)Γ, · · · ,−1} and
εml − εmi = i − l, we can get

1 ≤ l − i ≤ (P − 1)Γ. (I5)

From (34), we have

ml − mi =

⌈
l + 1
PΓ

⌉
−
⌈
i + 1
PΓ

⌉
≤
⌈
i + (P − 1)Γ + 1

PΓ

⌉
−
⌈
i + 1
PΓ

⌉
≤
⌈
i + 1
PΓ

⌉
+ 1 −

⌈
i + 1
PΓ

⌉
= 1, (I6)

where the second inequality follows from the fact that
0 < (P−1)Γ

PΓ < 1. Therefore, ml −mi can only be equal to 1.
Thirdly, if εml − εmi > 0, by the similar analysis to

that for εml − εmi < 0, it is not hard to obtain that when
(I1) holds, εml − εmi ∈ {1, 2, · · · , (P − 1)Γ}, 1 ≤ mi <

ml ≤ Mt and t can only be equal to 1. From t = 1, we
have εml − εmi = N + i − l. Since εml − εmi is in the set
{1, 2, · · · , (P − 1)Γ}, we get

1 ≤ N + i − l ≤ (P − 1)Γ. (I7)

From 1 ≤ mi ≤ Mt − 1 and (34), we also have

0 ≤ i ≤ (Mt − 1)PΓ − 1, (I8)

since v′i is one column of V′m for 1 ≤ m ≤ Mt − 1. From
(I7), (I8) and l ≤ N−1, it is not hard to get the inequality

N − (P − 1)Γ ≤ l ≤ N − 1. (I9)

Then according to (34), we have ml = Mt. Adding both
sides of (I9) to that of (I7) and using i ≥ 0, we can obtain

0 ≤ i ≤ (P − 1)Γ − 1, (I10)

which leads to mi = 1.
By summarizing results of the above analysis, we can

get Proposition 1.

B. Proofs of Properties of V′

1) Proof of Property 1: Firstly, for the case 1 of
Proposition 1, we need to calculate the lower bound of i.
Based on the fact that v′i is one column of V′mi

, we can
get that (mi − 1)PΓ ≤ i ≤ miPΓ − 1. As ml − mi = 1, we
then have

(ml − 2)PΓ ≤ i ≤ (ml − 1)PΓ − 1. (I11)

Substituting (I11) into (I5), we obtain

(ml − 2)PΓ + 1 ≤ l ≤ mlPΓ − 1 − Γ. (I12)

As v′l is one column of V′ml
, we immediately have (ml −

1)PΓ ≤ l. Thus from (I12) we finally obtain

(ml − 1)PΓ ≤ l ≤ mlPΓ − 1 − Γ. (I13)

Then from (I5), (I11), (I13) and mi = ml−1, we can easily
get the bounds of i as

miPΓ − (P − 1)Γ ≤ i ≤ miPΓ − 1. (I14)

Secondly, for the case 2 of Proposition 1, we need
calculate the lower bond of l, where ml = Mt. It has been
shown in (I9) as l ≥ N − (P − 1)Γ = MtPΓ − (P − 1)Γ.

2) Proof of Property 2: Assume fm(tm,1) > (m)Mt PΓ.
Then it is easy to show that tm,1 − 1 and fm(tm,1) − 1 are
also a pair of integers satisfying Proposition 1. So we
have v′tm,1−1 = v′fm(tm,1)−1 and thus (tm,1−1) ∈ Bm. As this is
contradictory to the assumption that tm,1 is the minimum
element of Bm, we have fm(tm,1) ≤ (m)Mt PΓ. On the other
hand, since fm(tm,1) cannot be smaller than (m)Mt PΓ, we
obtain our conclusion.

3) Proof of Property 3: From the fact that tm,1 and
fm(tm,1) are a pair of integers satisfying Proposition 1, it
is not hard to get that if tm,1 < mPΓ − 1, tm,1 + k and
fm(tm,1) + k for 1 ≤ k ≤ mPΓ − 1 − tm,1 are also a pair
of integers that satisfies Proposition 1. Therefore, Bm has
the form Bm = {tm,1, tm,1 + 1, · · · ,mPΓ − 1}.
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4) Proof of Property 4: Directly comes from the upper
bound of l in (I12) and that of i in (I10).

