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Abstract—In this paper, we study the problem of QoS routing
with two concave constraints in the Internet. We propose an
efficient approach for computing the supported QoS across
domains based on the aggregated intradomain topology. The
time complexity of our approach is polynomial. Moreover,
our approach can be incorporated in the distance-vector
based routing protocol, such as BGP, the de facto inter-
domain routing protocol in the Internet. Our simulation
results show that our interdomain QoS routing protocol can
successfully serve more than 80% of the total connection
requests and is very scalable.

Index Terms—QoS routing, hierarchical networks, concave
constraints, topology aggregation.

I. INTRODUCTION

With the popularity of distributed multimedia appli-
cations, the Internet has to be enhanced to provide the
desired quality-of-service (QoS) guaranteed connection
for the multimedia applications [1]. Very often, users
have more than one QoS requirements, such as machine
capacity (CPU, memory, or disk storage), bandwidth,
and delay, etc. The machine capacity and bandwidth are
concave QoS metrics [2], [3], while delay is an additive
QoS metric. The capacity of a path is the minimum of the
capacities for all nodes on this path, and the bandwidth
of a path is the minimum of the bandwidths for all links
on this path. On the other hand, the delay of a path is
the sum of the delays for all links on this path. In this
work, we assume that each link is associated with two
independent concave QoS metrics. A metric, such as the
machine capacity, that is originally associated with a node,
can be transformed to a link metric where the capacity of
a link is the minimum of the capacities of the two end
nodes of the link. We denote two concave QoS metrics
as metric S and metric W in our subsequent discussion.

In this work, we consider the problem of routing
with two concave constraints in the Internet. That is,
we want to find a path that can support two concave
requirements of a request. In the Internet, nodes are
grouped into different domains or autonomous systems
(ASes). A node in a domain has no topology information
of other domains. Some nodes are called border nodes
if they are connected with other border nodes in other
domains. Given two border nodes, if they are in the same
domain or are directly connected with each other, we
call one is the border neighbor of another. Therefore,
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Fig. 1. A simple Internet topology.

there may be several hops between two border neighbors.
Fig. 1 illustrates a simple Internet topology. There are six
domains and only border nodes are shown. Fig. 2(a) is
the topology of Domain C where Node a is border node
C.1 and Node d is border node C.2, respectively. C.1 and
C.2 are border neighbors of each other, but not directly
connected as shown in Fig. 2(a).
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Fig. 2. illustration for supported QoS.

In the Internet, we call a pair of border nodes in the
same domain are connected via a logical link. A link that
connects two nodes directly is a physical link. According
to BGP, the de facto interdomain routing protocol in the
Internet, each border node has to compute the QoS metrics
of the logical link from itself to each border node in the
same domain, and advertise it to its border neighbors.
The QoS information advertised should reflect the QoS
supported by the paths between the two border nodes in
the same domain. When the physical links are associated
with one QoS metric, a single best path can be identified
and its QoS metric is advertised. However, when each
physical link is associated with two concave QoS metrics,
we may not be able to find the best path between any
two border nodes. For instance, let (x, y) associated with
each edge in Fig. 2(a) represent the QoS metrics of S
and W , respectively. We also call tuple (x, y) a QoS
parameter. Since the QoS metrics are concave, the QoS
parameter of path p1 = a → g → d is (min(13, 6),
min(10, 11)) = (6, 10) while the QoS parameter of path
p2 = a → b → c → d is (9, 7). p1 is better in terms
of W and p2 is better in terms of S. No matter which
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path is selected as the “best”, either path cannot represent
accurately the supported QoS from a to d. In Section II,
we will show that, if the logical link from a to d in
Fig. 2(a) is associated with the QoS parameters (4, 13),
(6, 10), (9, 7), (11, 5), and (13, 4), node a can always
identify whether a request is feasible and never rejects
a feasible request. In other words, these QoS parameters
define the supported QoS of routing from a to d.

In the distance-vector based approach, such as BGP,
each border node computes the (intradomain) supported
QoS between any two border nodes in the same domain
and advertises this information to other border nodes in
other domains. Based on the received supported QoS,
each border node can compute the supported QoS of rout-
ing across multiple domains. We now use an example in
Fig. 1 to illustrate the process of inter-domain supported
QoS computation. We consider the process of computing
the supported QoS from S.2 to the destination domain T .
In the first step, B.2 and C.2 are directly connected to
domain T , and they advertise the supported QoS from
themselves to T to B.1 and C.1, respectively. In the
second step, B.1 and C.1 compute supported QoSes from
themselves to domain T , and advertise them to A.2 and
S.2, respectively. In step 3, S.2 receives the supported
QoS from C.1 to domain T , and computes the supported
QoS from itself to domain T , via C.1. In step 4, S.2
receives the supported QoS from A.1 to T , and computes
the supported QoS from itself to domain T via A.1.
Now, there are two different supported QoSes from S.2
to domain T . One goes through A.1 and another goes
through C.1. By aggregating these two supported QoSes,
border node S.2 obtains the total supported QoS from
itself to domain T . Since the supported QoS is represented
by a set of QoS parameters and the number of these QoS
parameters depends on the network size and topology,
it is not scalable for each border node to advertise all
these QoS parameters. The work in [4] proposes the
line-segment approximation method which applies a line
segment to approximately represent the supported QoS,
which will be discussed in Section II. By applying the
line segment aggregation mechanism, the supported QoS
can be defined by two QoS parameters, which is scalable.

In this work, we apply a line segment to approximately
define the supported QoS between two border nodes.
Accordingly, there are two issues we need to consider.

1) How to compute the supported QoS from s to a
destination d based on the supported QoSes from
s to u and from u to d, which are defined by line
segments?

2) Assume a border node has several border neighbors
and has computed the supported QoS to a destination
via each border neighbor. How does this border node
obtain the total supported QoS from itself to the
destination?

A preliminary version of this paper can be found in [5].
This paper enhances the mechanisms, and provides formal
proofs and complexity analysis. Note that when a border
node finds a feasible path for a connection request, it

should reserve the network resources for this connection,
and a link state update process should be initiated for
obtaining the accurate network topology information. In
this work, our focus is on the problem of computing the
supported QoS information based on the accurate QoS
metrics of each link, and we would not consider how to
reserve the network resources, update the network state
information, and estimate the QoS metric of each link.

The rest of the paper is organized as follows. Section II
gives some notations and definitions in this paper, and
introduces the existing line segment aggregation method
proposed in [4]. In Section III, we propose the mechanism
to cope with the first issue, formally prove the correct-
ness of our mechanism, and analyze its computational
complexity. In Section IV, we consider the second issue.
We present the mechanism for finding the aggregated
supported QoS and analyze its computational complex-
ity. Our simulation results are discussed in Section V.
Section VI compares and discusses some existing works
on QoS routing in the Internet. Finally, we conclude our
work in Section VII.

II. LINE SEGMENT AGGREGATION METHOD

We mentioned earlier that the logical link between any
two border nodes in the same domain may be associated
with several QoS parameters. Now, we describe how
to find the QoS parameters of the logical link between
two border nodes in the same domain. For the ease of
discussion, we plot the QoS parameter on the S-W plane,
as illustrated in Fig. 2(b), where each point denotes the
QoS parameter of a path from a to d in Fig. 2(a). The
shaded area is called the feasible region. Any connection
request with the QoS requirements falling in the feasible
region can be supported by at least one physical path.

Definition 1: An QoS parameter p is more represen-
tative than the QoS parameter p′, denoted by p Â p′ or
p′ ≺ p, if and only if
• p.s 6= p′.s or p.w 6= p′.w, and;
• p.s ≥ p′.s and p.w ≥ p′.w.
In Fig. 2(a), there are two paths p1 = a → g → d with

the QoS parameter (6, 10) and a → f → b → c → d
with the QoS parameter (4, 4). We have (6, 10) Â (4, 4).
As illustrated in Fig. 2(b), the feasible region defined by
(4, 4) is included in that of (6, 10). We cannot find any
path whose QoS parameter is more representative than
(6, 10), and we say that p1 is a non-dominated path. The
feasible region is defined by five points (4, 13), (6, 10),
(9, 7), (11, 5), and (13, 4), which are the QoS parameters
of all the non-dominated paths from a to d. Therefore,
computing the supported QoS between any two border
nodes in the same domain is to find all the non-dominated
paths, which can be solved in polynomial time [6].