5) Proof of Property 5: Directly follows from the
Property 2 and Property 3 of V′ and the relationship
between Bm and B̄m.

6) Proof of Property 6: In this proof, we consider three
different cases of m, i.e., m = 1, 2 ≤ m ≤ Mt − 1 and m =
Mt. Here only the derivation for the case of 2 ≤ m ≤ Mt−1
is given. For the other two cases, the same conclusion can
be obtained by following the similar analysis strategy.

As B̄m is not null, from Property 5 of V′, we know
that t̄m,T̄m

= (m − 1)PΓ + T̄m − 1 = fm−1(tm−1,Tm−1 ). From
Property 3 of V′, we have tm−1,Tm−1 = (m−1)PΓ−1. Thus,
we get t̄m,T̄m

= fm−1((m − 1)PΓ − 1). Then by using (42),
t̄m,T̄m

can be expressed by

t̄m,T̄m
= (m − 1)PΓ − 1 − εm + εm−1. (I15)

On the other hand, based on Property 2 of V′, we have
fm(tm,1) = mPΓ. From (42), we get

mPΓ = tm,1 − εm+1 + εm. (I16)

Adding each side of (I16) to that of (I15), we get

εm+1 − εm−1 = tm,1 − t̄m,T̄m
− PΓ − 1. (I17)

Given |εm| < (P−1)Γ+1
2 , we have εm+1−εm−1 > −(P−1)Γ−1.

Substituting this inequality into (I17), we can get tm,1 −
t̄m,T̄m

> Γ. As tm,1 − t̄m,T̄m
is an integer, we finally obtain

tm,1 − t̄m,T̄m
≥ Γ + 1.

7) Proof of Property 7: Assume that Bm , ϕ for 1 ≤
m ≤ Mt. From the case 1 of Proposition 1, we have −(P−
1)Γ ≤ εm−εm−1 ≤ −1 for 2 ≤ m ≤ Mt. Then we can obtain∑Mt

m=2 −(P−1)Γ ≤ ∑Mt
m=2 εm−εm−1 ≤

∑Mt
m=2 −1, which leads

to

−(Mt − 1)(P − 1)Γ ≤ εMt − ε1 ≤ −(Mt − 1). (I18)

On the other hand, since BMt , ϕ, from the case 2 of
Proposition 1, we get that 1 ≤ εMt − ε1 ≤ (P− 1)Γ, which
is contradictory to (I18). Therefore, there must exist m†

so that Bm† = ϕ.
8) Proof of Property 8: From Property 7, we know

that there must exist n† with 1 ≤ n† ≤ Mt so that Bn† = ϕ.
From the relationship between Bn and B̄(n)Mt+1 (Property
5 of V′), we can deduce that Bn = B̄(n)Mt+1 = ϕ. Therefore,
Property 8 holds.

APPENDIX B
PROOF OF LEMMA 1

Above all, we remind that all the discussions in this
Appendix are under the condition |εm| < (P−1)Γ+1

2 for 1 ≤
m ≤ Mt and P > 1. Hence Proposition 1 and the properties
of V′ described in Section V-D hold. To simplify notation,
we use r to stand for

∑n1
m=1 V′m∆Ȳmam+

∑Mt
m=n2

V′m∆Ȳmam.
As V′n2

is the (n2 − 1)th N × PΓ submatrix of V′,
it contains the columns of V′ from v(n2−1)PΓ to vn2PΓ−1,
where v′l stands for lth column of V′ for 0 ≤ l ≤ N − 1.
According to Proposition 1, we know that when V′
is singular, some columns of V′n2

may be repeated in

V′(n2−2)Mt+1 or V′(n2)Mt+1, where ( )n means the modular
operation. Further from Property 6 of V′, we can see that
the columns of V′n2

can only be repeated in V′(n2−2)Mt+1 or
V′(n2)Mt+1.