The work in [4] proposes a line segment to approximate
the staircase. Thus, the feasible region is approximately
defined by a line segment, such as line segment l in
Fig. 2(b). Such line segment is found by applying the
Method of Least Squares.
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For the ease of discussion, we would like to introduce
some notations used in the context. Given a QoS param-
eter p, denote p.s as the metric S of p, and p.w as the
metric W of p. Denote a line segment l as [l.up, l.lp],
where l.up and l.lp are called the upper and lower end-
points of l, respectively. The feasible region defined by l is
compassed by the three line segments [(0, l.up.w), l.up],
[l.up, l.lp], and [l.lp, (l.lp.s, 0)], as illustrated in Fig. 2(b).
When l.lp = l.up, the supported QoS can be represented
by a point l.lp, which means that there is only one non-
dominated path between the source and the destination.

III. QOS JOIN OPERATION

Assume that we have found the supported QoS from
border node a to its border neighbor u, and the supported
QoS from border node u to a border node d. Note that
there may exist several border nodes between u and d, that
is, the paths between u and d go across several domains,
as discussed in Section I. In this section, we discuss how
to find the supported QoS supported by all paths from
a to d via u. Denote R1 and R2 as the feasible region
supported by all paths from a to u and from u to d,
respectively. We have the following lemma.

Lemma 1: Let R1 and R2 be the feasible region sup-
ported by all paths from a to u and from u to d,
respectively. The feasible region supported by all paths
from a to d via u, denoted by R, is R1 ∩ R2.

Proof: Given any point (cs, cw) located in R1 ∩R2,
we can find a path P1 from a to u and a path P2 from u
to d, both of which have the metric S not less than cs and
the metric W not less than cw. Let path P be the path
from a to d which is concatenated with P1 and P2. Path
P can satisfy the QoS requirement (cs, cw). This means
that given any QoS requirement falling in R1 ∩ R2, we
can find a feasible path from a to d satisfying this request.
We thus have R1 ∩ R2 ⊆ R.

For any point p = (cs, cw) that is outside R1 ∩ R2, it
is either not in R1 or R2, or not in both. Without loss
of generality, let p be not in R2. Thus, we cannot find a
feasible path from u to d satisfying the QoS requirement
(cs, cw). In other words, all paths from s to d via u cannot
support any request with the QoS requirement falling
outside R1 ∩ R2. This implies that R ⊆ R1 ∩ R2.

Based on the arguments above, we have R = R1 ∩R2.

If R1 and R2 are represented by points p1 and p2,
respectively, p1 ⊕ p2 defines the feasible region R1 ∩R2.
We call ⊕ the join operation. If R1 is represented by a line
segment l and R2 is represented by a point p, p⊕l defines
the feasible region R1 ∩R2. The solutions for computing
p1 ⊕ p2 and p⊕ l can be referred to [5]. In this section,
we focus on the more general situation that R1 and R2

are defined by line segments l1 and l2, respectively. Let
l1 ⊕ l2 represent the region R1 ∩ R2.

Given two specified line segments l1 and l2, by plotting
l1 and l2 on the S-W plane, we can easily find the result
of l1 ⊕ l2 based on Lemma 1. The work in [5] also

describes how to compute the feasible region based on
the endpoints of the line segments, but the solution is
not complete. In the following, we provide a complete
mechanism for computing l1 ⊕ l2 and formally prove its
correctness. Based on Lemma 1, we have the following
corollary.

Corollary 1: Define su = min{l1.lp.s, l2.lp.s} and
wu = min{l1.up.w, l2.up.w}. The feasible region for l1⊕
l2 must be inside the region spanned by [0, su]× [0, wu].

Proof: By Lemma 1, the feasible region defined by
l1⊕ l2 is the intersection of the feasible region for l1 and
that for l2. Therefore, the new feasible region would be
bounded by the minimum W of the upper endpoints and
the minimum S of the lower endpoints.
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Fig. 3. An illustration of the join operation for the two line segments
l1 and l2.

We new describe the details on how to identify l1⊕ l2.
From the illustration in Fig. 3, both l1 and l2 may or may
not intersect the region R = [0, su]× [0, wu], where su =
min{l1.lp.s, l2.lp.s} and wu = min{l1.up.w, l2.up.w}.
There are three different cases:

Case I: Both l1 and l2 do not intersect the region R,
as illustrated in Fig. 3(a). The feasible region defined by
l1 ⊕ l2 is thus [0, su]× [0, wu]. That is, l1 ⊕ l2 is a point
(su,wu).

Case II: Only one line segment, say l2, intersects the
region R while the other is outside the region R. Let
l′2 be the segment of l2 which is located in the region
[0, su]× [0, wu]. In this case, the feasible region defined
by l1⊕ l2 is represented by l′2. For instance, in Fig. 3(b),
l1 ⊕ l2 = [l2.up, p′].

Case III: If both l1 and l2 intersect the region R. Let l′1
and l′2 be the segments of l1 and l2, respectively, which
are located in the region [0, su] × [0, wu]. For instance,
in Figs. 3(c)-3(d), l′1 = [up1, lp1] and l′2 = [up2, lp2]. We
need to consider two cases.

1) l1 does not intersect with l2. In that case, the line
segment that is located at a lower position defines
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the feasible region. For instance, in Fig. 3(d), l1 is
at a lower position than l2. Therefore, l1 ⊕ l2 = l′1.

2) l1 intersects with l2. In this case, we denote px as the
intersection point. Since px.s < su and px.w < wu,
px is located in the region [0, su]×[0, wu]. px divides
l′1 into two parts [l′1.up, px] and [px, l′1.lp]. Similarly,
px divides l′2 into two parts [l′2.up, px] and [px, l′2.lp].
Without the loss of generality, assume that [l′1.up, px]
is sitting above [l′2.up, px]. Then, [px, l′2.lp] must
be located at a higher position than [px, l′1.lp], as
shown in Fig. 3(c). In this case, two line segments
[l′2.up, px] and [px, l′1.lp] form the boundary of the
feasible region defined by l1 ⊕ l2. Unfortunately,
this region cannot be represented using two points
as a line segment. For advertisement purposes, we
can apply the method of least squares to get an
approximate line segment.

To determine l1⊕ l2, we need only a few operations on
checking whether two line segments intersect and finding
the intersection points. These operations can be done in
O(1) time [7]. Therefore, the computational complexity
for computing l1 ⊕ l2 is O(1).

IV. QOS AGGREGATION

In the previous section, we discussed how to compute
the supported QoS from border node ba to border node
bd via border neighbor u of a. In practice, border node
ba may have several border neighbors. A request can
be served by a path via either one of the neighbors.
Therefore, the supported QoS from ba to bd should be the
union of the supported QoSes provided by the neighbors.
For example, ba has computed four different line seg-
ments which represent the supported QoSes from itself
to bd through different border neighbors, as illustrated
in Fig. 4(a). The feasible region from ba to bd is the
union of the different feasible regions defined by these
four different line segments. The shaded area in Fig. 4(b)
illustrates the aggregated feasible region.

We call the boundary of the aggregated feasible region
the service outline, which is composed by several line seg-
ments. As shown in Fig. 4(b), the service outline is com-
posed by eight line segments. We call the points defining
the service outline the service outline points. In Fig. 4(b),
the service outline points is {p1, p2, p3, p4, p5, p6, p7}.

We presented a mechanism to find the service outline
in [8] but for a concave and an additive QoS metric
pair, which cannot be directly applied in the situation
studied in this paper. In this section, we describe how
to identify the service outline when two concave metrics
are considered and provide the complexity analysis. As
a matter of fact, our mechanism can also be applied
for finding the aggregated supported QoS with additive-
concave or two additive QoS metrics.

Given a line segment l, the service outline of a
line segment l is composed by three line segments
[(0, l.up.w), l.up], [l.up, l.lp], and [l.lp, (l.lp.s, 0)], as il-
lustrated in Fig. 2(b). Suppose that ba has m neighbors
and let L = {l1, . . . , lm} be the set of line segments that
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Fig. 4. An illustration for QoS aggregation.

define the supported QoS from ba to bd via each of the
neighbors.

We adopt an iterative approach that expands the ex-
isting feasible region by considering the line segments
one by one. First, we compute the feasible region defined
by l1 only. We then consider l2 and include the feasible
region induced by l2 if necessary. After m steps, we can
find the service outline defining the aggregated feasible
region. We now describe each step in details.

In step k, the current service outline defines the total
feasible region, denoted by Rc, for all line segments
{l1, . . . , lk−1}. That is, in the first step, the current service
outline is the service outline of l1. We call the line
segments forming the service outline the service outline
segments.