From the definition of B̄n2 in (41), we know that when
B̄n2 = ϕ, no columns of V′n2

are repeated in V′(n2−2)Mt+1. On
the other hand, according to Property 1 of V′, when Bn2 ,
ϕ, we can obtain tn2,1 − (n2 − 1)PΓ ≥ Γ, which means that
the first Γ column of V′n2

cannot be repeated in V′(n2)Mt+1,
since v′(n2−1)PΓ is the first column of V′n2

. Therefore, when
B̄n2 = ϕ, at least the first Γ columns of V′n2

are unique in
V′m for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt.

Then let us turn to the condition n2 ≥ n1 + 2. From
n2 ≥ n1 + 2 and 0 ≤ n1 < n2 ≤ Mt, it is easy to obtain
n2 > (n2 − 2)Mt + 1 ≥ n1 + 1. Hence, V′(n2−2)Mt+1 does not
exist in the expression of r. As the first Γ columns of
V′n2

can only be repeated in V′(n2−2)Mt+1, in the case of
n2 ≥ n1 + 2 we can obtain the same conclusion as that in
the case of B̄n2 = ϕ, i.e., at least the first Γ columns of
V′n2

are unique in V′m for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt.
By using the block matrix multiplication rule, we

rewrite r as

r =
n1∑

m=1

P∑
p=1

V′pm∆Ȳp
mam +

Mt∑
m=n2

P∑
p=1

V′pm∆Ȳp
mam, (II1)

where V′pm denotes the (p − 1)th N × Γ submatrix of V′m
and Ȳp

m denotes the (p− 1)th Γ×min(Γ, Lm) submatrix of
Ȳm. Let p†n2 with 1 ≤ p†n2 ≤ P be the maximum number so
that the columns of V′pn2 , 1 ≤ p ≤ p†n2 , are unique in V′m
for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt. As we have discussed,
when either B̄n2 = ϕ or n2 ≥ n1 +2, the first Γ columns of
V′n2

are unique in V′m for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt.
Therefore, p†n2 is at least equal to 1. Then we rewrite (II1)
as (II2) at the top of next page and regard r as a linear
combination of the columns of V′m with the coefficient
vectors ∆Ȳmam for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt.

Let us first look at the second term in the right-hand
side of (II2) which is related to V′pn2 for 1 ≤ p ≤ p†n2 .
As V′ is a Vandermonde matrix, all the distinct columns
of V′m for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt are linearly
independent. Further considering the fact that the columns
of V′pn2 for 1 ≤ p ≤ p†n2 are unique in the columns of V′m
for 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt, to let r = 0N , we must
have

∆Ȳp
n2 an2 = 0Γ for 1 ≤ p ≤ p†n2

. (II4)

Assume that there exists p0 with 1 ≤ p0 ≤ p†n2 so that
Gp0 , Ĝp0 . Then from (II4), we get ∆Ȳp0

n2 an2 = 0Γ.
From Proposition 2, we know that ∆Ȳp0

n2 has full column
rank min(Γ, Ln2 ). As a consequence, we can obtain that
∆Ȳp0

n2 an2 = 0Γ , only if an2 = 0min(Γ,Ln2 ). Thus if there exists
p0 with 1 ≤ p0 ≤ p†n2 so that Gp0 , Ĝp0 , then r = 0N ,
only if an2 = 0min(Γ,Ln2 ). Note when Bn2 = ϕ, we have
p†n2 = P, which means that Lemma 1 holds for the case
of Bn2 = ϕ.