If the service outline of lk is completely located in
Rc, lk does not induce any new feasible region, and
the current service outline should not be changed. To
check whether this is the case, we verify whether the
service outline segments of lk ([(0, lk.up.w), lk.up], lk,
and [lk.lp, (lk.lp.s, 0)]) intersect with the current service
outline segments one by one in ascending S order. After
identifying all the intersection points, we can determine
the new region defined by lk to be included in the feasible
region. Finally, we remove all the current service outline
segments located in the feasible region defined by lk,
and put all the service outline segments of lk located
outside the existing feasible region into the current service
outline.

We would like to use the examples in Fig. 5 to illustrate
how to identify the new service outline segments, where
the dashed line segments are the current service outline
segments. We first consider the example in Fig 5(a). In
the first step, we identify the intersection points p1, p2,
and p3. The points divide the service outline segments
of lk into several segments. We then check whether each
individual segment is inside the current feasible region
or on the outside. For example, the segment [l.up, p1] is
outside and defines a new feasible region, while the seg-
ment [p1, p2] is inside the current feasible region. Finally,
we expand the existing feasible region by including the
feasible region induced by lk. The new service outline
is formed by replacing the segment [(0, w1), p1] with
[(0, w2), l.up] and [l.up, p1], and replacing the segment
[p2, p3] with [p2, l.lp] and [l.lp, p3]. In Fig. 5(b), there are
only two intersection points between the service outline
segments of lk and the current service outline segments.
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lk defines a new region defined by p1, p2, and p3. The new
service outline can be formed by replacing the segments
[p1, p3] and [p3, p2] with [p1, p2].

Now, we analyze the time complexity for finding the
aggregated supported QoS. A point on the service outline
is either an intersection point of two line segments in
the service outline segments of L or an endpoint of a
line segment in L, where L = {l1, . . . , lm}. As a result,
there are at most O(m2) service outline segments in
each step of our algorithm. Since it takes O(1) time to
find the intersection between two line segments, it takes
O(m2) time to find all the service outline segments of lk.
Therefore, the time complexity for finding the aggregated
supported QoS defined by L is O(m3).
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Fig. 5. Illustrations for identifying the service outline.

After finding all the service outline points, Node a will
perform the method of least squares on them in order to
obtain a line segment to approximate the service outline.
As line segments only provide estimates of supported
QoS, routing loops may occur due to the estimation errors
and it leads to slow convergence. Therefore, we also apply
the threshold checking and advertisement history checking
techniques in [8] in our mechanism. Interested readers can
refer to [8] for more detailed discussions.

V. SIMULATION

In this section, we present the performance evaluation
and compare our protocol with the existing mechanisms.
To our best knowledge, there are two existing QoS
aggregation mechanisms which can be implemented in the
distance-vector routing model. They are the best-point al-
gorithm and the worst-point algorithm [4]. The best-point
algorithm uses the largest metric W and the largest metric
S in all the paths from a source to a destination to denote
the supported QoS, while the worst-point algorithm uses
the smallest metric W and the smallest metric S to denote
the supported QoS. Our simulation experiments aim at
comparing the performance of our routing protocol with
those of the existing mechanisms.

A. Simulation configurations

We evaluate our protocol on two network types: (1)
BRITE [9] topology generated by the BRITE software
(version 2.1b Java generator), and (2) random topology.
For the BRITE topology, both the inter-domain and the
intra-domain topologies are generated using the Wax-
man [9] model. In random topology, any two nodes in the

same domain are directly connected with the probability
p = 0.15. We randomly select four nodes in each domain
as the border nodes. For both topology types, we generate
networks with 10 domains and 20 domains, each of which
contains 50 nodes. The average number of border nodes
in a domain is four. In the network with 10 domains, there
are in average 40 interdomain links. In the network with
20 domains, there are in average 80 interdomain links.
The metric S and metric W of each link independently
fall in [5, 10] and [1, 10].

When the network contains 10 domains, we gener-
ate one QoS request for every possible “source node
to destination domain” pair. This contributes to 50 ×
10 × 10 = 5000 QoS requests. While in the network
with 20 domains, we randomly select 25 nodes from
each domain, and generate one QoS request from each
node to each domain in the network. This contributes
to 20 × 20 × 25 = 10000 QoS requests. We simulate
10 network instances, and the simulation results are the
average values over these 10 topologies.

Two performance metrics are used to evaluate our
routing protocol: success ratio and crankback ratio. The
routing protocol may reject some feasible requests, or
cannot successfully establish a connection for a feasible
request. Success ratio is defined as the ratio of the number
of requests successfully served by a protocol to that of
the feasible requests actually supported by the network.
On the other hand, the routing protocol may accept
some infeasible request. Crankback ratio is defined as
the number of infeasible request accepted by a protocol
to the total number of feasible requests.

From the above definitions, it is easy to see that a good
QoS routing protocol should have a high success ratio and
a low crankback ratio. We can easily verify that the worst-
point algorithm does not accept any infeasible request,
and the best-point algorithm does not reject any feasible
request. This implies that the crankback ratio of the worst-
point is zero, and the success ratio of the best-point is 1.
That is to say, we should evaluate the success ratio of the
worst-point and the crankback ratio of the best-point.

B. Simulation Results

Fig. 6 and Fig. 7 show the performances of our routing
protocol and the existing mechanisms with the change of
the Metric W requirement of the generated connection
requests under the BRITE topology type. Tables I and II
show the average success ratios and the average crankback
ratios of our protocol and the existing mechanisms. Each
column corresponds to a network topology. For instance,
“Domain 10(5-9)” means that the network contains 10
domains and the link metrics fall in the range [5, 9].
From Fig. 6, our protocol has a success ratio of 90% in
many different settings of W requirement. However, the
success ratios of the worst-point are often less than 50%,
as illustrated in Fig. 7. Table I shows that the average
success ratio of our protocol is larger than 80%, but that
of the worst-point is less than 40%, which is very low.
Moreover, we can observe that the average crankback
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ratio of our protocol is less than 8%, but that of the
best-point is larger than 40%, which is very high. From
Table I, we also observe that the average success ratio of
our protocol with the link metric range [1, 10] is higher
than that with the link metric range [5, 10]. As the number
of link metrics increases, our routing protocol not only
saves more advertisement overhead but also achieves a
better performance.

Fig. 8 and Fig. 9 show the performances of our proto-
col and the existing mechanisms in randomly generated
topologies. Tables III and IV show the average success
ratios and the average crankback ratios of our protocol and
the existing mechanisms. Under the random topology, we
can get the similar observations as those under the BRITE
topology. By comparing with Tables I and III, under the
random network topology, the crankback ratio produced
by our protocol is very small. As we know, the distortion
introduced by the aggregation mechanism depends on
the specific network topology and the current network
state. Therefore, the performance of our protocol under
the random topology is a little different than that under
the BRITE topology. Generally speaking, our protocol
achieves the average success ratio larger than 80% and the
average crankback ratio smaller than 8%. Unfortunately,
from Tables III and IV, the best-point and the worst-point
still do not work well under the random network topology.
Therefore, we can say that our protocol outperforms the
existing mechanisms with the better tradeoff between the
success ratio and the crankback ratio.

VI. RELATED WORK

Provisioning QoS in the Internet has been paid much
attention. Some works, such as [10], [11], consider that
the QoS requirements can be divided into multiple quality
levels. In this work, we consider that each QoS require-
ment is represented using a real number. For instance, a
request can specify its bandwidth request to be 1Mbps.
Some works, such as [12], [13], just consider one QoS
metric. Although [13] studies the case of multiple QoS
metrics, the path selection is just based on only one
metric.

The work in [14] considers the interdomain routing
with the delay and bandwidth metrics. However, this work
does not consider the QoS information aggregation, and
so the routing protocol is not scalable. Ref. [15] proposes
a link-state based interdomain QoS routing architecture,
where each domain is abstracted into a single routing
agent. This work uses the worst-case scenario, such as
the maximum delay or minimum bandwidth, to represent
the supported QoS of each domain. In [4], it has been
shown that the worst-case based aggregation mechanism
produces huge distortion. The work in [16] considers the
QoS routing with the bandwidth and cost metrics. This
work assumes that an existing aggregation mechanism is
applied, and gives the general model of computing the
supported QoS across multiple domains. However, this
work does not give any solution for designing the QoS
routing algorithm with a specified topology aggregation

mechanism. Ref. [17] presents the existing QoS informa-
tion aggregation mechanisms.