When Bn2 , ϕ, we have 1 ≤ p†n2 < P. Following
the above discussions, we only need to consider the case
that Gp = Ĝp for 1 ≤ p ≤ p†n2 , which leads to ∆Ȳp

m =

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2010 329

© 2010 ACADEMY PUBLISHER



r =
n1∑

m=1

P∑
p=1

V′pm∆Ȳp
mam +

p†n2∑
p=1

V′pn2
∆Ȳp

n2 an2 +

P∑
p=p†n2+1

V′pn2
∆Ȳp

n2 an2 +

P∑
p=1

V′pn2+1∆Ȳp
n2+1an2+1 +

Mt∑
m=3

P∑
p=1

V′pm∆Ȳp
mam (II2)

r =
n1∑

m=1

P∑
p=p†n2+1

V′m∆Ȳp
mam +V′p

†
n2+1

n2 ∆Ȳp†n2+1
n2 an2 +

P∑
p=p†n2+2

V′pn2
∆Ȳp

n2 an2 +

P∑
p=p†n2+1

V′pn2+1∆Ȳp
n2+1an2+1 +

Mt∑
m=3

P∑
p=p†1+1

V′pm∆Ȳp
mam.

(II3)

0Γ×min(Γ,Lm) for 1 ≤ p ≤ p†n2 and 1 ≤ m ≤ Mt. Substituting
this fact into (II2), we have (II3) at the top of next page.
From the definitions of p†n2 and Bn2 in (40), we have
tn2,1 ≤ (n2−1)PΓ+ (p†n2 +1)Γ−1, since v′tn2 ,1

should be one

column of Vp†n2+1
n2 . Then from Property 3 and Property 5 of

V′, the last (n2−1)PΓ+(p†n2+1)Γ−tn2,1 columns of V′p
†
n2+1

n2

are equal to the first (n2−1)PΓ+ (p†n2 +1)Γ− tn2,1 columns
of V′1n2+1. However, due to ∆Ȳ1

n2+1 = 0Γ×min(Γ,Ln2+1), the
term V′1n2+1∆Ȳ1

n2+1an2+1 does not exist in the right-hand
side of (II3). Note that from Property 6 of V′, we know
in V′ there are no more than 2 equal columns. It follows

that in (II3) only the term V′p
†
n2+1

n2 ∆Ȳp†n2+1
n2 an2 is related

to the columns of V′p
†
n2+1

n2 . Since all the distinct columns
of V′ are linearly independent, to let r = 0N in (II3),

we must have ∆Ȳp†n2+1
n2 an2 = 0Γ. If Gp†n2+1 , Ĝp†n2+1,

due to Proposition 2, ∆Ȳp†n2+1
n2 has full column rank

min(Γ, Ln2 ). As a consequence, if Gp†n2+1 , Ĝp†n2+1, then

∆Yp†n2+1
n2 an2 = 0Γ, only if an2 = 0min(Γ,Ln2 ). Combined with

previous analysis results, we can see that if there exists
p0 for 1 ≤ p0 ≤ p†n2 + 1 so that Gp0 , Ĝp0 , then r = 0N ,
only if an2 = 0min(Γ,Ln2 ).

Then to show that given X′ , X̂′ in (31), r = 0N , only if
an2 = 0min(Γ,Ln2 ), we need to consider the case of Gp = Ĝp

for 1 ≤ p ≤ p†n2 + 1. By substituting ∆Ȳp
m = 0Γ×min(Γ,Lm)

for 1 ≤ p ≤ p†n2 + 1, 1 ≤ m ≤ n1 and n2 ≤ m ≤ Mt into
(II2), we get an analogous condition to what we do in
the previous case of Gp = Ĝp for 1 ≤ p ≤ p†n2 . Due to
the fact that ∆Ȳp

n2+1 = 0Γ×min(Γ,Ln2+1) for 1 ≤ p ≤ p†n2 + 1,

only the term V′p
†
n2+2

n2 ∆Ȳp†n2+2
n2 an2 is related to the columns

of V′p
†
n2+2

n2 in r. Consequently, we can get that once there
exists p0 with 1 ≤ p0 ≤ p†n2 + 2 so that Gp0 , Ĝp0 , then
r = 0N , only if an2 = 0min(Γ,Ln2 ). By repeating this analysis
step for additional P − p†n2 − 2 times, we can finally get
as expected.
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