In [4], the line segment aggregation method is shown to
have the best performance by comparing with the existing
aggregation methods. We would like to adopt the line
segment aggregation mechanism for designing the QoS
routing protocol with two concave metrics. The work
in [8] also applies the line segment aggregation method
to design the QoS routing protocol in the Internet, but it
considers the additive and concave QoS metrics.

The work in [18] considers the QoS routing with two
concave QoS metrics, computational capacity and band-
width, in the Internet. There are two differences between
[18] and our work. Firstly, [18] assumes that each physical
link is associated with one QoS metric, bandwidth, and
each border node is associated with another QoS metric,
capacity. In this case, we can find the best path between
any two border nodes in the same domain. Our work
considers that each physical link is associated with two
simultaneous concave QoS metrics, and we may not be
able to find the best path between any two border nodes
in the same domain. In other words, [18] does not involve
the QoS aggregation problem. Secondly, [18] develops a
mixed formula combining two independent concave QoS
metrics, so that the shortest path algorithm can be used to
select an “optimal” path. The path selection mechanism
in our work considers two independent QoS metrics
simultaneously. Moreover, the mixed formula proposed in
[18] is based on the specified QoS requirements, while our
work focuses on finding the supported QoS which has no
specified QoS requirements. To the best of our knowledge,
this paper presents the only work on the interdomain
routing with two concave QoS metrics in the Internet.

VII. CONCLUSION

In this paper, we developed the mechanisms for com-
puting the supported QoS between two border nodes in
different domains based on the distance-vector approach.
By comparing with the existing mechanisms, our protocol
has the higher success ratio and the lower crankback ratio.
The success ratio measures how well our routing protocol
serves the feasible requests, while the crankbacked ratio
evaluates how serious the network resources are wasted by
the routing protocol. Therefore, our protocol outperforms
the existing protocols.
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(a) 10-domain networks with the
link metric w ∈ [5, 9].
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(b) 20-domain networks with the
link metric w ∈ [5, 9].
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(c) 10-domain networks with the
link metric w ∈ [1, 9].
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(d) 20-domain networks with the
link metric w ∈ [1, 9].

Fig. 6. The performance of our protocol with BRITE topology.
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(b) 20-domain networks with the
link metric w ∈ [5, 9].
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(c) 10-domain networks with the
link metric w ∈ [1, 9].
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Fig. 7. The performance of the existing mechanisms with BRITE topology.
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link metric w ∈ [5, 9].
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(b) 20-domain networks with the
link metric w ∈ [5, 9].
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(c) 10-domain networks with the
link metric w ∈ [1, 9].
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(d) 20-domain networks with the
link metric w ∈ [1, 9].

Fig. 8. The performance of our protocol with random topology.
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(b) 20-domain networks with the
link metric w ∈ [5, 9].
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(c) 10-domain networks with the
link metric w ∈ [1, 9].
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Fig. 9. The performance of the existing mechanisms with random topology.

Domain 10 (5-9) Domain 20 (5-9) Domain 10 (1-9) Domain 20 (1-9)
Our protocol 86.95 83.73 93.11 88.76
Worst-point 36.32 27.58 30.4 21.72

TABLE I
THE AVERAGE SUCCESS RATIOS (%) WITH BRITE TOPOLOGY.

Domain 10 (5-9) Domain 20 (5-9) Domain 10 (1-9) Domain 20 (1-9)
Our protocol 4.66 7.59 4.44 7.77

Best-point 45.16 46.66 43.51 55.18

TABLE II
THE AVERAGE CRANKBACK RATIOS (%) WITH BRITE TOPOLOGY.
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Domain 10 (5-9) Domain 20 (5-9) Domain 10 (1-9) Domain 20 (1-9)
Our protocol 83.72 80.57 90.06 89.63
Worst-point 30.99 24.22 27.47 21.62

TABLE III
THE AVERAGE SUCCESS RATIOS (%) WITH RANDOM TOPOLOGY.

Domain 10 (5-9) Domain 20 (5-9) Domain 10 (1-9) Domain 20 (1-9)
Our protocol 0.2 0.94 0.45 1

Best-point 42.57 46.56 42.43 56.55

TABLE IV
THE AVERAGE CRANKBACK RATIOS (%) WITH RANDOM TOPOLOGY.
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